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Abstract: The underwater path planning problem deals with finding an optimal or sub-optimal route between an origin point and a
termination point in marine environments. The underwater environment is still considered as a great challenge for the path planning of
autonomous underwater vehicles (AUVs) because of its hostile and dynamic nature. The major constraints for path planning are limited
data transmission capability, power and sensing technology available for underwater operations. The sea environment is subjected to a
large set of challenging factors classified as atmospheric, coastal and gravitational. Based on whether the impact of these factors can be
approximated or not, the underwater environment can be characterized as predictable and unpredictable respectively. The classical path
planning algorithms based on artificial intelligence assume that environmental conditions are known apriori to the path planner. But the
current path planning algorithms involve continual interaction with the environment considering the environment as dynamic and its ef-
fect cannot be predicted. Path planning is necessary for many applications involving AUVs. These are based upon planning safety routes
with minimum energy cost and computation overheads. This review is intended to summarize various path planning strategies for AUVs
on the basis of characterization of underwater environments as predictable and unpredictable. The algorithms employed in path plan-

ning of single AUV and multiple AUVs are reviewed in the light of predictable and unpredictable environments.

Keywords: Autonomous underwater vehicle (AUV), cooperative motion, formation control, optimization, path planning (PP).

1 Introduction

Autonomous underwater vehicles (AUVs) are con-
sidered as a substantial group of submerged systems
known as “unmanned underwater vehicles (UUVs)”.
UUVs are generally classified as AUV and remotely oper-
ated vehicle (ROV). ROVs are powered and operated
from a surface control station by an umbilical cord or re-
mote control. AUVs carry their independent onboard
power supply. They are cylindrical in shape and do not
have attached cables. AUV designs include “torpedo-like
geometry”, “gliders” and “hovering”. AUVs scale from
portable to huge sizes of hundred tonsl. An AUV is a
highly nonlinear robotic vessell?], whose dynamic equa-
tion include square terms due to hydrodynamic damping
factors. It can operate both above and beneath the
ocean'’s surface. The AUV propagates by changing its
buoyancy in small steps, thereby converting the result-
ant vertical displacement to horizontal movement. This is
accomplished by the interactivity between the surface
control station and the water column.

Motion planning is familiarly associated with “path
planning (PP)” and “trajectory planning (TP)”. Path
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planning is finding the course of points across which AUV
has to travel to reach the predefined destination from the
starting location, whereas the time history of this jour-
ney of the AUV is referred to as trajectory planning.
AUV navigation is a very important aspect of path plan-
ning. No external communication and “global positioning
system (GPS)” signals are available in underwater envir-
onments. Thus, without information of direction and re-
stricted power, it is very difficult for an AUV to navigate
towards the desired target. Three primary navigation
methods have been suggested for AUVsDB! that are “dead-
reckoning and inertial navigation systems (DR-INS),
acoustic navigation and geophysical navigation”. Refer-
ring to the literature available on AUV navigation[4, one
can distinguish three different problems that are “close-
to-surface navigation, navigation in the mid-depth zone,
close-to-bottom navigation”.

In the path planning control (PPC) problem, an AUV
has to traverse a convergent path without temporal con-
straintsl5l. Earlier works on PPC of wheeled robots solved
two major issues reported as “path parameterization” and
the selection of the termination point on the pathl6l. A
control system for the coordinated operation of an
“autonomous surface craft (ASC)” and an AUV has been
designed by Encarnacao and Pascoall”, which is based on
combined trajectory tracking and path planning control.
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A number of PPC for marine vehicles have been pro-
posed in the literature based on the vehicle's dynamiclé],
Lyapunov theory912l| Serret-Frenet equations(!3l, and
fuzzy logicl'4. An “inner-outer control” scheme that can
successfully implement path planning controllers on a
vast range of AUVs has been presented by Maurya et
al.[15 Subudhi et al.[!6-18] also proposed a tracking control-
ler and an output feedback controller using AUV dynam-
ics. Silvestre et al.l%9 proposed a discrete time PP
strategy based on the piecewise affine parameter-depend-
ent model of an AUV. This methodology suggested a
solution to the problem of “bottom-planning” of the
AUV. The resulting nonlinear controller has been imple-
mented as a gain-scheduled controller using the D-meth-
odology and verified on a dynamic model of the “Infante
AUV” in the vertical plane. “Infante” is the Spanish term
for “infant” that represents miniature version. Different
path planning controllers such as “active disturbance re-
jection controller (ADRC)”[20 “sliding mode controller
(SMC)”[21l and high precision PD controller(22] have also
been proposed in the literature. An adaptive SMC con-
troller to cope with speed changes when a high speed
AUV surfaces to strike air targets has been proposed by
Xiaol23. A “multi-objective model predictive control
(MO-MPC)” has been proposed on the Saab Sea Eye Fal-
con open-frame ROV/AUV and validated as an effective
PPC by Shen et al.?4 In order to improve the perform-
ance of AUVs deployed in different applications such as
oceanographic survey, search and detection of mines in
military missions, it is necessary to develop an appropri-
ate path planning controller which should provide pre-
cise and fast control of the propeller system of an AUV.
Different PPC employed for formation control of mul-
tiple AUVs to follow a specified path while retaining a
desired spatial pattern are reviewed by Das et al.[25]
Guerrero et al.[20l introduced a second-order SMC named
“generalized super-twisting algorithm (GSTA)” for auto-
matic gain adjustment to cope with external disturb-
ances along with uncertain dynamic errors. Yan et al.(7]
and Li et al.?8 respectively proposed a “real-time reac-
tion obstacle avoidance algorithm (RRA)” and a “pre-
dictive guidance obstacle avoidance algorithm (PGOA)”
to deal with complicated terrain structure in the unpre-
dictable oceanic environment based on information
provided by “forward looking sonar (FLS)”.

The underwater environment plays a significant part
in the path planning of AUVs. The sea environment is
subjected to a large set of challenging factors such as at-
mospheric factors, coastal factors and gravitational
factors?9. Atmospheric factors include winds, sunlight
and precipitation. Coastal factors deal with rivers, gla-
ciers, and gravitational factors include earth rotation,
seabed and tides. Navigation of an AUV is majorly af-
fected by wind generated waves, wind and oceanic cur-
rent. The effect of oceanic current needs much considera-
tion in path determination. The ocean environment is un-
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predictable and time-varying, but sometimes the effects
of the environmental factors can be approximated to pro-
duce a predictable behavioral model of the underwater
environment. The environment is considered as unpre-
dictable when the changes in the environment are uncer-
tain or unknown. Hence, the underwater environment can
be characterized as predictable and unpredictable. A
qualitative analysis of different path planning algorithms
used in AUV PP is presented in this paper. Various al-
gorithms are reviewed for both single and multiple AUVs
based on predictable and unpredictable ocean environ-
ments. This review is expected to be very useful for fu-
ture researchers from the qualitative analysis of different
path planning control (PPC) techniques employed in the
area of AUV path planning and their merits, demerits
and scope of avoiding the difficulties.

This review is organized as follows. Section 2 reviews
the different methodologies employed for the path plan-
ning task of a single AUV. Section 3 describes the path
planning strategies for multiple AUVs and the paper is
concluded in Section 4.

2 Path planning of a single AUV

In the underwater environment, it is hard to commu-
nicate because of the availability of low bandwidth under-
sea channels. Thus, PP for AUV is a very challenging
task. Here we attempt to categorize the work reported in
the literature on PP of an AUV considering both the pre-
dictable and unpredictable oceanic environments. The
path planning algorithms for single AUV are summarized
in Table 1.

2.1 Path planning in a predictable envir-
onment

The underwater environment is subjected to variabil-
ity. But for many applications, the effect of the marine
environment in the path planning can be approximated
and considered as predictable. In a predictable environ-
ment, path planning is concerned with traversing a colli-
sion-free trajectory from initial to end position while
avoiding the obstacles in the path of the AUV. Various
optimization algorithms are further available in the liter-
ature to generate optimal paths for single AUV as repres-
ented by Fig. 1.

2.1.1 Graph search and dead reckoning algorithm

The PP problem can be formulated as generating a
series of state changes along a graph from some primary
state to a final state. The “geometrical graph” is a math-
ematical model which describes the field of activity with
all its attributes using different procedures such as “dy-
namic programming (DP)”. DPBY is generally employed
as a “graph-searching” technique for a weighted graph.
Here, weights symbolize the associated cost of an edge.
There exist many theories to explain an obstacle environ-
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Fig.1 Summary of path planning control of a single AUV

ment as a directed graph with a minimum number of ver-
tices and edges to decrease the computing time. Petillot
et al.Bl designed a time minimal obstacle free PP frame-
work for AUVs based on a “multi-beam forward looking
sonar sensor” (Fig.2). Here the input data has been seg-
mented to extract the required information. However, this
approach ignored the energy and workspace limitations.
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Fig. 2 Phases of sonar based path planning/3!]

2.1.2 Sequential quadratic programming

The “sequential quadratic programming (SQP)” tech-
nique is based on a constructive solid geometry. SQP de-
scribes the obstacles as constraints to be satisfied during
exploring the space while minimizing the “Euclidean dis-
tance” to the destination. The problem of “local minima”

and fast-moving obstacles has been well addressed in this
context. Chyba et al.3% 33 applied SQP to obtain time-
optimal paths parameterized by the switching times for a
distinctive group of “fully actuated” AUVs called “under-
water gliders”. The approach employed the maximum
principle for optimizing the structure of “singular ex-
tremals”, but ignored the energy cost. Another obstacle
avoidance scheme comprised of a two-level framework is
proposed by Eichhornl34, that emphasizes search rate and
space requirements. The upper level is concerned with the
course planning to generate a locus for the AUV to fol-
low. The lower level deals with obstacle avoidance and
deactivation of the course module using a “reactive con-
troller”. This method relied on local optimization and in-
stantaneous sensor detected obstacle information, but
neglected the open nodes. The greater number of “radi-
ated edges”[39] causes increase in lengths which is imprac-
tical for reflecting the variation in current flow.
2.1.3 Graph-based shortest path algorithms

A graph-based A* path planning algorithm has been
implemented by Carroll et al.[36] using a quad tree to sep-
arate a large two-dimensional sea environment. A sub op-
timal minimum cost path is generated as the path is
bound to pass through the centers of quadrants. A “post-
processing phase” has been used to examine and remove
an unnecessary node to generate a cost-effective collision
free path. A path is regarded as collision free if it does
not cross obstacles, “active exclusion zones”, or ground
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masses; collectively known as non-entry regions. The
oceanic environment under the influence of strong cur-
rents, spatial and temporal variations increases the en-
ergy cost of AUV missions. Thus, an AUV path with a
minimum energy cost is needed during missions with ex-
tensive energy requirements. Bellingham and Willcox[37]
used error matrix calculations and obtained an energy ef-
ficient path that ensured spatiotemporal coverage in
oceanographic sampling. Tradeoffs between resolution,
total survey time, and vehicle speed have been made to
satisfy platform constraints. A shortest route optimiza-
tion problem has been formulated by Hert et al.38], that
optimizes the energy cost while guaranteeing terrain cov-
erage with a sonar system. Garau et al.3% adapted the A*
algorithm, assuming constant and two-dimensional cur-
rents. In this method, paths were constrained to a grid
with the axis aligned or 45° angled movements and un-
able to take benefits of currents while the AUV thrust is
assumed constant. Another possibility to define a mesh
has been reported by Hou and ZhengH0, based on
hexagons where there were six direct neighbors with the
same distances to their centers. Kim et al.l4l introduced
“stealth path planning algorithm” to decrease the time of
travel of a back propelled “torpedo-shaped AUV” to
reach a “target ship” faster without being found in a
calm oceanic environment. This approach used a
“Dijskstra algorithm” based on turning angle variation to
plan a time optimal path and also to reduce acoustic
measurement at the target end by minimizing the sound
generated by the torpedo. “Graph-searching” techniques
are robust to local minima, but are difficult to use in
high-dimensional problems.

