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Abstract: When the drivers approaching signalized intersections (onset of yellow signal), the drivers would enter into a zone, where
they will be in uncertain mode assessing their capabilities to stop or cross the intersection. Therefore, any improper decision might lead
to a right-angle or back-end crash. To avoid a right-angle collision, drivers apply the harsh brakes to stop just before the signalized inter-
section. But this may lead to a back-end crash when the following driver encounters the former’s sudden stopping decision. This situ-
ation gets multifaceted when the traffic is heterogeneous, containing various types of vehicles. In order to reduce this issue, this study’s
primary objective is to identify the driving behaviour at signalized intersections based on the driving features (parameters). The second-
ary objective is to classify the outcome of driving behaviour (safe stopping and unsafe stopping) at the signalized intersection using a
support vector machine (SVM) technique. Turning moments are used to identify the zones and label them accordingly for further classi-
fication. The classification of 50 instances is identified for training and testing using a 70%—30% rule resulted in an accuracy of 85% and
86%, respectively. Classification performance is further verified by random sampling using five cross-validation and 30 iterations, which
gave an accuracy of 97% and 100% for training and testing. These results demonstrate that the proposed approach can help develop a

pre-warning system to alert the drivers approaching signalized intersections, thus reducing back-end crash and accidents.
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1 Introduction

According to a World Health Organization (WHO) re-
port published in 2018, an average of 1.35 million people
per year were killed in road accidents[!], and it is the lead-
ing cause of deaths among the young generation. Among
the casualties recorded in road accidents, many of them
occurred at traffic signal junction>3l, especially at the on-
set of a yellow (amber) signal. Vehicles travelling on a
road/lane with a speed limit of 60km/h or higher enter a
zone where the driver will be in a dilemma of whether to
stop or cross the intersection. This zone is typically
termed as problematic zone or dilemma zone, where
vehicles can neither safely stop within the stop line nor
cross the intersection at the onset of the yellow phase. To
avoid a right-angle collision at this zone, drivers apply
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the harsh brake to stop just before the signalized intersec-
tion. However, this may lead to a back-end crash when
the following driver encounters the former’s sudden stop-
ping decision. This situation gets multifaceted when the
traffic is heterogeneous, containing various types of
vehicles. Due to the number of accidents recorded in this
problem zone and growing concern, this issue has attrac-
ted many traffic safety researchers worldwide. In the last
couple of decades, a substantial number of research stud-
ies identified strategies to minimize the vehicles getting
trapped in this problem zonel3-6l. Initially, most research-
ers investigated the optimal yellow light duration to elim-
inate the probleml™8l. Later, researchers focused on
identifying the factors influencing driving behaviour when
approaching the junctions!®19, such as speed limit, police
presence, distraction, cell phone use, work zone, road
curviness, road conditions (wet/rainy), presence of pedes-
trians, bicycles etc.[l1,12] Besides these, driving behaviour
also depends on age, gender, aggressiveness, perception-
reaction time, etc.[!314 The review of influential factors
affecting the driving behaviour when approaching signal-
ized intersections is presented by Jahangiri et al.l!5] Re-
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cent works on road traffic accident hotspot analysis
provide a spatial analytic method to identify the road
with a high probability of road accidents[6-18], The signi-
ficant factors and various approaches used to understand
driving behaviour at the signalized intersection are listed
in Table 1. Owing to many factors, different researchers
looked at different aspects to understand the driver's de-
cision at the signalized intersection. Various approaches
like statistical technique, empirical modelling, stochastic
modelling, probability distribution, and machine learning
methods are used[19: 36, 37],

Most researchers implemented a machine learning ap-
proach to either predicting red-light running violations or
classifying driving behaviour based on the driver aggress-
iveness, approach speed, road conditions or time/dis-
tance to an intersection. Various machine learning ap-
proaches (artificial neural network (ANN)BSI adaptive
neuro-fuzzy inference system (ANFIS)B9 convolutional
neural network (CNN)M0 and principal component ana-
lysis (PCA)[“1) were used to predict driving behaviour on
different essential factors mentioned in Table 1. Owing to
the support vector machine (SVM), it has found numer-
ous applications 2744, With regards to this research area
of driving behaviour, support vector regression was ap-
plied5l. In comparison, the classification of the driver's
stopping behaviour at the signalized intersection using
the SVM approach is not being reported in the open liter-
ature.

