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Abstract: Learning based on facial features for detection and recognition of people’s identities, emotions and image aesthetics has been
widely explored in computer vision and biometrics. However, automatic discovery of users’ preferences to certain of faces (i.e., style), to
the best of our knowledge, has never been studied, due to the subjective, implicative, and uncertain characteristic of psychological pref-
erence. Therefore, in this paper, we contribute to an answer to whether users’ psychological preference can be modeled and computed
after observing several faces. To this end, we first propose an efficient approach for discovering the personality preference related facial
features from only a very few anchors selected by each user, and make accurate predictions and recommendations for users. Specifically,
we propose to discover the style of faces (DiscoStyle) for human's psychological preference inference towards personalized face recom-
mendation system/application. There are four merits of our DiscoStyle: 1) Transfer learning is exploited from identity related facial fea-
ture representation to personality preference related facial feature. 2) Appearance and geometric landmark feature are exploited for pref-
erence related feature augmentation. 3) A multi-level logistic ranking model with on-line negative sample selection is proposed for on-
line modeling and score prediction, which reflects the users’ preference degree to gallery faces. 4) A large dataset with different facial
styles for human's psychological preference inference is developed for the first time. Experiments show that our proposed DiscoStyle can

well achieve users’ preference reasoning and recommendation of preferred facial styles in different genders and races.

Keywords: Facial preference, feature representation, logistic regression, face recommendation, transfer learning.

1 Introduction

Facial features, as one kind of important biometrics,
can explicitly and implicitly represent the objective and
subjective facial attributes (e.g., eyes, nose, mouth) and
personal characteristics (e.g., identity, age, gender, races,
emotion, beauty, personal character and hobbies). Learn-
ing facial features for detection and recognition of person
identity, age, gender, races, expression, emotion, and
beauty has been widely developed in computer vision and
biometricsll 19 which has also greatly promoted the in-
dustrial applications of artificial intelligence. Currently,
face recognition has been used in security inspection, ac-
cess control system, video surveillance, etc. Additionally,
age, emotion and beauty analysis have been used for mul-
timedia, social and internet interaction. However, to the
best of our knowledge, there is no research on explora-
tion of a user’s psychological and emotional preference to
different facial image styles towards recommendation ap-
plications.

Generally, it is very challenging to infer and reason
about the implicit, fine-grained, subjective and common
facial preference features that attract users from a very
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few selected face images of different styles (i.e., anchors)
by the users. That is, if we could discover the facial pref-
erence features that the user internally and subjectively
pays more attention to, then we can compute and pre-
dict the user's personality preference via probabilistic
models. After all, interesting applications with advanced
emotional analysis, robot servicesl!ll, and automatic per-
sonalized image recommendation can be promoted by the
discovered facial preference characteristic. It is worth not-
ing that there have been a number of research works in
facial beauty and attractiveness prediction, which,
however, is essentially different from the proposed user
specific preference inference and recommendation of dif-
ferent facial image styles in the following aspects.

1) Facial preference is less relevant to facial beauty
that can be modeled with a universal criterion(12 13, while
preference is user-specific and highly relevant to external
facial styles (e.g., hairstyle, eye, nose, lips, glass).

2) Facial preference is also relevant to internal charac-
ter reflected from faces (e.g., temperament, lovely, eleg-
ant), which is also user specific and even comprehensive
for modeling users’ preference.

3) Due to the person-specific property of facial prefer-
ence, the preference model parameters are dynamic and
vary from person to person, while the facial beauty mod-
el is generally fixed and not person-specific. In other
words, a face of highly beauty does not mean a high de-
gree of a user’s preference, due to the users’ emotional dif-
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ference.

Deep learning (DL)416 as a kind of supervised
learning method originated from large-scale image recog-
nition, has witnessed a huge success in multiple vertical
fields, such as computer vision, pattern recognition, text
analysis and speech recognition. Recently, transfer learn-
ing (TL)721 as a weakly-supervised cross-domain learn-
ing technique, has successfully promoted the horizontal
development of DL in learning methodologies and applic-
ations. With the seamless connection between the super-
vised DL and the weakly-supervised TL, there is no
doubt that DL and TL greatly stimulate the progress of
artificial intelligence in many horizontal weakly-super-
vised research areas, such as medical image analysis[2223],
remote sensing image analysis(24:25], satellite image analys-
is26.27] kinship verification[?8.29 computer vision[30.31]
load forecastingl32, fault diagnosisB334, etc. Generally,
DL aims to obtain a universal and generalized knowledge
representation model in a supervised manner, while TL
aims to connect and propagate the DL knowledge to more
weakly-supervised domains and tasks w/o fine-tune or
partial re-training, where the data and labels are not
completely or accurately prepared and deployed.

In this paper, as shown in Fig.1, we are dedicated to
the inference and reasoning analysis and modeling of a
user’s psychological preference of facial image styles based
on very few selected anchors (e.g., 10 images) by the user,
which is undoubtedly a subjective, implicative, and
weakly-supervised task. Therefore, a DL and TL inspired
preference feature representation method is exploited for
knowledge transfer from a large-scale supervised face re-
cognition task to a single user-specific weakly-supervised
face preference reasoning task. Further, probabilistic
learning is used in the reasoning stage based on very few
selected anchor faces (labeled as preferred faces by a
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Fig.1 User-specific facial preference reasoning and prediction
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user). Then, the model can be used to compute the psy-
chological preference score for each gallery facial image,
and the score value can successfully represent the degree
of a user's preference with respect to each gallery face.
The main contributions of this paper are four-fold.