2.1.4 Artificial potential fields (APF)

The “artificial potential fields (APF)” scheme has
been suggested by Warrenl*2l in 1990. A potential field al-
gorithm along with other algorithms applied to AUV
path planning is also discussed in [43]. APF methods are
implemented to the obstacles and target pointsi*4 and the
resultant field determines the route of an AUV. A cost
function has been introduced to evaluate a path and to
optimize the path parameters for a minimum value. APF
is a fast method that can be applied to higher dimension-
al problems, but is vulnerable to local minima. Maki et
al.45] proposed a path planner using potential fields for a
seabed imaging application. The AUVs are employed at
low altitude with high surge velocity and don't need ex-
pensive sensors.

Algorithm 1. APF pseudocodel43]

Initialize: Map M, starting point Mg, Destination
point mend

Decide path P

for all location m in M do

1
Fore (M) < §E|m — Mygoat|’, where Fuu(m)is attrac-

tion force at point m
for all obstacle O;, i=1, 2,"*, n do
if m is O then
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Frep(m)«—oo, where Frop(m) is the repulsive force at
point M

else

D—minimumdistancetopolygon(m, O;)

Ci—closest PointOnObstacle(m, O;)

if D<M;" then

Freps (m) 1 (

1 1 m — CZ
M; D (m)) D;? (m)
else

Frep;(m)«0

end if

end if

end for

end for

while m# mepg do

Add m to P n
VF (m) € Fage (m) + X0y VFrep, (m)

m < m — AVF (m)

end while
2.1.5 Control vector parameterization (CVP)

Path planning in three dimensional spaces is a “non-
linear optimal control problem (NOCP)” which results in
an open-loop path that has to be calculated off line. CVP
and single shooting methods have been applied by Span-
gelo and Egelandl6] to solve this NOCP problem. Energy
optimal trajectories are obtained with collision avoidance
with this strategy. The proposed method included gradi-
ent calculations and computation of a new search direc-
tion. Thus, the cost, increases with increasing number of
parameters.

2.1.6 Galerkin’s method

These methods are employed for solving partial differ-
ential equations. Galerkin's methods are discretised as “fi-
nite element methods (FEMs)”, “spectral element meth-
ods (SEMs)”, and “spectral methods”. These methodolo-
gies used integrals of functions that can be solved to
provide arbitrary shapes and are geometrically more flex-
ible. A control approach using numerical approximation
results for the “Hamilton-Jacobi-Bellman equation” has
been proposed in [47]. A repetitive “Galerkin’s method”
has been employed to obtain the final solution for a non-
linear optimal station-keeping control problem of an
AUV.

2.1.7 Iterative learning control

A time optimal control method using “repetitive
learning control and time-scale transformation” has been
presented in [48] for AUVs. This approach assumed fixed
spatial paths of motions for AUV and physical paramet-
er estimation is not essential to formulate an input torque
pattern. The problem of real-time optimal PP for AUV
with symmetric thruster configuration has been ad-
dressed in [49] to estimate an analytical solution. It yiel-
ded a near optimal path following control for AUVs both
in two- and three-dimensional environments (Fig.3). This
approach is not suitable when the speed of the AUV is
very low as at very low speed, the mathematical results
differ from approximate results. Dynamic programming
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(DP) has been used to address, the time optimal PP
problem of AUVs in the presence of the hindrances by
Sadeghl50,
2.1.8 Symbolic wavefront expansion

An appropriate selection of departure time of an AUV
is an important issue for many applications as it varies
with the time. Soulignac et al.5l employed “symbolic
wavefront expansion (SWE)”, to address this problem.
Functions with appropriate operators have been used in
place of numerical values. This method predicted both
the path and the leaving time of an AUV while reducing
the travel time.

Algorithm 2. Wavefront expansion pseudocodel43]

Initialize: Map M, starting cell Mg, destination
cell mgoal

Decide path P

mark all free space as notvisited

index<—indexr+1

Mgoar—index

mark mgeq as visited

while mgqr¢ 1s unvisited do

set all notvisited cells neighboring a cell with value in
dex to index + 1

mark all cells with value index + 1 as visited

index<—indexr+1

end while

M<—Mstart

add m to P

while mgyoq not in P do

m«—with neighbor of m with minimum value

add m to P

end while
2.1.9 MDP planning algorithms

Operation of slow-moving AUVs along the coastline
involves the threat of collision with ships and land. The
strong water current levels in these regions can remark-
ably change the planned AUV path. For a safe and reli-
able AUV functioning in such coastline areas, Pereira et
al.[52) introduced two stochastic planners: a “minimum ex-
pected risk planner” and a risk alert “Markov decision
process” (MDP). Both of them utilized the sea current
predictions probabilistically. The approach adopted the
“shortest-path search” and “MDP planning” algorithms
to reduce surfacing threat for AUVs.
2.1.10 Metaheuristic algorithms

The metaheuristic algorithms include “evolutionary al-
gorithms (EAs)” and “swarm intelligence (SI) optimiza-
tion”. The EAs are probabilistic search techniques that

imitate the biological evolution. The SIs are “population
based” optimizations that inherit the societal behavior of
natural species. The best example of EA is “genetic al-
gorithm (GA)” and examples of SI are “memetic al-
gorithm (MA)”, “particle swarm optimization (PSO)”,
“ant colony optimization (ACO)” and “shuffled frog leap-
ing algorithm (SFLA)”, “cuckoo search (CS)”, “fire fly
optimization (FLO)”, etc. The intelligent algorithms such
as GA, MA, PSO, ACO, and SFLA are suggested to ob-
tain time and energy efficient paths, by minimizing a
nonlinear “time-energy” cost function. The genetic al-
gorithm (GA) has been preferred for AUV PP in large,
but static environments®® 54. It searches the solution
from a large solution space, thus requires effective
memory management.

Elbeltagi et al.b% reported that linear programming
and DP techniques, often fail in solving “nonlinear optim-
ization problems (NOPs)”. NOPs include many variables
and the objective functions are nonlinear. For this kind of
problem, evolutionary algorithms can be considered as an
alternative solution. Energy minimization for AUV path
planning requires the solution of a NOP with nonlinear
state space equations and a “non-quadratic” performance
index that results in a “two-point boundary value prob-
lem (TPBVP)”. Aghababa et al.’6; 571 suggested numeric-
al solutions to this problem using GA, MA, PSO, ACO
and SFLA methods. The research suggested the exist-
ence of some sources of energy in the ocean. When an
AUV passed through any of these sources, it spends some
extra energy. In this research, Aghababa et al. computed
near-optimal trajectories using the “conjugate-gradient
(CG)” method and three-dimensional optimal trajector-
ies applying the “conjugate gradient penalty (CGP)”
method in functional space. A new 3D path planning
method for AUV based on a modified firefly algorithm
has been presented by Liu et al.58 The algorithm para-
meters and the random movement steps are adapted to
the implementation process. An autonomous planning
scheme has been instigated to avoid instances of invalid
paths. An “excluding operator” is used to avoid collision
with obstacles and a “contracting operator” is used to in-
crease the rate of convergence (Fig.4).

2.1.11 Multi-criteria decision analysis

“Multi-criteria decision analysis (MCDA)” is a famili-
ar term for modeling and simulation of AUVs. Xu et
al.% developed a hierarchical weighted-sum model for
AUV decision-making with an “analytic hierarchy pro-
cess (AHP)” based on expending energy, time and dis-
tance covered and accomplished the goal assuming a stat-
ic environment.

2.2 Path planning in unpredictable envir-
onment

The path planning controller is a necessary compon-
ent for navigating AUV in an unpredictable environment.

@ Springer



326 International Journal of Automation and Computing 17(3), June 2020

Environment modeling & parameter
initialization
T

Y

|Fireﬂy population sorting as percost functi0n|

v

| Next position estimation of the current fly |

!

| Obstacle avoidance by excluding operators |

Next
firefly +
| Adjusting position of the fly |

All flies reached destination?

Optimization of candidate path using
contracting operator

Finish condition satisfied

Fig.4 Flowchart of 3D path planning using a Firefly
algorithm /58]

The performances of classical PP algorithms in “artificial
intelligence” are not satisfactory. These algorithms are
also unsuitable for systems moving in a hostile oceanic
environment with real-time constraints. To resolve the
aforesaid issues, methods such as evolutionary algorithms,
graph search method, FM based algorithms, rapidly-ex-
ploring random tree (RRT), etc. have been proposed and
many more are still to come.
2.2.1 Graphical method

The graphical methods focused on PP algorithms to
generate “time-optimal” paths for AUVs travelling from
source to destination positions in an environment subjec-
ted to dynamic sea current effect. This is a difficult task
to accomplish as the available information is incomplete
and inaccurate. Anthony Stentz introduced a new al-
gorithm D*[0 that is dynamic in nature and allows
changes in the parameter’s effecting arc cost during the
solving process. The original D* algorithm consists of two
functional phases, namely “process-state” and “modify-
cost”. The “process-state” function computes optimal
cost of the path from source to destination while the
“modify-cost” function allows the affected states that un-
dergo modification of the arc cost to enter in the “open
list”. The “open list” provides the information about
modifications in the arc cost and path cost to different
states in space. He has also proposed an extension to the
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D* algorithm known as focused D*[61 for PPC of AUVs.
In this method, continuous cost upgradation has been ap-
plied to minimize expansions of the state and the compu-
tational costs.

The “field D* algorithm” 1is a modified D*
algorithml62 to find complete and optimal paths that
eliminate unnecessary turning. In this approach, uniform
resolution grid represented the environment. Only linear
energy cost functions have been used and the strong cur-
rent which may lead to infeasible paths has not been con-
sidered. This scheme produced the pathological cases
when the “gradient descent (GD)” method is used to ob-
tain a path. Soulignac et al.[63] improvised this approach
to work under the influence of strong current by employ-
ing a nonlinear cost function. But they assumed constant
AUV thrust that neglects the effect of sea currents.