Therefore, this research study’s main objective is to
develop a framework to identify the crucial distance for
warning alerts based on vehicle speed. To meet this ob-
jective, the drivers’ driving behaviour at the signalized in-
tersection is studied further to check whether the vehicle

is stopped safely or not. Accordingly, the machine learn-
ing approach, like SVM, is used to classify for safe/un-
safe stopping. The major outcomes of this research ana-
lysis can be further used to assess the rear-end crash risk
at signalized intersections to seek effective engineering
countermeasures and lower the crash rates at the high-
risk locations

2 Methodology

2.1 Driving simulator raw data collection

Typically, traffic violations are monitored by video
cameras installed at the signalized intersections. Never-
theless, these video recordings don't accurately monitor
the driving condition, and they haven't recorded the sig-
nificant parameters (longitudinal velocity and accelera-
tion) of the car. Generally, few drivers install video cam-
eras in their vehicle, which are most useful for investigat-
ing collisions and drivers' mistakes. However, these cam-
eras do not record the car’s longitudinal velocity, acceler-
ation or the amount of force applied to the brake. Since
there is no reasonably live or recorded data publicly
available, which has captured the car’s significant para-
meters and the drivers driving behaviour, these paramet-
ers are obtained using a driving simulator in a distrac-
tion-free environment!%l. The data provided for this study
came from the Southampton University Driving Simulat-
or (SUDS). This simulator vehicle is a Jaguar XJ saloon
model car with complete operational driver controls, as
shown in Fig.1. It is an interactive fixed-base driving
simulator, and it was used in the study to collect the

Table 1 List of influential factors along with different approaches used to ascertain driving behaviour
when approaching signalized intersections

Factor names Approaches* References
Age & Gender SM, ST, PD, EM [19-24]
Cell phone use EM [19, 25]
Speed limit SM, EM, PD [22, 23, 26]
Roadway grade SM, EM, PD [22-24]
Driver aggressiveness ML [27]
Vehicle type ST, EM [19, 27]
Approach speed SM, ST, EM, ML [19, 25, 28-30]
Perception-reaction time ST, EM, SM, PD, EM [11, 22-24]
Acceleration/deceleration rate SM, ST, EM [24, 28-30]

Time to an intersection (T'TI) at the onset of yellow
Distance to an intersection (DTI) at the onset of yellow
Pavement and weather conditions (wet, rainy)

Presence of side-street vehicles, pedestrians, bicycles, or opposing
vehicles waiting to turn left

SM, ST, EM, ML [15, 24, 28, 30-32]

SM, ST, EM, ML [24, 25, 28-30]
ML [24, 27]
ST [33-35]

* Different approaches: Statistical technique (ST), empirical modelling (EM), stochastic modelling (SM), probability distribution (PD), machine

learning (ML)
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Fig. 1 Driving simulator with a virtual environment[47]

driving data to assess driving behaviour. The road scen-
ario is projected onto three screens with a 135-degree
driver field-of-view. In the present study, the simulator
was set up to run automatic transmission to avoid the
potential differences in driving performance due to driv-
ing experience and gears’ engagement and clutch control
in manual transmission. The interactive fixed car-based
simulator was used in this research study to investigate
the driving behaviour in different road conditions across
rural roads. To characterize and capture driving beha-
viour for different driving scenarios, various vehicle pro-
cess variables are monitored. In this study, seven import-
ant variables are studied, as shown in Table 2. These
variables can provide valuable insights for investigating
driving behaviour in different road conditions. Data col-
lected from this driving simulator (under similar roads
conditions) will be very useful. This driving data is free of
distractions, uneven road conditions or cell phone use,
and it provides the drivers' real driving behaviour.