1) We propose an efficient DiscoStyle approach for
user-specific facial preference reasoning and computation,
by looking at very few anchors with more glances, which
achieves automatic preference prediction and recommend-
ation, which, to the best of our knowledge, is the first
work for users’ preference and face recommendation.

2) A deep transfer learning paradigm is proposed for
facial preference related feature representation, based on
a pre-trained face representation deep network, which
comprehensively integrates the appearance features and
geometric landmark feature for fully reflecting the facial
style.

3) A multi-level logistic ranking (MLR) model with a
novel on-line negative sample selection (ONSS) strategy
is proposed in DiscoStyle for preference reasoning, which
can predict the preference score and objectively define
one user's degree of preference to each gallery face and
the faces of high preference degree are recommended.
StyleFace) is de-
veloped for the first time for facial preference prediction,

4) A large facial style dataset (i.e.,

which includes a facial style subset for style attribute vec-
tor learning, an anchor subset for probabilistic reasoning
and a gallery subset for preferred faces recommendation.

The rest of paper is organized as follows. In Section 2,
we review the related work in deep learning and face ana-
lysis. In Section 3, we present the proposed DiscoStyle
framework with feature representation, negative sample
selection and preference reasoning model. In Section 4,
the experiments with the developed dataset, evaluation
results and discussions are presented. Finally, Section 5
concludes this paper.

2 Related work

Our DiscoStyle approach involves deep feature repres-
entation learning and face modeling. Therefore, in this
section, we first briefly review the deep learning methods,
and then the work related to face modeling and face ana-
lysis are presented.

2.1 Deep learning

Inspired by the depth of the biological brainl33 in re-
cent years, deep learning has attracted much attention
and neural networks get deeper and deeper for achieving
better feature representation, especially in computer vis-
ion tasks[36-39. In early work, Krizhevsky et al.l4 pro-
posed a convolutional neural network (CNN) of 8 layers
and achieved a great success in large-scale image classific-
ation task (i.e., ImageNet), which is an essential problem
in computer vision. Since then, very deep CNN struc-
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tures such as ResNet and DenseNet have been propos-
ed(15,:40,41] for state-of-the-art competition performance.

Benefiting from the great success in image classifica-
tion task, deep learning has also been used in many oth-
er computer vision tasks, such as object detection, face
recognition, video surveillance, etc. For object detection
task, some typical techniques such as faster-RCNNI42],
single-shot detector (SSD)M3l and you only look once
(YOLO)“4 have shown greater detection performance
than traditional handcrafted features. For face recogni-
tion tasks, as a very important issue, deep learning has
also achieved a better accuracy than human in particular
datasets. Schroff et al.lll proposed a triplet loss based
CNN structure, Sun et al.3] proposed a joint classifica-
tion and verification loss supervised CNN for face recog-
nition. Deep learning has also achieved great success in
other computer vision tasks, such as pose estima-
tionB37:45] person re-identification[46:47),

Upon the significant progress of deep learning, the
strength of DL lies in its high-level feature representa-
tion ability. To this end, the feature representation of DL
is also used in our DiscoStyle approach for implicit facial
feature description that can reflect users’ preference.

2.2 Face analysis

Human faces contain a large amount of personal in-
formation such as identity, age, expression and emotion,
which can be distinguished by facial images. Face recog-
nition is a basic but important task in artificial intelli-
gence, which is widely used in many areas and scenes,
such as public security, law enforcement, commercial con-
texts, etc. Besides the recognition problem, face ag-
ing[48.49] is another important task which is widely used in
cross-age verification or searching for a missing child®0l.
Different from face identification, kinship verification,
which aims to mine implicit kin-relations from facial im-
ages, has also been widely studied[2851-53], Facial beauty
analysis toward attractiveness assessment application, as
an emerging topic, has also attracted an amount of re-
searchl6:12,13,54] Benefiting from the rich information car-
ried by human faces, all of these topics have achieved
great success in recent years. However, to our best know-
ledge, users’ preference analysis of a facial image and face
recommendation have never been studied. To this end,
we propose a novel face analysis work, DiscoStyle, for
users’ preference prediction towards face recommenda-
tion from a gallery face database.

3 Proposed DiscoStyle approach

In the proposed DiscoStyle approach, four key stages
are included: 1) preference oriented facial feature repres-
entation (PFR) for appearance and geometric feature ex-
traction; 2) on-line negative samples selection (ONSS) for
selective negative anchors; 3) multi-level logistic ranking

(MLR) based probabilistic reasoning for users’ preference
prediction; 4) on-line preference score computation (PSC)
of galleries for face recommendation. The process of the
proposed DiscoStyle framework for a user can be de-
scribed in the following steps:

1) In the feature extraction stage, the deeply represen-
ted appearance features that reflect the abstract facial
representation and landmark geometric features that rep-
resent the facial shape jointly formulate the PFR module.

2) In the negative sample selection stage, the pro-
posed ONSS algorithm is used to find a few negative an-
chors (the non-preferred faces of users) from the gallery
face database for each user, such that the positive an-
chors and negative anchors can be used for subsequent
learning.

3) In the preference reasoning stage, the proposed
on-line MLR model is trained on the positive and negat-
ive anchors of each user for user-specific model paramet-
er learning.

4) In the on-line prediction and recommendation
stage, the gallery face database is scored by the user-spe-
cific PSC via the model parameters, and the galleries
with the highest scores are recommended for the user.