A 3D A* route planner, called “3DPLAN”, has been
developed by Cao et al.[64 It could run efficiently for lar-
ger grids and is guaranteed to give the optimum path. A
“maritime underwater navigation system (MUNS)” for
AUVs has been proposed by Khorrami and Krish-
namurthyl®? (Fig.5). The proposed system has a layered
architecture comprising of a “wide area planner (WAP)”
and a “local area planner (LAP)”. MUNS being flexible
can be employed for “point-to-point” motion tracking,
object investigation, route planning, and location search-
ing. It extended the operational capabilities of AUVs in
“cluttered and littoral” environments, but its application
has been restricted to lower dimensions only. Planning
safe paths with less energy cost has been a major chal-
lenge for AUV path planning as complex spatial variabil-
ity of ocean environments can jeopardize its mission. The
benefits of PP in oceanic environments subjected to space
variations have been discussed by Garau et al.[6¢ in terms
of travelling time. It generates time optimal paths in the
realistic ocean environment. Here, spatial structure of the
current field plays as major roles in PP.

Sensor data —
Situational awareness

Obstacle
Graded obstacle occupancy
avoidance system information

Mission
specification

Wide area mission
Liner velocity & planner (WAP)
angular velocity (Global trajectory

commands to inner [recommendation,

loop controller
_—

Local area obstacle
avoidance (LAP)

Fig. 5 Conceptual MUNS architecturel6)

2.2.2 Case-based reasoning (CBR)

Case-based reasoning has been presented by Vas-
udevan and Ganesanl67l for AUV mission planning. The
navigation environment representation included previous
paths and entities in the navigational space. Then the
routes have been retrieved and repaired. Further, the
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scheme for incorporating new paths has been adopted.
CBR is based on reasoning and can be seen as a cycle of
the planning four tasks: retrieve, reuse, revise, and
retain.l®8 CBR generates a shorter and reliable path us-
ing an enriched “map database” as shown in Fig.6.

Representation New or

retrieved path

New path
planning problem

Retrieve

Map database Reuse
Retain
Selected path| Revised Revise Proposed
-
path path

Fig. 6 Phases of CBRI6]

2.2.3 Fast marching algorithm (FMA)

Sethian’s “fast marching algorithm (FMA)” is an es-
sential aid to path planning with fewer complications. An
FMA based path planner has been suggested in [69] with
active re-planning. It minimizes the rate of failure when
unknown terrains appear in the path. But no heuristic
has been employed to improve the exploration speed. Pet-
res et al./%, proposed an FM method, i.e., precise and
able to control the curvature of the final trajectory with
consideration to vehicle kinematics (Fig.7). The path
planners are capable of managing smooth fields of force.
A multi-resolution scheme has been used to fasten the
overall procedure by coupling “octree decomposition”
along with “adaptive mesh generation”. The proposed
FM is of low complexity and converges to an optimal tra-
jectory on a discrete grid.

Environmental state Simulation Constants
---»  environment o
Real sensor ! ' Effects
data ! [,
Sens@ Internal subsystem Actuators
Sensor data Command
Observer
interaction Real Constants
- environment
Environmental state Effects

Fig. 7 Communication interface for both simulator and real
AUV remains the same using a communication protocol
providing transparent access[7l.

2.2.4 Potential-field algorithm (PFA)

A potential-field-based method in conjunction with
the virtual force concept to maneuver AUV in an un-
known environment has been illustrated by Ding et al.["l],
that resolved the local minima problem in PFA based
path following. Zhu et al.l"? presented an integrated AUV
PP algorithm by incorporating “velocity synthesis (VS)”
and “artificial potential field (APF)” methods together.
An improvised APF algorithm has been used for obstacle

avoidance and an optimized path has been generated us-
ing VS method.
2.2.5 Nonlinear trajectory generation (NTG)

An optimal path planning control for an AUV subjec-
ted to dynamic ocean currents has been suggested by
Zhang et all™ The “nonlinear trajectory generation
(NTG)” algorithm has been applied to a “B-spline” glider
model. The cost function is a weighted sum of a time and
energy expanses. A “graph based” PP algorithm in a dy-
namic environment has been proposed by Eichhornl™
considering the effect of both the AUV characteristics
and the dynamic ocean current. But this path planning
algorithm depends on spatial structure of the current
field.

2.2.6 Fuzzy logic (FL)

Many authors advocated the use of fuzzy logic in
autonomous navigation as it does not necessitate an ex-
plicit mathematical modelling of the system to control.
However, this leads two main limitations. First, classical
tools cannot be used for formal design without mathemat-
ical models. Secondly, the designed controller has not
been guaranteed to produce the desired behavior(™l. An
effective and standard path planning control for AUV
with collision avoidance has been developed by Kanaka-
kis et al.["® applying FL. The proposed controller is
simple, modular, expandable and applicable to any type
of AUV. It consists of three modules known as “sensor fu-
sion”, “collision avoidance” and “motion control” as
shown in Fig.8. Though the model is assumed to be inde-
pendent of the type of the AUV, knowledge of the under-
water environment and the obstacles, the “motion con-
trol” module was still dependent on the type of AUV in-
volved.

Current Error Current
AUV  from AUV AUV
position target velocity position

Fins,
l l l l thruster,
Sensor Collision New target propeller
input | Sensor |detection | Collision | detection |Motion| control
fusion avoidance control

Fig. 8 Overall AUV navigation & control architecturel(7

Loebis et al.l’”l implemented an intelligent navigation
system by using “global positioning system (GPS)” and
“inertial navigation system (INS)” sensors. A “simple
Kalman filter (SKF)” and an “extended Kalman filter
(EKF)” have been used to merge the information of INS
sensors and GPS for AUV applications. Both these filters
are sensitive to variation of sensor noise attributes. Thus,
FL is used for the adaptation of initial statistics to these
variations. The effectiveness of FL as an alternative to
analytical approaches and its applicability as a “model-
ing tool” that deals with inaccuracy and uncertainty has
been advocated by Valavanis’®. An “adaptive network
based fuzzy inference system (ANFIS)”[™ has been pro-
posed for controlling multiple variables during AUV nav-
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igation. This model can find time optimized path for
AUV. An improved “adaptive fuzzy sliding mode control
(AFSMCQC)” for “under-actuated MIMO” system with un-
certainties has been recently studied in [80].

2.2.7 Evolutionary algorithm (EA)

Many unforeseen events may occur, while an AUV is
in the ocean, leading to violation of the constraints of the
existing path. A GA based learning system8l has been
used to develop a robust collision avoidance algorithm for
PP of AUV in such real time situations (Fig.9). In
coastal regions, the ocean environment varies both in
space and time. Here AUV also encounters strong cur-
rent fields. Thus, mission planning that minimizes the en-
ergy expense is always encouraged. This can be achieved
by integrating environmental space-time variability in-
formation into existing PP algorithms[®2. GA is useful for
finding the solution from a large population, but required
proper memory management.

Targeted
environment

Rule
interpreter

Fig. 9 Simulation model-based learning/8!]

Online
system

| Learning

Active model

rule base

The PP problems with directional restrictions has
been explained by Alvarez et al.83] The “genetic operat-
ors” are employed to converge the local minima due to
structure of the current field to the global minimum. DP
has been used as an optimizing technique to generate a
safe route for the AUV employed in energy-exhaustive
missions by minimizing the energy cost. Here the thrust
on the AUV has been assumed to be constant. Zero en-
ergy paths cannot be generated due to the lack of de-
cision freedom. When the problem scale increases, the de-
terministic algorithms encounter problems as PP for
AUVs is very complex. An adaptive GA has been presen-
ted by Wang et al.84 that can explore the larger solution
space to find an approximate global solution for the AUV
path planning problem. This approach generated a real
time optimal, obstacle-free path with lesser waypoints in
a wide underwater environment. Zhang(8® assumed a stat-
ic underwater environment and applied GA to path plan-
ning of an AUV. It can find nearly global optima for
AUV navigation with minimal energy expenditure. An-
other approach to AUV path planning has been proposed
by Kruger et al.B They formulated an optimization
problem depending on the thrust of the AUV to minim-
ize both energy and time cost. A path planning and nav-
igation methodology has been suggested by Kanakakis
and Tsourveloudis®”, applicable to different types of
AUVs. It enabled three separate operational levels that
are “planning, optimization and motion control”. Plan-
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ning and optimization are done offline before starting the
mission, while motion control is accountable for the on-
line navigation with collision avoidance of the AUV.

Zhang et al.®8] defined the path of AUVs as a series of
points in the problem domain. The problem domain has
been divided into parallel sub-domains. A subdomain is
known as a “waypoint” and represented by grids
(Fig.10). The path of the AUV has been obtained by con-
necting these “waypoints”. Path cost is calculated as a
function of path length, energy cost, safety and curvature
restrictions of AUVs by employing “penalty method”.
The quality of paths has been evaluated using an adapt-
ive “differential evolution (DE)” algorithm. Zamuda and
Hernandez Sosal89 addressed the “underwater glider path
planning (UGPP)” problem with specific “land con-
straints” by applying DE. When a collision is detected,
the glider velocity became zero and it remained in that
location till the simulation stops. Untimely collisions ob-
struct evaluation of some good paths and no special cor-
ridor to the sea has been specified. A “corridor-con-
strained” UGPP where the resultant AUV paths have
been completely restricted to a “corridor area”
throughout the borderline of an oceanic “sub-mesoscale
eddy” has been suggested using a self-adjusting DE al-
gorithm employing level adjustment in [90].

Xo | x| x, | s | x, f— Vector X
- Yo | V1 | V2 | | Vu b——Vector Y
Individual
Zy Z Z | Z. —Vector Z
Waypoint

Fig. 10 Individual component!88]

2.2.8 Swarm optimization

A path planning algorithm based on “parallel swarm
search (PSS)” has been proposed by Witt and
Dunbabinl®l. It is employed for time-stretched AUV mis-
sions in a dynamic underwater environment where both
time and space are the variables. The energy optimal
paths are obtained by exploiting ocean currents to accom-
plish missions. Also, there may be a possible tradeoff
between time and energy expanses to obtain solutions.
PSS minimizes the vulnerability of the solutions to “large
local minima” when the “cost surface” is complex.

Zadehl®2l employed the “firefly optimization algorithm
(FOA)” to design a connectivity module that comprises
of a route planner and path planner. It is designed for
real-time operation with wider coverage and limited bat-
tery life. It is robust and capable of re-routing by reorder-
ing nodes as per varying water currents to provide time
and energy optimal path.

Yan et al.%] analysed PP of AUV in a dynamic, un-
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predictable underwater work space as a “multi-objective
optimization problem”. He proposed a “real-time” PP al-
gorithm by integrating PSO with “waypoint guidance”.
He has applied “multi-beam forward looking sonar
(FLS)” for obstacle detection and PSO for searching and
generating optimized waypoints. This method is suitable
for finding a flexible optimal path as per the assigned
task and successfully avoids collision.

Ma et al.’4 integrated the essence of alarming with
the guiding function of basic ACO to develop an al-
gorithm known as “alarm pheromone-assisted ant colony
system (AP-ACS)”. The cost function is intended to op-
timize the path length and energy uses while avoiding
collision.