The test-track simulated environment is designed to
mimic the real-time scenarios, which spanned across sec-
tions of rural, suburban and urban roads with a total dis-
tance of 20km. In the whole range, there are five junc-
tions designed in such a way that three are located in
rural, one in sub-urban, one in urban. These junctions are
designed so that they can replicate a real-time problem
zone, where drivers with their approach speed would get

Table 2 List of parameters that are monitored on a simulator
for investigating driving behaviour

Variables Units

Time (elapsed) s

Total distance travelled by driver

(longitudinal) m
Longitudinal acceleration m/s?
Longitudinal velocity m/s
Throttle input (0 for no throttle input, B
1 for full-throttle input)
Brake pedal force 1b

Current traffic light status (0: No signal;
1: Green; 2: Yellow; 3: Red)
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exposed to the onset of amber/red light when they were
approaching the signalized junction. To monitor different
drivers driving behaviour, 50 drivers voluntarily reques-
ted to drive the 20km. During this journey, the vehicle
crosses the five signalized intersections (3 rural intersec-
tions, 1 suburban intersection and 1 urban intersection).
Driving performance data of individual driver was recor-
ded for a time sampling of 0.1s.

2.2 Processed data

In this research study, features like brake pedal force
and throttle input are excluded as they do not contrib-
ute to safe and unsafe stopping behaviour. As the vehicle
comes to a complete halt, this can be confirmed when the
velocity becomes zero. Also, classification is not based on
time series modelling; therefore, the time series is not
considered. Since the study mainly focuses on driving be-
haviour at a signalized intersection, the instances recor-
ded after the onset of a yellow signal are used. In this
study, the classification analysis is investigated for signal-
ized intersection in the region, where the speed limit is
80km/h. So, instead of using the distance recorded from
the start of the journey, distance from intersection (DFI)
is calculated. Henceforth, the processed data used in the
further analysis includes the variables like longitudinal
velocity (m/s), longitudinal acceleration (m/s?) and dis-
tance from the intersection (m).

2.3 Data analysis and preparation

In this research study, there are 50 drivers’ data recor-
ded from a simulator. Each driving behaviour is recorded
for a total travel distance of 5km that lasted for approx-
imately 20min (average) with a time interval of 1 milli-
second. There are five signalized junctions in the whole
range, whereas, for this study, three intersections are con-
sidered. The other two junctions' data have recorded the
most erratic behaviour, hence excluded from the analysis.
From the whole driving data, the instances at which the
driver is in facing either yellow or red signal are extrac-
ted. As said above, all the 50 drivers’ data was extracted
for the three intersections. From the 50 drivers’ data, 16
driving data were recorded to be very smooth and driven
at very low speed and hence stopped safely before the in-
tersection. However, the remaining 34 drivers’ data have
shown fluctuating driving behaviour when approaching
the intersection; hence these driving data were con-
sidered for further analysis.

2.4 Labelling

Among the significant parameters recorded (see
Table 2), the longitudinal velocity and acceleration
provide vital information to identify each driving beha-
viour. Meanwhile, there is no ground truth available,
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which is labelled as safe/unsafe stopping. So, the la-
belling is done using the visual interpretation method.
Among all the parameters, acceleration is the most cru-
cial profile, which signifies the accelerating or decelerat-
ing periods; hence labels are generated based on the accel-
eration profiles. When the red signal’s onset, if the driver
starts decelerating until they stop at the signal intersec-
tion, then the driving behaviour is labelled as safe stop-
ping. If the driver begins decelerating and in between if
they accelerate and stop just before the signal intersec-
tion, then this driving behaviour is labelled as unsafe
stopping. For all the 34 drivers’ data, the deceleration
and acceleration trends have been checked from 120m up
to the stop line. Accordingly, the driving behaviour has
been labelled for all the drivers' data.

2.5 Feature extraction

To quantify the driver's deceleration/accelerating be-
haviour, an important statistical metric like turning mo-
ment is calculated for longitudinal velocity and accelera-
tion as (1) and (2), respectively. The calculated turning
moment is the driver's force within a maximum distance
of 200m (approximate signal visible distance), signific-
antly changing the parameters like longitudinal velocity
and acceleration, hence the driving behaviour.

TM, = v x (200 — d) (1)
TM, = a x (200 — d) (2)

where d, v and a are the driver’s distance from the
intersection, driver's longitudinal velocity and driver's
longitudinal acceleration, respectively. TM, (m?2?/s) and
TM, (m?/s?) are the turning moments for longitudinal
velocity and acceleration.