3.1 Preference oriented facial feature rep-
resentation

Preference oriented facial feature representation
(PFR) aims at extracting the abstract and implicit fea-
tures that the user most likely pays attention to. With a
full survey on different users’ attention to their preferred
faces, we summarize some universal preference related
characteristics including explicit attribute features (e.g.,
hair style, face type, eyes, nose, mouth, lips, skin color)
and implicit features (e.g., temperament type, lovely
type, elegant type, gentle type). Specifically, for explicit
but objective features, facial appearance features and geo-
metric landmark feature are proposed. For implicit but
subjective features, we established two groups of labeled
datasets for facial style classification and the classifica-

tion scores are used as implicit features.
3.1.1 ROI detection

Considering that the preference is not only related to
face regions but also hair style, therefore, the region of in-
terest (ROI) detection in this work is around the faces
from head to the neck as shown in Fig.2 (the aligned fa-
cial image), which can provide the hair style information
in facial preference reasoning. Technically, the ROI detec-
tion is implemented based on the multi-task cascaded
(MT-CNN)
which shows clearly the face alignment and detection but

convolutional  networks framework[55],
not the ROI detection in this paper. Therefore, we ob-
tain the ROI by adaptively enlarging the facial bounding
box of MT-CNN.

3.1.2 Appearance feature

The face recognition problem aims at distinguishing
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Fig.2 The paradigm for our PFR method for feature representation, which shows the ROI detection and alignment, appearance
feature extraction with three local regions in red (eye part), green (nose part) and blue (lip-chin part), and the geometric landmark
coordinate feature vector (shape). In total, five kinds of features including 1 geometric feature, 3 local appearance features and 1 global

appearance feature.

different faces with different identity, which depends on
the high-level and abstract appearance features of faces.
As we know that deep feature representation that re-
flects the discriminative identity characteristic of the face
has greatly benefitted to the face recognition tasks. To
this end, in this work, the deep feature representation
network established for face recognition is used in our
DiscoStyle framework. Appearance feature is closely re-
lated to the basic texture and local description of faces.
In this paper, for appearance feature extraction, the glob-
al and local representations are jointly considered, which
are shown as follows.

1) The global appearance feature in the ROI region is
extracted by using an off-the-shelf CNN, which is trained
from scratch on a large-scale CASIA (Institute of Auto-
mation, WebFace
dataset36]. The process for feature representation in this
work is deployed in Fig.2. The deep feature achieves a
global representation of the appearance feature in ROI re-
gion.

2) Additionally, consider the local parts sensitivity of

Chinese Academy of Sciences)

users’ preference for a face, the fine-grained features that
users most likely to pay attention to have also been spe-
cially extracted, including the eye part (red), nose part
(green) and lip-chin part (blue) as shown in Fig.2 (the
aligned facial image). In our experiment, the feature map
in the last convolutional layer of CNN with respect to the
three local parts is formulated, respectively, for local part
representation. Also, the high-level and discriminative
feature vector in the last fully-connected layer is used for
global representation. In total, there are 4 kinds of ap-
pearance features (i.e., eye, nose, lip-chin, and global)
jointly learned in subsequent modeling. The specific
structure of our CNN framework is shown in Table 1, in

D) Springer

Table 1 Convolutional neural network architecture of our PFR,

part
Layers Filters Output size
3% 3,32
Convl x 108 x 92
3% 3,32
3x 3,64
x 1
Conv2_x 33,64 52 x 44
3% 3,128
[3 % 3,128]
x 2
Conv3_x 3% 3,128 24 x 20
3 % 3,256
3 % 3,256]
x5
Conv4 x _3 X 3, 256_ 10 x 8
3% 3,512
[3 % 3,512]
C 5 ’
onv5_x 3% 3,512 x 3 5 x4
FC1 512 (feature dimension)
FC2 10575 (IDs)
Softmax —

which the global representation feature in FC1 layer is
extracted in our model and the local appearance features
(eye, nose, lip-chin) in Conv4 x layer are extracted with
max pooling for feature vector formulation.
3.1.3 Geometric landmark feature

In the appearance feature, the geometric information
that fully describes the shape of faces is missed out.
However, the geometric feature is also important explicit
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and objective characteristics for face style learning in fa-
cial attractiveness studylfl, which is also a factor related
to a user’s preference for a face. Therefore, in this paper,
by following the findings in [6], 68 landmark points are
detected by the ensemble of regression tree (ERT) al-
gorithmP7 and the resulting 136-dimensional coordinate
vector (68%2) is used as the geometric feature for prefer-
ence reasoning. In order to normalize the coordinate vec-
tor of face pictures of different sizes, the width and height
of the detected bounding box are used as the denominat-
or in ratio normalization. To this end, in total 5 kinds of
normalized features including 1 kind of global appear-
ance feature, 3 kinds of local part appearance feature and
1 kind of geometric feature are formulated as the input of
our DiscoStyle framework.

3.2 On-line negative sample selection al-
gorithm

In real-world face recommendation systems, the gener-
al application scene is that the preferred faces (i.e., posit-
ive anchors) are available because of the users’ independ-
ent choice when they are connecting the Internet.
However, the non-preferred faces may not be obtained
due to the users’ uncertainty. Therefore, for subsequent
reasoning and learning, we propose an on-line negative
sample selection (ONSS) algorithm for selecting the non-
preferred anchors, which greatly benefit the subsequent
learning and reasoning task.