2.2.9 Dynamic multi criteria decision analysis

Tavana et al.[%: 9] proposed a dynamic MCDA sys-
tem (Fig.11). The proposed method considered dynamic
surface current to provide a reasonable path planning
strategy with defined objectives. MCDA with analytical
network process and fuzzy sets is employed in the frame-
work to minimize the AUV PP solution space and max-
imize “time-on station” in hostile environments.

Fig. 11  Illustration of DP, where stage S; is the initial stage, Sy
is the final stage and j is the number of intermediate stages!%]

2.2.10 Mixed integer linear programming

The “mixed integer linear programming (MILP)” has
been used by Yilmaz et al.’"l, for path planning of AUV.
The path has been computed mathematically that max-
imizes the line integral of the uncertain field approxima-
tions along the course. The accuracy of these approxima-
tions can be improvised by sampling the computed path.
It is flexible and can successfully handle constraints like
inter-vehicle communication and synchronization, colli-
sion avoidance, etc. but suffers from an exponential in-
crease in computational time in large solution space.
2.2.11 Iterative optimization

In ocean research, AUV is employed for relatively less
expensive and long-range missions. Isern-Gonzalez et
al.%8 suggested a PP algorithm for AUVs based on “iter-
ative optimization”. This methodology operated on vary-
ing current scenarios. There is no distinction between
space and bearings variables and accurate modeling of the
vehicle's behavior is not needed. A sample utility compu-
tation-based structure has been presented in [99]. The
utility is calculated as a function of preferences and con-

straints. This approach provides a balance between time
and space parameters of marine sampling. It can be ap-
plied to any “sequential sampling” schemes with any de-
gree of available feature information.
2.2.12 Hybrid algorithms

Cheng et al.l'00 merged GA and DP to formulate a
“hybrid genetic algorithm (HGA)”, that inherited the
fastness of DP algorithms and the scalable nature of GA.
It obtained a higher convergence rate and solutions with
better fitness than conventional GA-based path planners.

Zeng et al.l'01 employed “annular space decomposi-
tion” strategy to represent the problem space. A hybrid
PP algorithm comprising GA and “quantum-behaved
PSO” has been developed. The proposed planner ob-
tained an optimized trajectory with fast convergence
speed and less computational cost, but in a restricted
search space. A GA based efficient route planner has also
been presented using “adaptive B-spline approximation”
technique for AUVs employed in dynamic and unstable
environments. Some intermediate “knots” are inserted as
per requirement of each path until a smooth “B-Spline
curve”  satisfying accuracy condition has  been
estimated[192], He also reviewed some of the important al-
gorithms employed for PP of AUV and proposed an
quantum behaved particle swarm optimization (QPSO)
algorithm(193] for solving the optimal PP problem under
the significant effects of oceanic currents (Fig.12).

Generation of an initial group
of candidate paths
T

v

| Computation of mean best position |

!

| Evaluation of the objective function |

Updation of P,,, & Swarm'’s
global best state G,,,,

Updation of the particle’s position

Finish condition
satisfied

Return result

Fig. 12 Flow chart of QPSO based path planner(103]

An “interfered fluid dynamical system (IIFDS)” and
“improved genetic algorithm (IGA)” has been proposed
by Yao and Zhaoll4. This research uses “grey wolf op-
timization (GWO)” to improvise the mutation operator
of GA and generates energy optimal paths in a 3-D envir-

onment with both static and dynamic obstacles. Li et
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al.[l95] suggested a hybrid algorithm for PP of AUV for
detecting and tracking both static and mobile targets in a
turbulent underwater environment. It is an “intelligent
cognitive architecture” where adaptive ACO and PSO al-
gorithms are integrated to improvise basic fuzzy rules.
2.2.13 RRT

A prospective anytime algorithm called “anytime-
RRT (ARRT)”[106.107 has been proposed by Ferguson et
al. It is a sampling-based PP method. In this process, a
chain of RRTs has been generated where each new RRT
utilized the cost information from the previous, RRT to
grow, resulting in an optimal trajectory.

Algorithm 3. RRT pseudocodel49]

Initialize RRT (M, T)

T.add (mst,m);

Grow RRT (m, T)

Mpew=MMstart;

while (Distance (Mnpew, Mgoa) > distance -

threshold)

Miarget =Choose Target O;

Mnearest =INearest Neighbor (Mmiarget, T);

Mnew =Extend (Mnearest; Miarget; 1);

if (Mpew# null)

T.add(mpew)
ChooseTarget ()

p = Random Real ([0.0,1.0));

if (p < goal — sampling — prob)

return mgoa;

else

return Random Configuration O;
Main ()

Initialize RRT (tree);

Grow RRT (tree);

Hernandez et al.[198] proposed a method using work-
domain information to identify “homotopy classes”.
These classes graphically describe the paths going
through the obstacles in the 2D work-domain. These
classes have been arranged as per the heuristic approxim-
ation of the class's “lower bound”. Classes with smaller
“lower bound” can only be allowed to guide an RRT path
planner, called “homotopic RRT (HRRT)”. This method
rapidly provided some good obstacle free paths and thus
acts as an anytime algorithm.

Ma et al.[199 proposed a dynamic “terrain-aided navig-
ation (TAN)” approach for dynamic path planning based
on change in topographical variations of seafloor with im-
proved positional accuracy. This research employs the
RRT" algorithm for path planning modules. In RRT", the
parent and child node have a minimum cost relationship
rather than the minimum distance as in RRT. RRT" is
also useful as an offline geometric path planner(l0 for
planning safety routes for AUV. But it is impractical to
implement due to difficulties in reconnection with re-
spect to AUV dynamics.

2.2.14 Wavefront expansion
The planner proposed by Thompson et al.llll] used a
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“wavefront expansion” to calculate the travel time of
AUV to reach any destination in a spatial-temporal 3D
space (Fig.13). It optimized a justified fastest “arrival
criterion” to arrive at a predefined destination as fast as
possible, assuming that the AUV can then sustain its pos-
ition against sea currents until the required time is
elapsed so as to recover from execution uncertainty er-
rors. This method could detect dangerous destinations to
be avoided. Soulignac(!!2] proposed the “sliding wave front
expansion” scheme which optimizes a valid cost function.
It guaranteed the availability of an arbitrary precise path
in a 2D environment.
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Fig. 13  Dive profile for a simplified AUV motion[!11]
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2.2.15 Bio-inspired neuro-dynamic

A hierarchical 3D neural network (NN) framework in-
spired by biological neuro-dynamics is presented by Yan
et al.113] for the PP of an AUV. Each neuron in the NN
characterizes a distinct subspace in the workspace. The
mission to be accomplished acts as an “excitatory” input,
whereas hindrances to achieve the goal are treated as in-
hibitory inputs to the NN. The excitatory input globally
encourages an AUV to move through the NN to achieve
its goal, whereas inhibitory inputs locally prevent the col-
lisions. A “dynamic BINN” is recently proposed by Ni et
al.l4] for PP of AUV in a dynamic and large 3D environ-
ment, that deals with complex repetitive route comput-
ing problem when the obstacle dimension exceeds the
sensor detection range.
2.2.16 Coverage path planning

A “coverage path planning (CPP)” problem is aimed
at full coverage of the entire uncertain environment with
unknown obstacles. Longer paths to cover an area and
turnings are avoided as they may increase time for com-
pletion and introduce navigational errors. Employing mo-
bile AUVs for mine counter measures has been addressed
as a CPP problem by Morin et al.l!l5l The seabed has
been divided into a number of uniform square cells using
cellular decomposition methods. An AUV equipped with
sonar surveyed a fixed number of cells to locate mines.
The chances of detection vary as a function of seafloor
condition and distance. A path has been -calculated
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offline employing DP and “traveling salesman problem”
reduction. The resultant path guaranteed the optimum
coverage in every cell by reducing the total distance
covered and the total number of turns, but needed re-
peated visits to each cell. An algorithm that can provide
a complete coverage path with low computational cost,
has been developed by Bagnitckiiet al.[l16] This algorithm
can be applied for both offline PP and real time path cor-
rection, utilizing the knowledge of the water area bounds
and the distance between tracks. Zhu et al.[''7] proposed
the “glasius bio-inspired neural network (GBNN)” algor-
ithm to overcome drawbacks of BINN algorithms. The
GBNN is intended to provide complete CPP for an AUV
based on the previous position of the vehicle along with
dynamic activities of neurons. It does not include a learn-
ing phase, thus there is less computationally complexity.
2.2.17 Adaptive control law

Designing a controller for tracking of an AUV along a
required locus is difficult with poorly known and time-
varying dynamic parameters. An adaptive control al-
gorithm using 6 degree-of-freedom (DOF) is formulated
for AUV by Antonelli et al.ll18] This algorithm used qua-
ternions to represent attitude errors and thus avoids sin-
gularities representation that occurs with “Euler angle”
description of orientation. The results obtained are satis-
factory within the constraints of the “sonar sensory sys-
tem”. Liet al.l19 designed an adaptive robust controller
for ROVs with velocity limitations. “Barrier Lyapunov
function (BLF)” has been used in “Lyapunov synthesis”.
It has been verified that the BLF is bounded and the ve-
locity limitations are not violated. An adaptive controller
has been developed by Sahoo and Subudhill20] for AUV
PP algorithm for planning a desired trajectory and to
sustain parametric variations due to hydrodynamic ef-
fects.
2.2.18 Shell space decomposition

The “shell space decomposition (SSD)” scheme has
been proposed for AUVs dwelling in hostile and dynamic
environmental conditions in [121]. The search space is de-
composed into “shells”. Each of them has a “control
point” within their boundaries. These shells spread from
initial to end positions. The path is provided by the con-
trol points using “Splines”. The SSD scheme is combined
with a “quantum-behaved particle swarm optimization
(QPSO)” based path follower to generate an optimal
path in a dynamic obstacle rich underwater environment.
Mission planning and path planning support long range
operations of AUVs which results in improved levels of
autonomy!!22],

Algorithm 4. SSD pseudocodel4]

Initialize: Map, M

Ensure shell decomposition

for left-most point to right-most point define vertical
slice s do

if s is tangential to an obstacle then

add s to set of critical slices

end if

add all shells to graph as nodes

for all critical slices do

add edges in the graph connecting bordering shells

end for

end for
2.2.19 Imperialist competitive algorithm

An “imperialist competitive algorithm (ICA)” has
been introduced by Zeng et al.[123] for solving the optimal
PP problem for AUVs. ICA is a socio-politically inspired
global search algorithm, which represents the competi-
tion between “imperialist forces” and “opposing colonies”.
It can be employed as a control point coordinate optimiz-
ation algorithm for generating a “spline path”.
2.2.20 Reinforcement learning

Yu et al.l124] proposed a “reinforcement learning” mod-
el to address PP of AUV to cope with the effect of the
dynamic environment and actuator failure. The research
done by Sun et al.l'25] addresses “motion planning prob-
lem (MPP)” in a map-less underwater environment for an
underactuated AUV. The MPP is an “end-to-end” plan-
ning method and realized by taking inputs from sensors
to control “surge force and yaw moment” of the AUV.
This research work is based on “deep reinforcement learn-
ing (DRL)” that incorporate the “proximal policy optim-
ization (PPO)” for finding optimal paths. A “reward cur-
riculum learning” is employed for training that resolves
sparse reward problems and circumvents the effect of ob-
structing intermediate rewards during training.

