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Abstract: This paper investigates the stabilisation problem and consider transient optimisation for a class of the multi-input-multi-
output (MIMO) semi-linear stochastic systems. A control algorithm is presented via an m-block backstepping controller design where
the closed-loop system has been stabilized in a probabilistic sense and the transient performance is optimisable by optimised by search-
ing the design parameters under the given criterion. In particular, the transient randomness and the probabilistic decoupling will be in-
vestigated as case studies. Note that the presented control algorithm can be potentially extended as a framework based on the various
performance criteria. To evaluate the effectiveness of this proposed control framework, a numerical example is given with simulation res-
ults. In summary, the key contributions of this paper are stated as follows: 1) one block backstepping-based output feedback control
design is developed to stabilize the dynamic MIMO semi-linear stochastic systems using a linear estimator; 2) the randomness and prob-
abilistic couplings of the system outputs have been minimized based on the optimisation of the design parameters of the controller; 3) a

control framework with transient performance enhancement of multi-variable semi-linear stochastic systems has been discussed.
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1 Introduction

Since backstepping was first presented in 199501, it
has been developed as an ideal approach to cover the
non-linearities of dynamic systems. Naturally, the back-
stepping design can also be adopted for stochastic sys-
tems where the system can be represented using the It6
process. In particular, Liu et al.l? investigated the decent-
ralized control method for single-input-single-output
(SISO) stochastic systems. Wang et al.l’] developed an
adaptive quantized controller via the backstepping and
small-gain approach. Moreover, the unknown dead-zone
and unmodelled dynamics have been considered using
adaptive neural network output feedback design. Xie and
Duanl® presented a backstepping design for high-order
stochastic non-linear systems while the time-varying sys-
tems were investigated(l. In addition, incremental stabil-
ity has been used(”) for backstepping design, and even the
stochastic system in non-strict feedback formats have
been designed based on backstepping approachl®, etc. No-
tice that almost all the mentioned methods focused on
the single system output.
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Motivated by the block backstepping design which
was introduced by Changl®¥ and Cheng et al.ll0, the
multi-variable stochastic systems can be investigated. In
particular, Zhang et al.llll presented a block backstep-
ping design for bilinear stochastic systems. However, the
transient performance was only optimised in the second
moment sense using covariance. As a typical problem of
multi-variable systems, the couplings between the system
outputs will strongly affect the system performancell2],
therefore the decoupling design would be a key compon-
ent for multi-variable system control. For stochastic sys-
tems, the probabilistic decouplingl!3] was firstly presen-
ted in 2015 while the joint probability density function
and mutual information¥ were used to deal with the
randomness of the investigated systems. Notice that the
probabilistic decoupling characterises the full properties
of the random variable which means that it contains
more information than controlling the covariance only[15].
Probabilistic decoupling has been used for neural system
modelling where the neural interactions among the axons
have been described by the coupling factors from the
view of the probabilistic sensell6: 17],

On the other hand, the randommness attenuation
should also be considered as a part of the transient per-
formance even though the stochastic system can be sta-
bilized with probability one. Various design approaches
can achieve differing performance due to the effects of the
random noise and the nonlinearities. For a Gaussian dis-
tribution, the variance control is widely used[!s. Note
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that the probability density function of the system out-
puts will not obey the Gaussian distribution even if the
system outputs are described by the It stochastic differ-
ential equation. The system output statistical properties
cannot be adequately reflected sufficiently if only the
variance and covariance are adopted. To characterise the
randomness of the non-Gaussian variables, the concept of
the entropy has been introduced into the stochastic con-
trol system in 2002 by Wang and Yuell8 19, As an optim-
isation problem, the randomness can be attenuated if the
minimum entropy of the system outputs has been
achieved. Therefore, the transient performance of the sys-
tem outputs can be enhanced via minimising the entropy.
In practice, entropy optimisation is widely used for net-
work systemsl20: 21 filter design?2 23 and fault
diagnosis[24: 25],

Since the semi-linear stochastic systems became a sig-
nificant research topic affecting many aspects of the ap-
plications?0l, Zhang et al.27l presented the output feed-
back stabilisation algorithm for semi-linear stochastic sys-
tems with randomness attenuation. Following the discus-
sion above, this paper considers the semi-linear stochast-
ic systems with a transient performance enhancement
problem, including output transient randomness attenu-
ation and the output decoupling in a probabilistic sense.
Thus, this extension can be considered as a framework
where the main challenges are the Itd correction term and
probability decoupling. Basically, there is no existing res-
ult for probabilistic decoupling design for semi-linear
stochastic systems.