In our proposed ONSS algorithm, two important as-
pects are considered: 1) on-line selection; 2) fast selection.
Specifically, on-line selection is owing to the user-specific
preference reasoning model characteristic, because each
user's selected preferred faces (positive anchors) in their
on-line internet access are also different. Fast selection is
owing to the requirement of real-time preference reason-
ing and face recommendation. Since that our ONSS is
Euclidean distance based, it is not allowed to find the po-
tential negative samples by traversing the whole gallery
database that can be very large in quantity in real-world

@ Center of positive anchors
A Positive anchor
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application.

Therefore, we propose a guessing strategy, by on-line
guessing the possible negative samples in the real-time
streaming data with an efficient voting mechanism based
on five kinds of features. Once the required quantity (i.e.,
the same as the quantity of positive anchors) of negative
samples is achieved, the ONSS algorithm is automatic-
ally terminated. The schematic of the proposed ONSS al-
gorithm is visually shown in Fig.3. Suppose that there
are S feature modalities, then the voting number
V(0<V <S) of the gallery face z being a negative
sample is computed as

S
V = ZL(% — Ci2 > Rz)

i=1

I~
s.t. Ci:ﬁ.zlpg (1)
=

where x; is the i-th feature modality (appearance feature
or geometric feature) of the query picture, p{ stands for
the i-th feature from the j-th positive anchor selected by
users, and ¢; represents the center of the i-th feature
modality. the
threshold with respect to the i-th feature modality
computed as the farthest distance value between the

R; = max(||p —¢ill2), j=1,---,10 is

positive anchor p’ and the center ¢;. L(-) is an indicator
function, where L(f) = 1 if f is true, otherwise, L(f) = 0.
In this paper, the gallery face x is recognized to be a
negative face if /S > 0.5. Since the centers of each kind
of feature modality can be easily pre-computed on-line,
ONSS algorithm
required number

our is self-terminated if only the

of negative samples is achieved.
Specifically, the implementation process of the proposed
ONSS is shown in Algorithm 1.

Algorithm 1. The proposed ONSS

Input: Gallery faces set X, the feature subset p; of
the i-th feature modality with respect to the m positive
anchors (preferred faces) selected by users, the number S

of feature modalities and the required number m of the

The red gallery point is recognized to be negative for 3 kinds of features in red circles (3/5)
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Fig.3 The schematic of our proposed ONSS approach, which shows how to select the potential negative samples (i.e., non-preferred
faces) on-line without traversing all the gallery faces, because in real-application the gallery faces are infinity. In this figure, the gallery
face (red square) is recognized to be potential negative sample, because it shows the maximum distance to the center of positive anchors
in red circle with a higher proportion (3/5 > 0.5). That is, the gallery face is recognized to be negative sample under 3 feature modalities
rather than 2. Notably, for balancing between positive samples (i.e., preferred faces or anchors) and negative samples (i.e., non-preferred
faces), the ONSS program is automatically stopped when the number of selected negative samples achieves to the number of anchors.
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potential negative samples.

Output: Negative anchor set © of m negative
samples.

1: Initialization. Compute the R; and c;, the num-
ber n of the selected negative samples is set as n = 0, and
the set of negative samples is defined as © = &;

2: repeat

3: Take a gallery face = from the X;

4:  The i-th modality feature representation x; of x
is based on the proposed PFR method in Section 3;

5:  Compute V of the gallery face x using (1);
if V/S > 0.5 then

T € O;
n=n+1;
end if
10: untiln =m

6
7
8.
9

3.3 Multi-level logistic ranking (MLR)
based reasoning

In this paper, we propose a multi-level logistic rank-
ing model for on-line user preference reasoning and face
recommendation. Considering the user-specific character-
istic of preference, the MLR reasoning and recommenda-
tion should be implemented on-line based on a very few
positive anchors (i.e., preferred faces selected by a user)
and the same number of negative anchors (i.e., non-pre-
ferred faces selected by ONSS).

3.3.1 Facial style coarse score prediction

The appearance and geometric features are explicit
and objective characteristics of faces. However, for the
style attribute, it is implicit but subjective that it may be
different from person to person. That is, the style attrib-
ute score cannot be directly reflected from the image, but
depends more on the automatic evaluation score of each
style, computed by using pre-trained coarse classifiers
such as support vector machine (SVM), multilayer per-
ceptron (MLP), based on the appearance feature. There-
fore, in this paper, we establish two groups of dataset
with different styles.

1) Group 1: A facial subset of 3 styles (long versus

short hair style, lovely versus temperament type, round
versus thin face type);

2) Group 2: A facial subset of 5 styles (single versus
double eyelids, pointed versus round chin, long versus
short hair style, big versus small mouth, straight versus
flat nose).

For the former 3-style subset, three binary SVM clas-
sifiers are trained. For the latter 5-style subset, a multi-
label multilayer perceptron model is trained. For the 3-
style model, for each gallery face, a score value (i.e., 0,
1/3, 2/3 or 1) is calculated for each style based on the
anchors and binary classifiers, and a 3-dimensional score
vector Ssym is formulated. For the 5-style model, the 5-
dimensional multi-label output of MLP model is recog-
nized as the score vector defined as Sp,p. Note that the
score values from SVM and the score vector from MLP
are used in the 2nd level LR model together with the 5
logistic ranking scores from the 1st level LR model for ul-
timate preference reasoning, as shown in Fig.4. Specially,
the principle of MLR model is formulated as follows.
3.3.2 Details of MLR model

As we know, user's preference for a face cannot be
simply recognized as a classification or recognition prob-
lem with coarse labels. Instead, user’s preference model-
ing should be a confidence estimation problem. Logistic
regression is a typical probabilistic model for revealing
the relation and importance among variables, which tends
to provide a probability for an instance & with a group of
variables [z1, 22, - ,x4] to be positive or negative. In this
paper, based on the logistic regression model, we propose
a multi-level logistic ranking model for revealing the
user’s degree of preference to a gallery face & and provid-
ing the probability score ranking given a gallery set.