3 Path planning of multiple AUVS

Path planning for multiple AUVs is commonly known
as cooperative path planning. Underwater cooperative
path planning is a challenging problem as the GPS sig-
nals are not available. With the development of ad-
vanced communication technologyl126, 1271 this area of re-
search has received remarkable attention in recent times.
Cooperative path planning control can be categorized as
“formation” and “flocking”[?5]. In the formation control,
the AUVs are moving in a team with fixed distances and
avoid collisions among themselves, while maintaining a
common average heading angle (Fig.14). Flocking con-
trol is said to be attained when a set of multiple AUVs
are directed to achieve a target (Fig.15). It can be
defined as formation control without distance restrictions
among AUVs. Different path planning methods used for
multiple AUVs are summarized in Fig.16 in the light of
predictable and unpredictable underwater environments.
The path planning algorithms for multiple AUVs are
summarized in Table 2.

3.1 Cooperative path planning in a pre-
dictable environment

Initial researches in cooperative path planning are
concerned with avoidance of collisions with obstacles and
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other AUVs while moving in a predictable environment.
A decentralized control design for regulating global func-
tions of cooperating AUVsl!28] have been presented by
Stilwell and Bishop. It determined the communication
strategies that are required to obtain a stable decentral-
ized control. Theoretically, it is verified that the depar-
ture of the actual formation of AUVs from the required
formation can be calculated by using a coordination sys-
tem based on differential geometry(!29 to compute the de-
sirable motion of each AUV that leads to no deformation.
3.1.1 Abstract plan

Turner and Briggs/!3% presented an approach for PP,
that relies upon estimations made by an “agent”. An ab-
stract plan has been prepared by the agent instantly,
based on the known achievable goals and natural bound-
aries. The agent can exploit the well-organized abstract
plan to incorporate a new goal into suitable steps. It
saves the expense of planning actions as planning can be
adjusted according to the dynamics of the environment.
3.1.2 Fuzzy logic

A heuristic search technique for AUVs has been de-
scribed by Lee et al.[131] to escape the collision. It em-
ploys “fuzzy relation products” to conduct PP of “intelli-
gent navigation system”. The “evaluation function
(EVF)” comprises of “local cost function (LCF)”, “avoid-
ance distance cost function (ADCF)” and “remainder dis-
tance cost function (RDCF)” (Fig.17). A higher priority
is assigned to the aspirant “successor node” having lower
“EVF return”, as EVF transforms the safety and optim-
ization cost of successor nodes into energy consumption.

[ evr ]
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Fig. 17 Framework of EVF[131]

A modified heuristic search method for PP of AUV to
avoid obstacles employing the “Bandler and Kohoutt's
product (BKP)” of fuzzy logic with a seven sectioned son-
ar has been proposed by Bui and Kim(!32l. This search de-
pends on the fuzzy relation between the sections of sonar
and the actual environment (Fig.18). Safe and optimized
paths to the target through the obstacle have been gener-
ated by this approach.

3.1.3 Time-coordinated path following (TC-PF)

A coordinated path-planning problem for a common
group of under-actuated AUVs[!33] has been solved using
“Lyapunov theory”. The proposed system is stable and is
able to deal with the problem of temporary communica-
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tion failures. The “time-coordinated path following (TC-
PF)” is a structure suggested to investigate the problem
in controlling multiple AUVsl134135] It enables cooperat-
ive path planning subjected to space, time, and energy re-
strictions. Parallel formation designing and synchroniza-
tion are constrained by two factors. The first factor is
layout of communication network and the second factor is
AUV dynamics.
3.1.4 Passivity approach

A framework, that represented a closed-loop system
comprising of an AUV dynamic block and a path plan-
ning system based on “passivity approach” as a feedback
element[136] has been proposed by Ihle et.al. Here each
block is designed to be passive (Fig.19). The dynamics
block deals with path variable synchronization. The pro-
posed framework achieved improved stability, robustness
and performance of the system.
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Fig. 19 Passivity controller for formation[136]

3.1.5 Evolutionary algorithm (EA)

Evolutionary algorithms can be described as “induct-
ive reasoning” procedures. In the EA, there is the select-
ive introduction of uncertainties at required steps to de-
velop a logic that copes with adversities of the environ-
ment. Fogel et al.137 proposed an evolutionary optimiza-
tion algorithm that avoids use of a complex genetic oper-
ator. This method has been applied to the operations
where multiple AUVs are employed to visit scattered loc-
ations in a predefined time. The AUV behavior has been
computed offline and described as a sequence of changes
in their paths of travel and velocities in a 2D environ-
ment.

Wu et al.l38] applied the GA subjected to non-linear
constraints to generate cost effective, safe paths for a
team of AUVs relying on the knowledge of the waypoints
and obstacles. The algorithm is segregated in three mod-
ules. The first module deals with allocating “waypoints”
to AUVs. The second module optimizes the path, thus re-
ducing the overall travel of the AUV. The chances of the
existence of stationary and/or moving collisions are
checked in the final route validation module. The applica-
tion of GA to the PP problem is shown in Fig. 20.
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Fig. 20 Genetic algorithm applied to the PP problem
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A hybrid three-layer module implemented through a
“global route planner (GRP)” using GA, a “local path
planner” using PSO and re-planner module has been pro-
posed by Mahmoud Zadeh et al.[139 This is a robust and
flexible method for assigning tasks, PP and avoiding colli-
sion among AUVs which are employed in long range mis-
sions.

3.1.6 Line of sight guidance law

Jung et al.'40 used “line of sight (LOS)” navigation
and proposed a methodology for PP of AUVs (Fig.21). It
assumed that AUVs track a LOS path as per required
formation motion. It was intended to address the dynam-
ics of shallow water effectively without missing targets.
The problem of cooperative path-planning (CPP) with
discrete communications has been addressed in [141],
where a group of surface vessels tracks a set of default
trajectories in space while maintaining inter-vehicle form-
ation in the time domain.
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Fig. 21 AUV controller using LOS algorithm[140]

3.1.7 Synchronized path planning control algorithm

Xiang et al.142 modeled a bi-layer synchronized path
planning controller for multiple AUVs. The individual
path planning controller forms the first layer and drives
the AUV converging to the paths, with a “helmsman-like
behavior” incorporated in heading reference design. The
second layer comprises a global controller for synchroniz-
ation through distributed speed adjustment. In this meth-
od, the required communication variables are minimized
and the knowledge of network layout is not required to be
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known by everyone. A mathematical framework to re-
duce time heading control for AUVs moving with con-
stant speed has been proposed in [143]. A front tracking
method has been discussed by Das et al.[144] for synchron-
ized motion of a set of AUVs along a required trajectory
in availing full communications (Fig.22). The global op-
tima have been identified in a dynamic ocean flow field
by the above-mentioned methods.
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Fig. 22 Formation control using SMC controller[144]

3.1.8 Lagrangian multipliers

A simple and physical interpretable methodology for
motion control of AUVs has been simulated as a con-
strained multi-AUV system in [145]. Then, “Lagrangian
mechanics” has been utilized to obtain the equation of
motion. To illustrate the approach, a path maneuvering
controller defined as a “virtually constrained motion”
controller has been modelled in order to drive the AUV
to converge to and follow a predetermined parameterized

locus (Fig.23).
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Fig. 23 Path planning controller virtually constrained
system[145]

3.1.9 Dead reckoning (DR) & long-baseline (LBL)
methods

The most common and established method for AUV
navigation is the dead reckoning. The mostly used sensors
in the DR are the interoceptive sensors like compass,
“doppler velocity log (DVL)”, and “inertial navigation
system (INS)” to predict the positions of AUV due to un-
availability of the GPS signals as radio waves cannot pen-
etrate very far in the sea.

A sub-water “long-baseline (LBL)” acoustic position-
ing system can be considered as an alternative that oper-
ated by deploying baseline transponders such as beacons
within a framework of the seabed. These beacons posi-
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tioned to surround the AUV's operational region and are
retrieved after accomplishment of the goal. If a surface
ship is available as a reference position, then “ultra-short
baseline (USBL)” or “short-baseline (SBL)” localization
can be employed to know the relative position of an AUV
with respect to the reference GPS location of the surface
ship. USBL has been designed by Matos et al.l146] com-
prises a “search-classify-map (SCM) vehicles” and a
“communication-navigation-aid (CNA) vehicles”. SCM is
used for oceanographic mapping with the help of low-cost
interoceptive sensors.

CNA employed DVL and INS to help in SCM's path
planning. The CNA has to surface frequently for GPS fix-
ation. The GPS location estimate of the surface ship has
been transmitted by it using an acoustic modem for every
communication. The receiver AUV uses this information
along with its own DR data to predict its location. It has
been verified experimentally that a system combining
LBL acoustic navigation data with Doppler navigation
datall4?l provides superior navigation precision and up-
date rates in comparison to individual LBL or Doppler
navigation alone (Fig.24). Stack et al.l48] proposed a PP
algorithm to revisit an already surveyed surface area us-
ing a three-phase planning algorithm. This algorithm is
computationally efficient and is helpful in removing false
alarms in mine countermeasures. Rigby et al.'49 impro-
vised the 3D location estimates for the AUV combining
information both from a DVL and an USBL system. Per-
formance of DR can be improved by using Doppler
sensors that sense the difference between the transmitted
and received signals to approximate the AUV's speed[!50]
based on the Doppler Effect. These sensors again suffer
from two measure limitations. In the first case, it is un-
able to calculate the velocity components due to the
oceanic currents leading to error in position estimation of
AUVs. Secondly a number of transducers directed at di-
versified angles are used that continuously transmit an
acoustic signal of a certain frequency towards the bottom
of the sea.

LBL navigation fix LBL/
12kHz | +/~03mat0.17 Hz LPF Doppler
LBL position

Heading, estimate
roll, pitch E 3
World
velocity m
2 | World

display

Doppler
sensor

HPF

Rotation

Beam velocity

Fig.24 LBL/ Doppler complementary filter navigation
system[147]

3.1.10 GPS intelligent buoy
A “GPS intelligent buoy (GIB)” may be classified as
an inverted LBL oceanic positioning devices, where the

transducers are installed on GPS-equipped son buoys(5!]