After calculating the turning moment (7M,) of the
driver at each instance, the sum of turning moments of
velocity (SUM_TM,) is calculated for all the instances.
The turning moment (TM,) of acceleration at each in-
stance is calculated for accelerating and decelerating peri-
ods. The average turning moments for deceleration
(AVG_TM,;) are calculated for all the instances in the
deceleration period. Similarly, the average turning mo-
ments for acceleration (AVG_TM,s) is calculated for all
the instances in the acceleration period. The flow chart of
the whole study is presented in Fig. 2.

2.6 Analyzing the data and identifying the
zones

Initially, the 34 drivers’ driving data are analyzed us-
ing Power BI software to visualize the driving behaviour
trends. The driving behaviour labels are classified as safe
and unsafe stopping based on the acceleration/decelera-
tion profiles. As shown in Fig.3(a), driver-3's driving be-
haviour is decelerating from 120m (away from the inter-

| Process the raw data |

Extract useful features (such as acceleration,
velocity and distance from intersection)

Zones are labelled based on acceleration
and velocity profiles

!

Driving behaviour is labelled as safe and unsafe stopping
based on acceleration and deceleration profiles

!

Average turning moment for velocity and
acceleration for each zone is calculated

|

These features are given as inputs to SVM algorithm
along with outcome as outputs

Data is separated into training and
testing data

!

Accuracy is computed for training
and testing data

Fig. 2 Flow chart of the whole study
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Fig.3 Driver's driving profiles for (a) driver-3 (safe stopping)
and (b) driver-2 (unsafe stopping)

section) until they stop at the intersection. Since the
driver continuously decelerates until they reach the inter-
section and finally stops the vehicle, this type of driving
behaviour is labelled as safe stopping. From driver-2 driv-
ing data (Fig.3(b)), it can be seen that the driver star-
ted decelerating from 140m until 90m (recorded as the
first part of deceleration). Then, the driver starts acceler-
ating up to 50m (recorded as the first part of accelera-
tion). The driver then decelerates up to 35m (recorded as
the second part of deceleration) to accelerate again for a
while. Finally, the driver decelerates by applying breaks

@ Springer
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as coming close to the intersection to stop the vehicle res-
ulting in sudden stopping close to the intersection line;
this is always unsafe to the following drivers. So, this
type of behaviour is unsafe stopping. In general, if the
driver initially decelerates, accelerates and again deceler-
ates to stop the vehicle, this driving behaviour can be la-
belled as unsafe stopping.

For all 34 drivers’ data, the deceleration and accelera-
tion trends were verified for the distance 120m until the
stop line. Accordingly, all the driving behaviour has been
labelled for further classification. As discussed in Section
2.2, the turning moment (TM) parameters are calculated
for 34 drivers driving data to get new classification fea-
tures. For calculating turning moments, different weights
are used. The driving behaviour of the driver is divided
into different zones whenever the driver starts decelerat-
ing and accelerating. As shown in Figs.3(a) and 3(b), the
first deceleration/acceleration is taken as zone 1, the next
acceleration/decelerations taken as second zone 2, and the
third deceleration/acceleration is taken as zone 3. The
weights (w1=1.0, wy=1.8, w3=2.5) are used for comput-
ing TM values in the first, second and third zones. The
calculated features, the sum of turning moments of velo-
city (SUM_TM,) and the average turning moments for
deceleration (AVG_TM,1) are taken as input for SVM
classification.

2.7 Support vector machine learning ap-
proach

Machine learning is the right approach to predicting
and classifying driving behaviour based on driving data.
Since there are two classes in this present study (safe
stopping and unsafe stopping), this is a binary classifica-
tion problem. The support vector machine (SVM) is one
of the machine learning approaches most suitable for clas-
sification problemsl“7 48l. This method is used for classific-
ation and is extensively used for regression analysis[42 49, 50,
SVM algorithm tries to find an optimal hyperplane that
separates the data and clusters them based on the classes.

Owing to the dynamics of the process, the data is not
usually often separable linearly. Therefore, SVM has a
feature, which can map the data into a high dimensional
feature space through nonlinear mapping. In this space,
an optimal hyperplane that can separate the data is con-
structed. Since this process involves high computational
cost, SVM has another powerful feature, which mimics
the classification through kernel functions, depending
only on input space variables. The significant kernel func-
tions featured in SVM are linear, polynomial, sigmoid and
radial base function.

The kernel functions return the inner product between
two points in a suitable feature space.

Kernel (or window function) is as follows:

K(x)_{ 1, if 7] <1

0, otherwise.