Suppose that a random variable £ comes from a bino-
mial distribution (0-1 distribution or Bernoulli distribu-
tion), i.e., & ~ B(0,1), and p(£) represents the probabil-
ity density function (PDF). Let P(Y|X) be the condition-
al probability of response Y given an input variable X,
then there is

Geometric feature Appearance features

Appearance feature

Landmark Eye Nose Lip-chin Global Low-level
| The 1st level LR modeling | ’ SVM ‘ | MLP l
i Middle-level
3-style S-style

S-dimensional logistic score vector

]

score vector score vector

q .

The 2nd level LR modeling

D High-level

\

Preference score

Fig.4 The flowchart of our MLR model. The geometric features and appearance features are fed into the logistic regression model
respectively in the 1st LR level. The global appearance features are also used for SVM and MLP to get 3-style score and 5-style score
vector. All results of the 1st LR level are then fed into the 2nd LR level, and we can get the final preference score of the input face.
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POY = 01X = @) = 1 pla:w) (2)

where w represents the model parameter being learned.
According to (2), given an observation x; (a gallery),
the conditional probability of Y = y; can be written as

P(Y = yi|X = 2)) = p(zi;w)" (1 - p(z;w)' ™" (3)

where y; = 1 if @; is true (i.e., preferred face), otherwise,
yi = 0 (i.e., non-preferred face).

Further, for preference reasoning, we focus on the like-
lihood of the whole dataset. For convenience, we impose a
hypothesis of independence of N observations, then, the
joint PDF (i.e.,
level likelihood function in (3) can be easily formulated as

data likelihood) based on the instance-

N N

H PY =yi|lX =) = Hp(mi; w)" (1 — p(as; w))' 7.
h B (4)

Through the log-likelihood maximization of (4), the
model parameter w can be easily solved. Then, with the
activation of sigmoid function, the logistic probabilistic
score P(y = 1|z) of the gallery face x belonging to a pre-
ferred face can be computed as

1

Py =1|z) [pnpe=re)

= p(@;w) = ()
where h(x) is the linear representation of the variables
[17~T17 e 7xd]T

parameter w = [wo, - - -

of the gallery face z by the model
,wd]T, which can be written as

h(x) = wo +wiz1 + -+ - + waxq = wrz (6)

Generally, from (6), MLR is a linear model for predic-
tion.

The multi-level LR model consists of two level LR
learning and computation, which are shown as follows.

1) The 1st level LR

In the 1st level, five feature modalities including 3
kinds of local part appearance features, 1 kind of global

ERANEAENAY
MUNAHAVALEN
BRPHEARABEHER
AARANNHAWEE

(a) Female images

appearance feature and 1 kind of geometric feature of an-
chors (i.e., 10 positive anchors and 10 negative anchors)
are fed into the LR model in (4), respectively, for para-
meter learning. Then, 5 scores for each anchor are com-
puted and concatenated as a 5-dimensional score vector,
as shown in Fig.4. For convenience, the expression of the

probability score for each feature can be summarized as

(s1, w}) argmax M LR(Tiandmark, V)
(52,w}) = argmax M LR(Zcye, y)

(s3,w}) = argmax MLR(Znose,y)

(54, w?) = argmax M LR(Ziip—chin,y)
(s5,w}) = argmax MLR(Zg0bai,y) (7

where Tecye, Tnose, Tlip—chin, Lglobal stand for the ap-
pearance feature of eye, nose, lip-chin and global,
respectively,  @jandmark 1S the geometric feature
formulated by the coordinate vector, and y represents the
label of anchors (y =1 for positive anchors, otherwise,
y =0). By concatenating the five scores together, a 5-
dimensional score vector that would be fed into the 2nd

level can be formulated as

Smlr = [51,82,53,84755]. (8)

2) The 2nd level LR

For the 2nd level, the input is the concatenated final
score vector S by the three score vectors Ssvm, Smip, and
Simir in (8), shown as

S = [Sml'ry Ss'u'nu Smlp]- (9)

Then, the MLR is retrained for learning the 2nd level
parameter wo, and there is

wo = argmax M LR(S,y). (10)

The flowchart of the proposed DiscoStyle framework
is clearly shown in Fig.4, and the procedure of Dis-
coStyle is described in Algorithm 2. The score ranking is
then used to guide the face recommendation. Visually,
we provide the score ranking of two users as shown
in Fig. 5.

E7HEAEEETN
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(b) Male images

Fig. 5 Examples of the preferred faces from two users in our StyleFace dataset. For each user, 10 anchors (the first row) are used for
training and the remaining 30 faces (the last three rows) are used for testing. All images have been detected and aligned.
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4 Experiments

In order to study the facial preference prediction prob-
lem by using the proposed DiscoStyle, we develop a pref-
erence dataset of eastern faces from the Internet includ-
ing male and female faces, which is, to the best of our
knowledge, the first facial style dataset in the world. For
convenience, we define the dataset as StyleFace in this
work. In the evaluation stage, several basic methods are
exploited on our StyleFace dataset as baselines, and a
comparison to our DiscoStyle framework is conducted.
Then, the visualization of the proposed method is shown
for analysis and discussion. Further, we test our method
on the public face recognition dataset of western faces,
i.e., labeled faces in wild (LFW)[58].