M. Panda et al. / A Comprehensive Review of Path Planning Algorithms for Autonomous Underwater Vehicles 335

(Fig.25). An alternative system consisting of four surface
buoys loaded with “differential GPS (DGPS)” receivers
and immersed hydrophones for calculating the location of
the immersed AUV has been discussed in [152]. The de-
merits of using GIBs lie in the difficulties in deploying
and retrieving, high cost, and inflexibility. It is also un-
suitable for longer range missions.
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VVVVVVVVVV
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Fig. 25 Illustration of GIB system[!51]

3.1.11 Cooperative localization algorithm

Paull et al.l!53] presented a cooperative path predic-
tion technique for a team of AUVs using cooperative loc-
alization (CL) algorithm, capable to favorably exploit the
underwater acoustic communication channels (Fig.26).
This is an efficient method as AUVs waste less time in
surfacing for GPS fixation and uncertainty is reduced
over the entire AUV trajectory. Simultaneous localiza-
tion and mapping are not possible with this method.
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Fig. 26  Acoustic communication of AUVs using TDMI153]

In this case, payload data are more accurate and local-
ized through the smoothing approach. LBL can also
provide path planning during descent but desired time-
consuming positioning of transponders. Due to the un-
availability of both GPS and DVL positioning in the mid-
water, column communication between the surface and
the seabed AUVs is very difficult. To avoid these prob-
lems, Medagoda. et al.[!54 proposed a positioning solution
in the mid-water column that takes advantage of the
nearly constant current profile layer velocities over short

time intervals.

3.2 Cooperative path planning in unpre-
dictable environments

It has been proved by a number of researchers that
the major issues of the cooperative path planning for mul-
tiple AUVs in the unpredictable underwater environment
can be decomposed in three phases. In the first phase, it
has been considered that the cooperative path planning
algorithm for multiple-AUVs are very hard to design us-
ing the existing methods due to the exponential increase
in computation time with increase in the number of
AUVs. Thus, new algorithms have to be designed to re-
duce computational complexity. Secondly, the calcula-
tion of cost in terms of time between two positions is
quite troublesome as the ocean flows are typically con-
tinuous and time-varying vector fields. Finally, an evalu-
ation function is required to approximate overall perform-
ance. Consequently, various methods and algorithms have
been developed by researchers for solving the above-men-
tioned problems. Here an attempt is made to review the
available literature in this field to the best of our know-
ledge.

3.2.1 Virtual bodies & artificial potentials

Fiorelli et al.l155] proposed a method for cooperative
path planning control of collective AUVs based on “virtu-
al bodies and artificial potentials (VBAP)” (Fig.27). This
is an adaptable formation control used for applications
like gradient climbing and feature tracking in a dynamic
environment. But unbounded error growth made this
method less efficient. A study of different applications,
capabilities, merits and demerits of using VBAP with
cross-layer design features to autonomously planning tra-
jectories in non-communicating AUVs has been presen-
ted by Barisic et al.[156]
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Internet Internet

Mission Hl Logging, post-
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processing
GDS server

IBM ThinkPad laptop
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AUV
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Fig. 27 Operational configuration & data flow diagram of
AOSN-II VBAP glider AUVI153]

3.2.2 Cooperative navigation using Kalman filtering

Research on cooperative navigation of “group un-
manned underwater vehicle (GUUV)” has been proved ef-
fective to resolve the path planning problem in long range

and deep-ocean. Zhang et al.l57 presented EKF as a cost-
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effective method for cooperative path planning. It can be
described in two forms that are parallel form & leader-fol-
lower form. In the first form, all of the UUVs are
equipped with the same sensors and played the same role.
They have been considered equal and able to get the in-
formation of any other UUV. In the second form, few
leader UUVs known as “master” equipped with high level
sensors and many fellow UUVs equipped with low-cost
sensors has been used. Fellow UUVs known as “slave”
update their positions based on the information from the
leader as shown in Fig.28. Lack of robustness of system
failures resulted in less efficiency for this proposed meth-
od. An optimal path planning strategy for the AUV to
eliminate sound velocity profile prediction uncertainty in
the water has been discussed by Sun et al.l138] The pro-
posed methodology is based on the MAP estimation
framework and one step Kalman filters. Allotta et al.[l5]
compared underwater path planning systems relying on
EKF and on “unscented Kalman filter (UKF)” for estim-
ating the AUV position. This method required on board
sensors, such as inertial, linear velocity, acoustic and
depth sensors. It offered a compromise between perform-
ance and computational complexity. A motion estima-
tion algorithm has also been proposed by the authors
based on the UKFI60, 161 The proposed filtering al-
gorithm is executed offline on the data acquired by the
two “typhoon AUVs”. A formation control algorithm
that mitigate larger initial estimation has been proposed
by Das et al.[162] It involved a nonlinear observer for com-
pensating the delay in the sensor signal transmission to
the controller because of packet dropout in an acoustic
medium without using “Jacobian matrices”.

Sea surface
Master Transponder Master
AUV AUV 2

Master
A 1

Transponder

Fig. 28 Moving LBL schemell57]

3.2.3 Cooperative motion control & k-means
method

The general issue of cooperative path planning with
the help of an explanatory mission scenario developed
jointly by the GREX partners(163 has been introduced by
Aguiar et al. The proposed method is computationally ef-
ficient, scalable and the bandwidth requirements of avail-
able AUV modems are satisfied. A k-means method has
been developed by Chowl!!64 to address the task alloca-
tion problem of multiple AUVs in the existence of a con-
stant oceanic current. The framework is a combination of
a “Dubin’s model”, an AUV dynamic model and a dy-

namic ocean current model. Bahr et al.[!65] used the same
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model for a fully mobile network of AUVs (Fig.29).
These AUVs execute acoustic ranging and share informa-
tion among them to achieve cooperative localization for
long duration operations over wide areas. The trajectory
selection is done by minimizing a cost function subjected
to constraints.

(b) USBL

Fig. 29 Beacon-based underwater localization techniques(16]

3.2.4 Cooperative localization algorithm

Papadopoulos et al.[166] suggested a real time al-
gorithm for cooperative positioning of immersed AUVs re-
inforced by an autonomous surface ship. Navigation has
been done by sharing location information and acoustic
range measurements. The unavailability of GPS signals is
compensated by using expensive navigation sensors to re-
duce the speed of dead-reckoning divergence. Binney et
al.[167] presented a path planning control for AUVs in or-
der to maximize the mutual information employing acous-
tic ranging and “side-scan sonar”. Near-optimal paths
have been generated while avoiding heavy traffics during
pre-assigned time intervals. Some temporal resolution has
been the tradeoff for achieving higher spatial resolution.

A “multiple Lyapunov function (MLF)” method has
been proposed in [168], to address the “cooperative out-
put regulation problem” for a group of “multi-agent sys-
tems (MASs)”.
3.2.5 Leader-follower structure

Zhang et al.189 proposed a high precision navigation
method using “leader-follower” frameworks in 2011. Each
AUV has been provided with navigation systems along
with acoustic devices to measure relative positions. The
navigation system of the leader is highly accurate in com-
parison to the follower navigation system. The position of
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the follower is calculated using triangulation geometry.
The complexity increased as a double acoustic measure-
ment method is used with “proprioceptive” and “extero-
ceptive” sensors to avoid fault error solution. Sahu et
al.[l70] developed an algorithm for multiple AUVs' naviga-
tion based on flocking control using leader-follower struc-
ture. The leader AUV supplied with the prior knowledge
of the intended path, but the follower AUVs don't have
this information. The flocking center has been calculated
using the consensus algorithm and known to all AUVs.
Bounded APFs have been used for development of the
controller. The leader-follower formation control of mul-
tiple “nonholonomic AUVs” has been described by Das et
al.l7l] Here, one of the AUVs is “leader” and the rest of
the AUVs are called the “followers”. The path planning
control strategies to attain the goal of AUVs are categor-
ized as “trajectory tracking”, “path planning” and “way-
point tracking” (172 (Fig. 30).

\
1
I
I
I
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Fig. 30 Leader- follower structure of AUVs[172]

3.2.6 Beacon vehicle range only localization methods

Several researchers acknowledged the use of a single-
beacon AUV loaded with highly accurate sensors for nav-
igation to send location information at crucial positions to
other AUVs in an unpredictable ocean environment. The
received information along with the range measurement
data leads to better position estimation(l™ with less er-
ror by the AUVs. An EKF has been implemented by Rui
and Chitrell7, to fuse the range information updates ob-
tained from beacon AUV with the navigational sensor
data on the survey AUV. Chitrell”] developed a path
planning algorithm for beacon AUV's operation that re-
duces the location estimation errors being collected by
other AUVs (Fig.31). In the stated method, optimal
maneuver determination for the beacon AUV received
little attention.

Fallon et al.[l76. 177 proposed that a beacon AUV could
play the role of CNA to move in zigzag path or circum-
scribe the AUV, resulting in a completely visible path in
2010. The proposed method is optimal, consistent and
computationally efficient, but the performance degraded
due to inefficient ranging techniques and infrequent mon-
itoring of sonar targets.

3.2.7 Markov decision process (MDP)
The beacon AUV's PP problem within the structure

Acoustic
ranging

Error estimate

Beacon AUV before ranging

Error estimate

Error estimate of after ranging

beacon AUV

Fig. 31 Error estimation using range measurements/[173

of “markov decision process (MDP)” has been presented
by Tan et al. using the cross-entropy method[!’8 and DP
method179. In this method, the beacon AUV has to be
positioned at the critical positions when the acoustic sig-
nal is transmitted. It avoids the use of LBL acoustic posi-
tioning systems. The supported AUV is allowed to stay
immersed for a longer duration with minor positional er-
ror. The adaptive path planning problem is implemented
as MDP and an online method based on “reinforcement
learning” is used to plan optimal paths for AUVs with
space restriction[180]. The “simultaneous localization and
mapping (SLAM)” problem has been modelled as a flex-
ible MDP in [181]. It can be employed for SLAM with dy-
namic environment.
3.2.8 Greedy approach

Bahr et al.[182 used the greedy approach to compute
optimal paths assuming that the client paths are un-
known and their positions have been estimated from an-
nounced oceanic broadcasts. The proposed approach loc-
ated a set of AUV clients, optimizing a single trace-based
target function. Greedy methods are fast in obtaining a
global optimum solution through a series of intermediate
local optimum solutions. But, sometimes global optimum
solution cannot be obtained due to inexhaustive data op-
erationl[!83],
3.2.9 Positioning using landmark AUV

Vehicles often misled by factors such as underwater
currents, positioning errors, etc. are unable to reach even
precisely located destinations. To overcome these prob-
lems, Matsuda et al.[84 185 proposed a positioning meth-
od for travelling AUVs that estimates their location
based on a stationary “landmark AUV” on the seabed by
conducting the sea experiments using two AUVs (Fig. 32).

Moving AUV

M oM M
'xf ’.)}l 2 l//I

Landmark
AUV
xt oyt wt

Fig. 32 The relative positioning principle. M and L stand for
“moving” and “landmark” respectively[185].
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The landmark role has been exchanged among AUVs so
that a larger space can be explored by them. AUVs ex-
change the position estimations by the moving AUV, us-
ing the data compression method. The stated strategy is
subjected to the effect of sensor noise in the state estima-
tion and Doppler drift.
3.2.10 Server-client cooperative localization

A server-client cooperative localization method has
been proposed where the information about the respect-
ive span of the mission is supplied by the “server AUV”
to reduce the uncertainty of a “client AUV”. The pro-
posed algorithm is intended to plan a feasible path for a
surface vessel that supplies span measurements!!86 to an
AUV. This approach assumes that the formal client mis-
sion plan is available. A potential server trajectory has
been drawn from a set of specified path classes.