@ Springer

This function’s value is 1 inside the closed ball of radi-
us 1 centered at the origin and 0 otherwise.

Polynomial kernel. It is popular in SVM classifica-
tion and commonly used in image processing.

This kernel is mathematically expressed as

k (:Ei,wj) = (ZEZ X x;+ 1)d.

Gaussian kernel. It is a general-purpose kernel used
when there is no prior knowledge about the data. This
kernel is mathematically expressed as

ko = (22,

202

Gaussian radial basis function (RBF). It is a
general-purpose kernel used when there is no prior know-
ledge about the data. This kernel is mathematically ex-
pressed as

k(zi,x;) = exp (—’nyi — .T]'HZ) for v > 0.

Sometimes, y = 1/202.

Before applying the SVM approach, the instances
need to be labelled in a binary format. Since this study,
the obtained drivers’ data is classified into two classes,
i.e., safe and unsafe stopping; these classes are assigned
binary labels as +1 and —1, respectively. Accordingly, all
the 25 drivers’ data are labelled in the binary format, giv-
en input files for applying the SVM approach. The LibS-
VML 52 is embedded into Matlab code to apply SVM to
classify driving behaviour. The LibSVM parameters to
train model are -s -t -c, where parameter ¢ in the SVM
optimization problem is a positive cost factor that penal-
izes misclassified training examples. A larger ¢ discour-
ages misclassification more than a smaller c. Here, we
used for training the data ¢ =1 and 100.

model = svmtrain (trainlabels, trainfeatures, ‘-s 0 -¢ 0
-c 17);

The last string argument tells LIBSVM to train using
the options:

-s 0: SVM classification

-t 0: linear kernel

-c 1: cost factor of 1.

2.8 k-fold cross-validation

The performance or efficiency of machine learning
models depends on the input data used to train the mod-
el. The input data has to be randomly chosen to elimin-
ate the bias towards a particular set of higher dimension
values or group of data. In this regard, the whole sample
data is usually divided into many subsets (also known as
folds). Usually, this is divided into k subsets, and hence it
is called k-fold cross-validation. These k subsets are
equal-sized subsamples. Among these, k—1 subsamples are
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used in training the model and the remaining k sub-
samples are used as the validation data for testing the
model. This splitting of whole data into k subset is en-
tirely random; hence for every repetition, different
sampled data will be grouped in the training data. This
approach is commonly practiced in machine learning or
data-driven modelling. A predictive model is developed
using the training data set, which is further used to valid-
ate the testing data set. In this research study, five cross-
validations are used for randomizing the data for train-
ing and testing the models.

2.9 Statistical metrics

The respective statistical metrics (accuracy, precision,
F-measure and recall) are computed to validate the mod-
el’s predicted results. Accuracy, which is one of the stat-
istically significant metrics, measures a measured value's
closeness to a known (standard) value. In other terms, it
is the ratio of the correctly labelled classes to the whole
pool of classes. This metric is very intuitive. Another
metric precision measures the closeness of two or more
measurements between each other. It is also defined as
the ratio of the correctly positively labelled to all the pos-
itively labelled. This metric is also referred to as positive
predictive value. Recall is a metric that measures the
fraction of relevant information that is successfully re-
trieved. This metric provides insights into a query like
out of all the instances where drivers have safely stopped,
how many of those are correctly predicted. This metric is
also referred to as sensitivity.

Finally, F-measure is an important metric that is eval-
uated from the harmonic mean of recall and precision.

All the above referred statistical performance metrics
are mathematically evaluated as

(TP +TN)

fMacevracy = (PP TN + FP + FN) ®)
Movecsion = TS by @)
Mrceot = R AR (5)
D measre = 2 % (Precision X Recall) 6)

(Precision + Recall)’

TP, TN, FP, and FN are true positive, true negative,
false positive, and false negative.

3 Results and discussion

3.1 SVM classification

To classify the driver data based on the labelled safe

or unsafe stopping, the linear SVM approach is imple-
mented. The performance of the SVM depends on the
amount of data that is used for training. As mentioned
earlier, the drivers’ data is extracted for three intersec-
tions and analyzed. There are 102 instances for all three
intersections recorded for 34 driving data. Among these
instances, some drivers have driven slowly at a few inter-
sections and do not see any major erratic behaviour. As
these instances do not present significant information,
they were not considered in further analysis. However,
there are around 50 instances recorded where either the
driver accelerates or decelerates in a short span, which
may have a chance to meet with an accident. Therefore,
only these 50 instances are used for classification analysis.
To check the performance of the SVM approach, differ-
ent separation of training data is used in Sections 3.2—3.4.