Algorithm 2. The proposed DiscoStyle approach

Input: Gallery faces set X, the positive anchors P se-
lected by a user, the 3-style subset 1 and the 5-style sub-
set 2.

Output: The preference scores of the gallery faces X
with respect to the user and the recommended faces.

1: Feature representation via PFR.1) Compute
the features of the gallery faces set X and the positive
anchors P by using the PFR method; 2) Compute the
appearance features of the 3-style and 5-style subsets.

2: Negative anchors selection via ONSS. Based
on the positive anchors P, the negative samples are selec-
ted from the gallery set by using the ONSS Algorithm 1.

3: The 1st level MLR. MLR is learned on 5 feature
modalities of the anchors, respectively, and 5 parameter
sets w1, --,w} are obtained. Finally, 5-dimensional score
vector is resulted by using (7) and (8).

4: Facial style coarse score prediction. SVM and
MLP are trained on the global appearance feature of 3-
style and 5-style subsets, respectively, for 3-dimensional
and 5-dimensional coarse style score vector computation.

5: The 2nd level MLR. MLR is learned by feeding
the concatenated score vector (13-dimensional) in Steps 3
and 4 as input for ultimate reasoning of wo.

6: Face recommendation. Compute the probability
scores of the gallery set using (5) and (6) based on the
model parameter wy from Step 5. The faces with top
preference scores are recommended for the user.

4.1 Description of our developed StyleFace
dataset

We collect and annotate a large-scale StyleFace data-
set for the facial preference reasoning task. Without loss
of generality, both male and female faces are studied, re-
spectively, for reasoning and recommendation. All the im-
ages in the StyleFace dataset are collected from the Inter-
net (e.g., Baidu, Momo). In total, 6055 facial images with
different sizes and scales including 3028 female images
and 3027 male images are collected in our StyleFace
dataset. Then, the users are asked to annotate the facial
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images. A volunteer who is invited as our user is re-
quired to annotate the faces based on their preference. In
total, 106 volunteers (74 for the female images and 32 for
the male images) are invited to participate the labeling
stage and their preferred faces are specially labeled for re-
liable modeling. Specifically, 40 images after preference
ranking by each user are finally selected as their pre-
ferred faces. That is, in the developed dataset, for each
user, 40 preferred faces will be divided into training and
testing sets for modeling and evaluation. In this paper,
the first 10 faces are defined as training set (positive an-
chors), and the remaining 30 samples are used as test set.
Note that, in the labeling process, we are not asking the
users to label negative faces (i.e., their non-preferred
faces) because of ethics.

Visually, the labeled 40 preferred facial images for fe-
male and male by a user are shown in Figs.5(a) and 5(b),
respectively, from which we can observe the users’ prefer-
ence of facial styles. The claim that the facial preference
model should be user-specific is further confirmed, due to
the user’s personality difference. Then, customized recom-
mendation is feasible.

4.2 Evaluation protocol and metrics

In this section, the experimental protocol and the
evaluation metrics are clearly described.
4.2.1 Evaluation protocol

In experiments, the training process of the model
parameters is conducted on the first 10 faces out of the
40 preferred faces by each user and the automatically se-
lected 10 negative faces by the proposed ONSS algorithm.
The training process follows the procedure in Algorithm 2.
In the test process, due to that the preferred face, recom-
mendation task in this paper is generally a retrieval task
instead of classification. Therefore, the following 3
schemes are considered based on different numbers of
testing samples: 1) 10 testing samples out of 30 samples;
2) 20 testing samples out of 30 samples; 3) all the 30
samples are used as testing data. With the 3 evaluation
schemes, the evaluation metrics such as top—1, top—>5,
top—10, and mean average precision (mAP) are com-
puted by score ranking of the whole dataset excluding the
training data.
4.2.2 Evaluation metrics

In evaluation, the preference scores of the testing
samples in the whole dataset are computed by using the
trained model (i.e., 3018 female samples and 3017 male
samples after excluding the 10 training samples). Then,
after score ranking, the top 10 faces with the highest
scores from all testing samples are recorded. The hit rate
of all users that is computed as the rank—k accuracy is
used for evaluating the proposed method. Specifically, the
accuracy of rank—1, rank—5, and rank—10 is used as the
evaluation metric, respectively. In detail, rank—1 means
that the sample with the top 1 score (i.e., the highest
score) should fall into the testing set. Similarly, for
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rank—5 and rank—10, it means that there is at least one
sample in the top 5 or top 10 falling into the testing set.
It is clear that the larger the size of the test set is, the
higher the accuracy is. Additionally, considering the re-
trieval task, mAP is also used as a metric for evaluating
the proposed method. Specifically, all the samples exclud-
ing the 10 training anchors are used as gallery set for
evaluation. Therefore, the gallery sizes for the female and
male data are 3018 and 3017, respectively.

4.3 Compared methods

For evaluating the effectiveness and superiority of the
proposed DiscoStyle method on the developed StyleFace
database, several popular methods including one feature
descriptor and 3 regressors have been conducted. For the
texture descriptor, the popular histogram of oriented
Gradient (HOG)P! is exploited for facial feature extrac-
tion and representation, which is a competitor of our
PFR method. For regressor, OneclassSVMI®] traditional
support vector machine (SVM)[6l and extreme learning
machine (ELM)62 are implemented as competitors of our
MLR model. Considering the different combinations
between 2 feature descriptors and 4 modeling methods, in
total 8 methods are formulated and implemented for ex-
perimental evaluation and comparison. Specifically, the 8
methods include: HOG+OneclassSVM, HOG+SVM,
HOG+ELM, HOG+MLR, PFR+OneclassSVM, PFR+
SVM, PFR+ELM, and DiscoStyle (PFR+MLR). Obvi-
ously, the proposed DiscoStyle consists of the proposed
preference feature representation (PFR) and the pro-
posed multi-level logistic ranking (MLR). Note that the
OneclassSVMI®0 belongs to a one-class algorithm which
only depends on the positive samples during the training
process. Also, for each method, the preference prediction
score for each face is computed for final ranking.