Algorithm 5. Server-client cooperative localiza-
tion pseudocodel!86]

Require: A, n. /*Intial client distribution*/

Decide Mpest, Opest /*Optimal trajectory class and
parameters*®/

Tyest = 0, Moest = @, Opest = @

for M; €{My, -, M}

for 0 € domM; do

0" = argmaxol (P (M;,0))

If I (P(M;, 6)) > Itest then

Ibest = I(P(Mla 0*))

Mpyest =M;

ebestze*

end if

end for

end for

return Mpest, Opest
3.2.11 Neural-network algorithms

A neural network (NN) based approach has been pro-
posed by Zhu and Yangl!87 for a “multi robot system”. It
is applied for dynamic task assignment along with route
planning and synchronization of “multi-agent systems
(MASs)” with moving obstacles'88. A NN based path
planning control of under-actuated AUVs with restricted
torque input subjected to the noisy 3D environment has
been addressed by Shojaeil'89. Multilayer NNs in associ-
ation with a self-adaptive robust control method is used.
The stated method is able to cope with the actuator sat-
uration and model uncertainties (Fig.33), such as un-
known AUV dynamics, approximation errors, and noise
induced by waves and sea currents.

Actuator AUV model
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o
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—»|Controller|- £ A . . .
ontro erTN 7 7., 1| dynamics ;kamematlcs'
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________________

Fig. 33 AUV model with actuator saturation(189]

3.2.12 Fuzzy logic
A fuzzy path planner-based navigation method for
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multiple AUVs (Fig.34) subjected to varying oceanic cur-
rent has been introduced in [190]. The given method en-
abled examination of a wide unknown region with real-
time obstacle avoidance. This approach allowed a multi
AUV system to maintain a spatial formation[191.
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Fig. 34  Architecture for the swarm AUVI190]
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3.2.13 Ant colony optimization algorithm

A meta-heuristic “ant colony optimization” algorithm
has been implemented to solve the multiple AUVs co-
ordination problem by Li et al.l'2l An optimum solution
has been obtained to the collaborative task allocation
problem.
3.2.14 QPSO algorithm

Zeng et al.193 proposed a strategy that integrates an
optimized mass-center assembling point selection method
with an evolutionary route planner to generate paths for
a group of AUVs. The proposed path focused on minim-
um time expenditure over all candidate AUVs and the
simultaneous arrival of the AUVs at their selected assem-
bling point. Another path planner has been designed by
the same author that employed QPSO algorithm with a
cost function to optimize the overall traveling time con-
sidering the chronospatial current effects along with non-
symmetrical terrains and dynamic obstacles!94 (Fig. 35).
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Fig. 35 Multiple AUVs guidance system![194]
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3.2.15 Integrated velocity synthesis (VS) algorithm

An integrated algorithm of dynamic task assignment
and path planning control in a 3D oceanic environment
for multiple AUVs is formulated by Zhu et al.19] It in-
tegrates the modified “self-organizing map (SOM)”, NN
and a VS approach to guide a group of AUVs to cover all
selected destinations only once. The proposed method
successfully achieved workload balance and energy effi-
ciency with minimal total and individual consumption in
the face of the varying oceanic current. The structure of
SOM network is shown in Fig. 36.
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Fig. 36 Structure of the SOM network[19%]

A similar integrated algorithm has been proposed by
Huang et al.[1%] where each destination has to be visited
through the shortest route by a single AUV only assum-
ing varying current and destinations. An integrated co-
operative search algorithm in an unpredictable oceanic
environment subjected to varying currents has been pro-
posed by Cao et al.ll% The “biological inspired
neurodynamic model (BINM)” and VS methodology are
integrated to achieve the target. A similar algorithm by
integrating “potential field-based particle swarm optimiz-
ation (PPSO)” and VS algorithms (Fig.37)1%] has also
been suggested by the same authors. The proposed al-
gorithm is able to guide a set of AUVs to search a target
in 2D environment while monitoring every AUV's move-
ment that can offset the impact of oceanic currents.

PPSO Velocity Multi-AUV
synthesis

| Ocean current |

Fig. 37 Block diagram of multi-AUV target searching/1%]

3.2.16 Dynamic programming

Recently, a collaborative path planning method has
been presented by Liu et al.l19] for multiple-AUV in the
face of dynamic oceanic currents based on the DP. In the
proposed methodology, each AUV coordinated with the
AUV with the longest estimated time of travel. The time
consumed during the travel from one node to another has

w

been considered as the weight “w”. The objective func-
tion of the algorithm is defined as follows:

f(tig) = min {f (ti1) +w (tim1k, ig) } (1)

where f (t;,;) represents the minimum time of travel from
starting point to t;; node. The proposed method avoids
obstacles and enables the team of AUV to achieve the
target with a minimum time difference.

Algorithm 6. DE pseudocodel199]

for each ¢ do

for each j do

for each k do

if f(tij) > f(timik) +w (tim1k, tig)

then
f@ig) = f (o) +w(tiork, ti)
end if
end for
end for
end for
3.2.17 LAAF and GMOOP algorithms
The application of deterministic algorithms over a
stochastic algorithm for the PP and task assignment for a
multiple AUV system has been advocated in the literat-
ure due to its algorithmic completeness and predictabil-
ity. The algorithm outputs will remain similar, if the
traffic scenario is evaluated on a different AUV, as the
overall traffic configuration remains unchanged. Deng et
al.2%] solved the task assignment and PP problem for
multiple AUV system with minimal acoustic communica-
tions. A “location-aided task allocation framework
(LAAF)” algorithm for multi-target task allocation and a
“grid-based multi objective optimal programming
(GMOOP)” model has been developed for achieving an
optimum AUV command decision with state targets and
limitations (Fig.38).
3.2.18 RRT algorithms
Hernandez et al.[201] presented an online methodology
for planning collision-free paths for multiple AUVs. This
approach is composed of a leading AUV equipped with
“multibeam sonar” and highspeed processor and a cam-
era vehicle (CV). Paths have been planned using a modi-
fied RRT known as “transition-based RRT (T-RRT)” al-
gorithm. The cost function depended on “AUV's configur-
ation space”, or “cost map”. Cost map is a function of
seafloor distance and the path distance. An adaptive path
planning algorithm based on the “multidimensional
multi-input RRT star (MDMI-RRT star)” algorithm(202
has been proposed by Cui et al. It generates better qual-
ity future samples by maximizing the mutual informa-
tion between the scalar field model and observations but
involved communication costs.
Algorithm 7. T-RRT pseudocodel201]
Input: States @it and ggoa, cost function,
¢(q) = Cost (d(q))
Output: tree (1), contains the collision-free path.
begin
T + InitTree (qinit)
while not StopCondition (T, goal) do
Grand < SampleConf (C — space)
Gnear < NearestNeighbour (¢rand,T")
Gnew < Extend (T, grand,, near)
fGnew # NULL and TransitionTest (¢ (qnear) ,
¢ (Gnew) s dnnear—new) and MinExpandControl(T, ¢rand,,
Qnear) then
AddNewNode(T, Gnew,)
AddNewEdge(T, qnew,; qnear)
end
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4 Conclusions

This survey presents a qualitative analysis of the im-
pact of the marine environment on the path planning of
AUVs. The underwater environment is characterized as
predictable and unpredictable depending on path plan-
ning approximations. This paper summarizes the avail-
able path planning algorithms employed for single and
multiple AUVs with reference to predictable and unpre-
dictable behavioral models of the environment. The is-
sues involved in path planning of AUVs are discussed
briefly. The algorithms are compared considering the type
of the environment, type of the path generated, path cost
and collision avoidance features. Merits and demerits of
every method have been discussed briefly. Type of path

Architecture of GMOOP200]

generated by the methods are classified as time optimal
(time minimal solution), energy optimal (energy minimal
solution), sub-optimal (near optimal solution) and optim-
al (best possible solution). Path costs are compared as
low, moderate and high. Collision and obstacle avoidance
are discussed as achieved, limited and poor based on
whether the algorithm focused on these issues or not.
Based on this study, we can conclude that the issues of
unreliability have not been addressed much in the stud-
ied literature. Many assumptions are taken for AUV dy-
namics and operating environment, which are required to
be critically analyzed for stability in real world scenarios.
Thus, there is a need for formulating optimized al-
gorithms in the future that is computationally efficient
and rugged for real time applications of AUVs.

Table 1 Comparison of path planning algorithms for single AUV

'ijpc of Methods & algorithm Type of path COHISIOI’}/ObStaClC Path cost Analysis
environment generated avoidance
eProvides time optimized obstacle free path
Predictable Graph search and DRB%31]  Time optimal Achieved High eIgnores the energy and workspace limitations
eHigh computational cost
eGenerates time optimized obstacle free path
Predictable Sequential gua((irﬁaﬁtflc Time optimal Achieved Low elgnores th? energy COSt. anfi open nod?s . .
programming[32-35l] eComputation complexity increases with increase in
the number of “radiated edges”
. eGenerates energy cost optimized obstacle free path
Time and A
Predictable Graph-based shortest path ener Achieved Lo eRobust to local minima
algorithms[36-41] ey v W eComputation complexity is high and difficult to use
optimal L. . .
in high-dimensional problem
eFast method that can be applied to higher
Predictable APFI42-45] Time optimal Achieved Low dimensional problems

eVulnerable to local minima
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Table 1 (continued) Comparison of path planning algorithms for single AUV

Type of
environment

Methods & algorithm

Type of path Collision/Obstacle
avoidance

generated

Path cost

Analysis

Predictable

Predictable

Predictable

Predictable

Predictable

Predictable

Predictable

Unpredictable

Unpredictable

Unpredictable

Unpredictable

Unpredictable

Unpredictable

Unpredictable

Unpredictable

Unpredictable

Control vector
parameterization[46]

Galerkin's method[47]

Iterative learning controll48-

Symbolic wavefront
expansion(®1]

MDP planning[52]

Metaheuristic algorithmsl53-

MCDAP

Graphical method[60-66]

CBRI67 68]

FMI69, 70]

Potential field[7%, 72]

NTGI73,74]

Fuzzy logicl™-79]

Energy
optimal

Energy
optimal

50l Time optimal

Time optimal

Time optimal

58] Energy

optimal

Time optimal

Time and
energy
optimal

Time optimal

Time optimal

Time optimal

Time optimal

Time optimal

Evolutionary algorithms[®-89  Time optimal

Swarm optimization[90-93]

Dynamic MCDAI94, 93]