3.2 Performance of SVM classification of
driver data using 70%—-30% rule

The data is separated into two data sets, in which
70% is used for training, and the remaining 30% data set
is used for testing the model. In SVM classification, 70%
of the data is used to train the model, and this trained
model is implemented on the remaining 30% of the data
to validate its performance in accurately classifying. The
training dataset includes 35 instances of drivers’ data,
and the test dataset includes 15 instances of drivers’ data.

Based on the 70% training dataset, the SVM model is
trained, and the results are presented in Fig.4. In Fig.4,
the data points representing safe stopping instances are
marked in green circles, whereas the unsafe stoppings are
marked in red circles. It can be observed that the SVM
classifier manages to select the best classification bound-
ary to separate safe and unsafe stopping drivers' data
from the chosen training dataset. The training accuracy
in classifying the driving behaviour for all the 35 in-
stances data was around 85.7%. The testing accuracy of
the remaining 15 instances of data driving behaviour res-
ulted in 86% accuracy. Among 15 instances of drivers’
data used for testing, only two instances of driver data
representing unsafe stopping are incorrectly classified as
safe stopping. However, the remaining all 13 instances of
drivers’ data is correctly classified under unsafe stopping.

In this analysis, the string argument (-s 0 -t 0 -c 1) in
LiBSVM trains the model. The classification shown in
Fig.4 uses SVM linear classifier with setting cost, ¢ = 1.
It can be observed that the hyperplane is not completely
classified, but the decision boundary seems a good fit.
The cost value has been increased to 100 to check the ef-
fect of setting cost. The classification results are shown in
Fig.5. It can be observed that the classification accuracy
has increased. So higher values of ¢ (100) are preferred for
better classification.
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Fig.4 SVM classification for training data with settling cost =
1: (a) Training the model; (b) Testing the model.

3.3 Performance of SVM classification us-
ing random segregation with multiple
repetitions

The data is randomized on 50 instances for training
and testing; hence the classification process is performed
using five cross-validations (CV), allowing the randomiza-
tion of input data. 4/5 CV-fold is used for training and
1/5 CV-fold for testing. To further understand the effect
of randomization on the classification accuracy, the simu-
lation runs are repeated 30 times (iterations). The driv-
ing behaviour of 50 instances of the drivers' data used for
training results in 35 driving behaviour instances was safe
stopping. The remaining 15 instances of driving beha-
viour are termed as unsafe stopping. Fig.6 shows the ac-
curacy V.S. the number of repeated 5 CV's. Since for
each iteration, different data is used for training the mod-
el, hence the accuracy is also different (which means the
model is unbiased). This variation of accuracy for each it-
eration represents the significance of the model. The aver-
age accuracy of the 30 repetition runs for training shows
97.08 % accuracy, as shown in Fig.6. Using the best mod-
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100: (a) Training the model; (b) Testing the model.
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Fig.6 SVM classification on training data using 5 CV and 30
iterations

el (highest accuracy model), it is validated on the remain-
ing test data, which has resulted in 100% accuracy as
shown in Fig.7. These results demonstrate that the iden-
tified model is useful for determining the intersection’s ac-
curate driving behaviour outcome.

The classification performance is measured in terms of
all the statistical metrics to validate their efficiency stat-
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Fig.7 SVM classification on (a) training and (b) testing data
using model obtained at the 30th iteration

istically. Table 3 shows the performance of each statistic-
al metrics. In Table 3, the first two methods use the
70%—30% rule, where 35 instances of data are used for
training the model, and the trained model is tested on the
remaining 15 instances of data. The third method repres-
ents the method where experiment runs are conducted us-
ing 5 CV and repeated for 30 repetitions. It can be ob-
served that for a settling cost ¢ of 1, the accuracy for
training and testing is 85.7% and 86%, respectively.