4.4 Experimental results

In this section, by following the experimental protocol
described above, the testing results of rank—1, rank—>5,

rank—10 and mAP on the StyleFace database by using
different methods are presented. First, the evaluation is
conducted when the number of testing samples is set as
10, and the results are reported in Table 2 for both fe-
male and male samples. From the results, we have the
following observations:

1) The OneclassSVMIIY shows the worst results by
comparison to other models. The reason is that in this
model, only the positive samples (preferred faces) are
used for training. However, in other models, the negative
samples (non-preferred faces) are automatically selected
by using the proposed ONSS algorithm. Therefore, the
advantage of our ONSS method is clearly shown.

2) By comparing the feature representation methods
between PFR and HOG, we observe that for OneclassS-
VM, SVM and ELM models, the proposed PFR can
achieve significant superiority in retrieval performance,
which clearly shows the strength of the proposed PFR in
revealing the knowledge of facial preference.

3) Under the image representation of HOG descriptor,
we can see that the proposed MLR model outperforms
another three models in retrieval of preferred faces. This
demonstrates that the proposed MLR can successfully un-
derstand the implicit preference feature.

4) Finally, we can see that our proposed DiscoStyle
method (PFR+MLR) achieves a huge breakthrough in
the preferred faces retrieval task, and shows the state-of-
the-art performance among all the presented methods.

Additionally, we have also presented the evaluation
results when the number of testing samples is 20, and the
results are shown in Table 3. From the results, we can
also observe that the proposed DiscoStyle with ONSS,
PFR, and MLR outperforms other methods. The pro-
posed DiscoStyle method still ranks the 1st position
among all the methods. It is reasonable that with an in-
creasing number of testing samples, the retrieval perform-
ance is improved. Similar findings can be observed in
Table 4, which is achieved with 30 testing samples for
each user. We can see that for our DiscoStyle, the rank—1
accuracy is 67.6% and the rank—5 accuracy can achieve
97.3% for female data while achieving 68.75% in rank—1

Table 2 Performance comparisons of all methods under the setting of 10 testing samples

Female Male
Methods Rank-1 (%) Rank-5(%) Rank-10(%) mAP (%) Rank-1(%) Rank-5(%) Rank-10(%) mAP (%)

HOG+OneclassSVM 1.35 5.40 12.16 6.89 3.12 6.25 12.50 1.16
PFR+OneclassSVM 1.35 16.21 35.13 3.76 15.62 81.25 90.62 31.87
HOG+SVM 2.70 36.48 60.81 9.52 15.62 62.50 75.00 15.18
PFR+SVM 21.62 54.05 77.02 17.02 21.87 71.87 90.62 30.89
HOG+ELM 10.81 41.89 64.86 11.00 25.00 68.75 71.87 19.12
PFR+ELM 21.62 59.45 75.67 16.41 28.12 96.87 96.87 34.05
HOG+MLR 39.18 79.72 83.79 36.52 37.50 75.00 90.62 40.32
DiscoStyle (PFR+MLR) 41.89 82.43 90.54 48.45 34.37 90.62 100 39.72
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Table 3 Performance comparisons of all methods under the setting of 20 testing samples

Female Male
Methods Rank-1 (%) Rank-5 (%) Rank-10(%) mAP (%) Rank-1(%) Rank-5(%) Rank-10(%) mAP (%)

HOG+OneclassSVM 4.05 13.51 25.67 7.59 3.12 21.87 25.00 2.48
PFR+OneclassSVM 6.75 39.18 62.16 5.57 31.25 81.25 93.75 19.12
HOG+SVM 13.51 70.27 83.78 13.96 21.87 78.12 84.37 16.69
PFR+SVM 35.13 75.67 91.18 20.31 40.62 87.50 93.75 33.70
HOG+ELM 25.67 72.97 85.13 15.20 40.62 78.12 90.62 20.15
PFR+ELM 39.18 77.02 91.89 19.75 28.12 87.50 96.87 34.05
HOG+MLR 55.40 91.18 95.94 38.95 56.25 93.75 100 38.30
DiscoStyle (PFR+MLR) 60.81 95.59 95.94 44.29 59.37 93.75 100 38.56

Table 4 Performance comparisons of all methods under the setting of 30 testing samples

Female Male

Methods Rank-1 (%) Rank—5 (%) Rank-10(%) mAP (%) Rank-1(%) Rank-5(%) Rank-10(%) mAP (%)

HOG+OneclassSVM 4.05 18.91 31.08 8.13 12.50 59.37 62.50 5.28
PFR+OneclassSVM 12.16 55.40 77.02 7.40 37.50 93.75 96.87 21.78
HOG+SVM 47.29 93.24 97.29 20.21 28.12 90.62 90.62 17.65
PFR+SVM 56.75 95.94 100 23.12 59.37 96.87 96.87 33.39
HOG+ELM 51.35 93.24 100 20.18 59.37 96.87 100 20.18
PFR+ELM 55.40 95.94 98.64 23.12 50.00 96.87 96.87 33.80
HOG+MLR 66.21 94.59 100 36.94 65.62 93.75 100 35.19
DiscoStyle (PFR+MLR) 67.56 97.29 98.64 39.02 68.75 100 100 35.01

and 100% for rank—5 for male data. This demonstrates
that our proposed method can successfully realize accur-
ate and reliable recommendation of preferred faces for
users.