Time and
Energy
optimal

Energy
optimal

Achieved

Poor

Poor

Poor

Achieved

Poor

Poor

Poor

Poor

Poor

Poor

Poor

Achieved

Achieved

Achieved

Poor

Moderate

High

Moderate

Moderate

Moderate

Moderate

Low

Low

Low

Moderate

eEnergy optimal trajectories are obtained with
collision avoidance

eComputation cost increase with increasing number
of parameters

oThe final solution for a nonlinear optimal station-
keeping control problem of an AUV
eComputation complexity is high

eNear optimal path following control for AUVs both
in two- and three-dimensional environments
eComputation complexity is low

eNot suitable for slow moving AUVs

ePredicts the time optimized path and the leaving
time of an AUV

eComputation complexity is high

oOnly simulation analysis is available

eProvides safe and reliable path for slow moving
AUVs in the coastline
eComputational complexity is high

eScarches the solution from a large solution space
eRequires effective memory management

eProvides time optimized path
eComputational complexity is high

eTime optimized, safe paths with less energy cost
eComputation complexity is low

eContinuous cost updations applied to minimize
expansions of state and the computational costs
eField D* assumes constant AUV thrust that neglects
the effect of sea currents

eFor A* the spatial structure of the current field
plays a major role

eGenerates shorter and reliable path
oOnly simulation analysis is available

eLow computational complexity
eConverges to a time optimal trajectory on a discrete
grid

e Achieved obstacle avoidance and generates time
optimized path
eSusceptible to local minima

eProvides time optimized path considering the effect
of both the AUV characteristics and the dynamic
ocean current

eHigh computation complexity

eDepends on spatial structure of the current field

eIntelligent system that achieves collision avoidance
eDeals with inaccuracy and uncertainty with low
computational cost

eSomehow depends on type of AUVs involved

eMinimizes the time expanses

eSearches the solution from a large solution space
oGA requires effective memory management

oDE provides time optimized path in the corridor
area but untimely collisions in obstruct evaluation of
some good paths

e The cost of computation is high

eEnergy optimal paths are obtained by exploiting
ocean currents

e Less susceptible to “large local minima” when the
“cost surface” is complex

eComputational complexity increases for higher
dimensional problems

eMinimize the AUV PP solution space and maximize
“time-on station” in hostile environments
e®Requires more time for computation
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Table 1 (continued) Comparison of path planning algorithms for single AUV

Type of path Collision/Obstacle
generated avoidance

Type of

R Methods & algorithm
environment

Path cost Analysis

eFlexible and can successfully handle constraints like

intervehicle communication and synchronization,
Unpredictable MILP96] Time optimal Achieved High collision avoidance, etc.

eSuffers from an exponential increase in

computational time in large solution space

eProvides a balance between time and space
parameters of marine sampling

eCan be applied to any “sequential sampling”
schemes with any degree of available feature
information

eComputational complexity is high

Unpredictable Iterative optimization®”-98)  Time optimal Poor Low

eTime optimized trajectory with fast convergence
Unpredictable Hybrid algorithms[99-104] Time optimal Poor Moderatespeed and less computational cost
e®The search space is restricted

eRapidly provides some good obstacle free paths
eLow computational complexity

eSimulation results are obtained only for 2D
environments

Unpredictable RRTI105-109] Time optimal Achieved Low

eDetects the dangerous destinations that have to be
Unpredictable Wave front expansion(!10:111]  Time optimal Poor Low avoided with low computational cost
oOnly simulation results are available

eDeals with complex repetitive route computing

Bio-inspired neuro problem when the obstacle dimension exceeds the

Unpredictable . o112, 113 Time optimal Achieved Low sensor's detection range
dynamics[112, 113] ) . .
eHigh computational time
eLonger PP time
eProvides a complete coverage path with low
tati 1 t
Unpredictable CPPI(114-116] Time optimal Achieved Low Cornputationalcos

eRequires knowledge of the water area bounds and
the distance between tracks

eProvides a path planning controller with poorly

known and time-varying dynamic parameters
Unpredictable Adaptive control law[!17:119]  Time optimal Poor Low eTheresults obtained are satisfactory within the

constraints of the “sonar sensory system”

eHigh computational cost

eGenerate optimal path in dynamic and hostile
environment with low computational cost
eSupports long range operations

oOnly simulation results available

Unpredictable SSDI120, 121] Time optimal Achieved Moderate

eProvides a control point coordinate optimization
Unpredictable ICAN22 Time optimal Poor Low algorithm for generating a “spline path”
eComputational complexity is high

eSolves MPP and can be easily extended for
application involving unknown environments
Unpredictable Reinforcement learningl!23:124]  Time optimal Achieved Moderate ® Able to cope with effect of sea current
eSuccessful in avoiding obstacle
eComputational complexity is high

Table 2 Comparison of path planning algorithms for multiple AUV

Type of Methods & algorithm Type of path COHISIOI?/ObStaCIQ Path cost Merits & demerits analysis
environment generated avoidance
ePlanning can be adjusted according to the dynamics of
th i t.
Predictable Abstract plan(129] Time optimal Poor Low ¢ environment
eLow computation cost
oOnly simulation results are obtained
eGenerates safe and optimized path to the target through
Predictable Fuzzy logicll30, 131] Time optimal Achieved High the obstacle

eSearch depends on the fuzzy relation between the
sections of sonar and the actual environment

eEnables cooperatively path planning subjected to space,
time, and energy restrictions

Predictable TC-PF[132-134] Time optimal Poor Low  eConstrained by the layout of communications network
among AUVs and AUV dynamics
eHigh computation cost involved
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Table 2 (continued) Comparison of path planning algorithms for multiple AUV

'I.‘ype of Methods & algorithm Type of path COthIOI.l/ObStaCle Path cost Merits & demerits analysis
environment generated avoidance
eImproves stability, robustness and performance of the
tem
; v [135] T ; sys
Predictable Passivity approach!!3®] Time optimal Poor Low eLow computation cost
eEach block is designed to be passive
Evolutionar eGenerates cost effective, safe paths for a team of AUVs
Predictable N 1367};38 Time optimal Achieved Low relying on the knowledge of the waypoints and obstacles
algorithmsl ] . . .
eProcessing time is more
o Address the dynamics of shallow water effectively
i [139, i issi i intaining i i
Predictable LOS Gmdl;;;lce law Time optimal Poor High Wlthou.t missing targets while maintaining inter vehicular
] formation
oOnly simulation results are obtained
e®The required communication variables are minimized
Predictable Syn.chromzed pjf};u Time optimal Poor Moderate and the knowledge of network layout is not necessary to
planning controll 3] be known by everyone
eComputational complexity is high
eSimple and physical interpretable methodology for
Laeransian motion control
Predictable grang Time optimal Poor Low eLow computation cost
multipliers(l44] . . .
eLagrange multipliers are subjected to complimentary
constraint problems
eProvides superior navigation precision and update rates
Predictable DR & LBLI145-149] Time optimal Limited High  eComputationally efficient
eEfficiency depends on the accuracy of sensor data
eEffective real time submerged target positioning system
Predictable GIB systeml150, 151] Time optimal Poor High .OIt is f:llfflcult to deploy and retrieve buoy, costly and
inflexible method
eUnsuitable for longer range missions
o AUVs waste less time in surfacing for GPS fixation. And
Predictable CL[152,153] Time optimal Limited Moderate uncertainty is reduc?d over the entire .AUV trajectory
eSimultaneous localization and mapping are not possible
eHigh computation cost
eEffective for gradient climbing and feature tracking in a
dynamic environment
i [154,155) i i
Unpredictable VBAP Time optimal Poor Moderate eUnbounded error growth makes it less efficient with high
computational cost
o Cost-effective method for cooperative path planning
Unpredictable Kalman filtering[1?6-161] Time optimal Poor Low  eLess robust to system failure
eDepends on on-board sensor data
e Addresses task allocation problem of multiple AUVs in
the existence of a constant ocean current
. o 16 . . . Computationally efficient, scalable and satisfies the
K- s method[162-164] ® )
Unpredictable K-means metho Time optimal Poor High bandwidth requirement of available modem
eSupports long range missions
eCommunication expanses are high
c " eProvides near optimal paths while avoiding heavy
Unpredictable ooperavve Suboptimal Poor High  traffics during pre-assigned time intervals
localizationl[165, 166] . . L
eRequires expensive navigation sensors
Leader follower eoHigh precision navigation methods
Unpredictable 167-170] Time optimal Poor Moderate #Complexity increased as a double acoustic measurement
structurel |
method
Beacon vehicle range eOptimal, consistent and computationally efficient
Unpredictable s 7g - Suboptimal Poor Moderate ePerformance degraded due to inefficient ranging
only localization[171-175] . R oo
techniques and infrequent monitoring of sonar targets
‘ Beacon AUV with . . eBeacon AUV hfa»s t.o be p051t101{ed at the critical positions
Unpredictable n Time optimal Poor Moderate when the acoustic signal transmitted
MDPI[176-178] . . i .
e Avoids the use of LBL acoustic positioning systems
eoThe survey vehicles’ trajectory information is not needed
Unpredictable Greedy approach(17:180] Time optimal Poor Moderate a priori
eIndependent of the group size of the participating vehicle
e A larger space can be explored
Unpredictable Landmark AUV8L182] Time optimal Poor High  eSubjected to the effect of sensor noise in the state

estimation and Doppler drift
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Table 2 (continued) Comparison of path planning algorithms for multiple AUV

Type of
environment

Methods & algorithm

generated avoidance

Type of path  Collision/Obstacle

Path cost

Merits & demerits analysis

Unpredictable

Unpredictable

Unpredictable

Unpredictable

Unpredictable

Unpredictable

Unpredictable

Unpredictable LAAF and GMOOP[!97 Time optimal

Unpredictable

Server-client CLI!83]  Time optimal Poor

NN [184-186] Suboptimal Achieved

Fuzzy logicl!87, 188] Optimal Poor

ACOL8] Optimal Poor

QPSO[190, 191] Time optimal Achieved

Integrated VS[192-195] Optimal Poor

Dynamic

programming(196 Achieved

Time optimal

Poor

RRTI198,199] Time optimal Achieved

High

High

ePlan a feasible path for a surface vessel that supplies
span measurements

eRequires the knowledge of the formal client mission plan
and potential server trajectory

e Able to cope with the actuator saturation and model
uncertainties
eHigh computational complexity

eEnabled examination of a wide unknown region with
real-time obstacle avoidance

Moderate

eDeals with inaccuracy and uncertainty
eSomehow depends on type of AUVs involved

eSolves multiple AUVs coordination problem for
collaborative task allocation

Low cost

Moderate

eComputational cost increases with the increase in
problem scale

oOptimize the overall traveling time considering the
chronospatial current effects along with nonsymmetrical
terrains and dynamic obstacles

eHigh computational cost

eSuccessfully achieved workload balance and energy

Moderate efficiency

High

High

High

eHigh computational complexities

e Avoids obstacles and enable the team of AUV to achieve
the target with a minimum time difference

eRequires effective memory management

eHigh computation cost involves

eCan solve task allocation problem of multiple AUVs
avail with minimal acoustic communications
eDeterministic in nature

eRequires more computation time and cost

eGenerates better quality samples
eHigh computational cost
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