In contrast, for ¢=100, the accuracy for training and
testing is 97% and 93%, respectively. However, the aver-
age accuracy for 5 CV-30 repetitions for training and
testing is 97.1% and 100%, respectively. High accuracy
depicts how much the model can classify accurately. In-
terestingly recall is also high and shown similar results as

accuracy. High recall implies that the model is extremely
good. A recall value of 90% means that only 1 in every 10
stopping instances is misclassified by SVM and 1 is la-
belled as unsafe. F-measures of 90% means that 1 in
every 10 unsafe stopping instances classified by SVM is
safe, and 9 are unsafe.

3.4 Comparison of SVM classification res-
ults with KINN and linear discriminant

To verify the performance of other machine learning
techniques like K-nearest neighbors (KNN)B3 and linear
discriminant techniques®¥. The accuracy for training and
testing for different techniques is shown in Table 4. It can
be observed that the SVM approach was able to classify
the safe and unsafe stopping drivers’ data, thus provid-
ing higher classification accuracy. These results demon-
strate that the identified model is useful for determining
the intersection’s accurate driving behavior outcome.

3.5 Analysis of classification outcomes

After analyzing the 50 driving instances, it was found
that 15 drivers’ instances stopping behaviour at the sig-
nalized is considered to be unsafe stopping, and the re-
maining 35 drivers are doing safe stopping. The most sig-
nificant changes are demonstrated in the velocity
(SUM_TM,) parameter. The unsafe stopping driver's
data are analyzed further to determine the suitable dis-
tance from the intersection. A warning alert can be given
to drivers based on their present velocity and longitudin-
al acceleration. In this regard, a tentative alarm sign can
be given to drivers crossing a particular distance accord-
ing to their driving speed at an intersection, as shown in
Fig.8. The green bar shows safe driving behaviour in
Fig.8, and the red bar shows unsafe driving behaviour.
The blue mark shows a warning alert to the driver when
the driving behaviour changes from safe to unsafe as the
driver approaches the intersection at a particular speed.
It can be observed that the warning alert (A) for 15 in-
stances of driving are appearing at a different distance
from the intersection. For most instances, the warning
alert is around 50m. However, for driving behaviour at
instances 1 and 14, the warning alert is given at a dis-
tance of 40m from the intersection, which put the driver,
fellow passengers and following vehicles in a dangerous
situation. Hence, these results can easily differentiate the

Table 3 Performance metrics for training data

SVM methods Accuracy (%)

Recall (%) F-measure (%)

70-30% linear (c=1) Training = 85.7%, Testing = 86%

70-30% linear (¢=100) Training = 97%, Testing = 93%

5 CV linear Training = 97.1%, Testing = 100%

Training = 77%, Testing = 84%
Training = 96%, Testing = 91%
Training = 97%, Testing = 100%

Training = 78%, Testing = 84%
Training = 86%, Testing = 85%
Training = 83%, Testing = 82%
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Table 4 Comparisons of different classification techniques for
training and testing

Classification techniques Training Testing
SVM 97.4% 93%
KNN 94.7% 89%
Linear discriminant 92.1% 90%
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Fig. 8 Indication of warning alert to instances that are heading
towards possible unsafe stopping

driving behaviour, heading to safe and unsafe stopping as
they were approaching the intersection. This analysis
provides the framework to identify the crucial distance,
where the warning alerts should be kept in place if the
vehicle speed is higher than the prescribed speed limit of
a road.

4 Conclusions

This research study investigated driving behaviour by
analyzing 50 instances of driving data at three signalized
intersections. Support vector machine approach is imple-
mented to classify the driving behaviour in terms of safe
stopping and unsafe stopping at a signalized junction.
Different types of scenarios were conducted to verify the
performance of classifying driving behaviour. The SVM
classification using random segregation (5 CV) with mul-
tiple repetitions resulted in an accuracy of 97.08%. The
tentative warning alert distance to warn the drivers that
they may have entered into a zone is identified to be
around 80m. In the absence of a warning system, the
driver must apply harsh brake to stop before the signal-
ized intersection to avoid a red light violation. However,
this action has a high potential to lead to a back-end
crash when the following driver encounters the former’s
sudden stopping decision. Thus, this research’s signific-
ant outcomes can be potentially used to assess rear-end
crash risk at signalized intersections to seek effective en-
gineering countermeasures and reduce crash rates for
high-risk locations.
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