Similar to the retrieval tasks, the precision-recall (PR)
curves of all the compared methods for both female and
male samples are also presented in Fig.6, from which we
can observe the superior performance of our DiscoStyle
(PFR+MLR) to others. The mAPs for female and male
data under different settings are shown in Tables 2—4.
We can see that the proposed DiscoStyle model shows
state-of-the-art performance. The superiority of the pro-
posed PFR and MLR is clearly shown.

4.5 Visualization of the StyleFace dataset

Visualization of the feature/image distribution.
For better insight of the proposed PFR feature represent-
ation method, we have shown the feature distribution
(displayed with images) in Fig.7 for user a (female
samples) and user b (male samples), which is implemen-
ted by running the t-SNE based dimension reduction al-
gorithm[%3] on our PFR feature. The appearance feature of
the detected ROI region from the deep transfer network
is experimented in distribution visualization. From Fig.7,
we can observe that for both users, the top 25 faces in
green color with the highest preference scores are in the
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same cluster as the training set (preferred faces) in blue
color. Additionally, the bottom 25 faces in red color with
the lowest preference scores are in the same cluster as the
negative samples in yellow color selected by our ONSS al-
gorithm. Notably, the numbers below the bounding boxes
in Fig.7 represent the score ranking of each face. The
visualization clearly shows the effectiveness of the pro-
posed feature representation in reflecting the essence of
users’ preference to facial images.

4.6 Visualization of the LFW dataset

In order to further test the effectiveness of the pro-
posed DiscoStyle model in public western faces, we
present a study on the LFWPSl dataset. We divide the
LFW dataset into female and male parts. Then 10 pre-
ferred anchor images from female and male parts are sep-
arately selected by a user for model training. The top 10
recommended faces and bottom 10 non-recommended
faces for both female and male parts are visualized in
Figs.8(a) and 8(b), respectively. We can observe that the
recommended faces show similar style with the preferred
anchors and the non-recommended faces show non-simil-
ar style. Also, the proposed method is gender and race-in-
sensitive, and shows good generalization and reliability.

4.7 Discussions
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Fig.6 The PR curves of all the compared methods based on three evaluation protocols. The 1st and the 2nd rows show the PR curves
of female and male, respectively. The online color figure can get a better view.
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Fig. 7 The feature distribution of training set, high-score samples and low-score samples for female (a) and male (b). The numbers
below the red and green bounding boxes denote the rankings of the preference scores predicted by the proposed DiscoStyle. The online

color figure can get a better view.

A number of experiments on the developed StyleFace
and LFWDP8] databases have shown the effectiveness of
the proposed DiscoStyle in predicting users’ preference for
faces. The success of our DiscoStyle for this challenging
task, to our knowledge, lies in three important aspects.
1) An MLR model is proposed for predicting the possibil-

ity of a face to be preferred by users, such that the style
similarity can be finely analyzed by scoring strategy.
2) A PFR is proposed with local appearance features (e.g.,
eye, nose, and lip-chin parts that users generally pay
more attention to), global appearance feature and geo-
metric shape feature, such that the facial features that
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Fig. 8 Visualization of the anchors, recommended faces and
non-recommended faces for female and male data in LFW
dataset. For each user, the 1st row shows the training samples
(i.e., preferred anchors) selected by the user, the 2nd row shows
the recommended faces (most probably preferred faces) with the
highest preference scores, and the 3rd row shows the faces (most
probably non-preferred faces) with the lowest preference scores
by using the proposed DiscoStyle method.

mostly reflect the users’ preference can be extracted.
3) An ONSS algorithm is proposed, such that a general-
ized model can be learned by trading off between posit-
ive samples and negative samples, which benefits the al-
gorithm in score ranking.

Although the proposed DiscoStyle, to the best of our
knowledge, is the first work in this challenging task and
has shown a significant success toward the users’ prefer-
ence modeling of faces in different genders and races, the
essence of users’ preference to faces is still complex and
not explicit. The preference is closely related to several
personal aspects such as hobbies, character, psychological,
etc. However, in this paper, we aim at proposing intelli-
gent and automatic approach by concentrating on the ex-
ternal facial image and feature without considering other
internal and complicated factors.

5 Conclusion and future work

In this paper, we introduce a novel and efficient Dis-
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coStyle approach and a StyleFace database for modeling
and inferring human’s psychological preference to faces.
To our knowledge, this is the first work for preference in-
ference of image styles with a StyleFace database, to-
wards preferred faces recommendation. The proposed Dis-
coStyle framework is formulated by three important mod-
ules including the preference oriented feature representa-
tion method, the on-line negative sample selection al-
gorithm, and the multi-level logistic ranking model. Ex-
tensive experiments on the developed StyleFace database
show the superior efficiency of the proposed DiscoStyle
over other general methods in accurately inferring the
users’ psychological preference to facial image styles.

In future work, we would like to deploy the proposed
DiscoStyle on more interesting applications for recom-
mendation, such as human'’s psychological preference in-
ference to many diverse image styles (e.g., landscapes, an-
imals, paintings) rather than only human faces. This re-
search will open up the emotional world of humans by us-
ing artificial intelligence.
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