In particular, output feedback stabilisation can be
achieved by block backstepping with design parameters.
In particular, the states of the system can be estimated
using the full-state observer design while the new strict
format can be delivered considering the estimation error
as extended system states. Based on the new system de-
scription, the backstepping design can be achieved. No-
tice that the free parameters in the backstepping design
can be further optimised for various performance object-
ives. In this paper, entropy and mutual information have
been used as the performance criteria where the output
randomness can be expressed by system outputs’ entropy
and the minimum of the mutual information can be con-
sidered as increasing the independence of the system out-
puts. Basically, the analytical solutions for probability
density functions, entropy and mutual information are
very difficult to obtain, the estimation approach can be
taken into account using the sampling data. Particularly,
we can take the sampling operation for the transient re-
sponse, then the kernel density estimation (KDE)2 can
be adopted using the Gaussian kernels and the collected
data. Following this approach, the probability density
function of the system outputs can be approximated by a
sliding window. Once the probability density function is
obtained, the entropy and mutual information can be cal-
culated simply. To simplify the estimation, the entropy

@ Springer

and mutual information can be transformed using inform-
ation potentials of the system variables. Similarly, the in-
formation potentials can also be approximated using the
sampling data via kernel density estimation (KDE). All
the discussions show that the presented framework is im-
plementable in practice since the data-based performance
optimisation is widely used in control applications such as
the wind turbinel29 301 internet of things (IoT)Bl, robot-
environment interactionl32], teleoperated robots[33l, etc.

To illustrate the structure of this paper, its contents
have been organised as follows: In Section 2, the prelimin-
aries have been indicated including the investigated sys-
tem model, control objective, the concept of stability in a
probabilistic sense, kernel density estimation, entropy and
information potentials, etc. Based on m-block backstep-
ping design, the observer-based output feedback control-
ler has been proposed in Section 3 which consists of a lin-
ear estimator, block backstepping and probabilistic stabil-
ity analysis. After that the parametric optimization and
controller design procedure are given in Section 4 where
the randomness attenuation and probabilistic decoupling
are achieved by searching optimal parameters. In order to
validate the advantages of the presented control al-
gorithm, simulation results are demonstrated in Section 5.
In the end, the paper is summarised and concludes in
Section 6.

2 Preliminaries
2.1 Problem description

Consider the following the multi-input-multi-output
(MIMO) semi-linear stochastic systems in m blocks strict
feedback format, the formulation of the model is shown
below:

dz; = (AiZi + Tip1) A+ G1(T1)dBe, i=1,--- ,m—1
dZm = (AmZm + @) dt + G, (T1) dBs
Y=o

(1)

where 8; € R® is the Wiener process, Z; € R" is the state
for i-th block, A; denotes the appropriate dimensional
coefficient matrices, G; : R" — R™ are general non-linear
functions. § and @ stand for the system output and the
control input, respectively. Denoting ) as the sample
space of continuous functions, F as a filtration adapted
to the Wiener process [, and P as the reference
probability measure on 2, then the triple (2, F,P) is
used to describe the underlying probability space.

Due to the fact that the investigated block-based sys-
tem is described in strict-feedback form, the system out-
puts and the control inputs are of the equal dimension.
As introduced in Section 1, the control objective is to sta-
bilize the investigated stochastic system in a probabilist-
ic sense while enhancing the transient performance of the
stochastic outputs. To analyse the stability of the system,
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suppose that the following assumption is satisfied for the
non-linear function G; (+).

Assumption 1. There exists a positive real constant
0;, such that the non-linear function G (-) for i-th block
of the investigated semi-linear stochastic system (1)
meets the following condition:

1Gs (X, < oi (2)

where ||-||, stands for the matrix Euclidean norm.

Remark 1. Notice that we don't impose restriction
that the G; (0) =0 which means that the outputs of the
stochastic system are bounded in a probabilistic sense
only using Assumption 1.

2.2 Stability in a probabilistic sense
Consider the following stochastic non-linear system:
dzr=p(x)dt+ q(x)dv (3)

where x € R" denotes the system state, v € R" denotes
an independent standard Wiener process, the underlying
probability space is the triple (92, F, P), and p: R* — R"
and ¢ : R™ — R™*" are locally Lipschitzian and with the
following initial values

p(0) =0, ¢(0) =0. (4)

Definition 1.B34 The solution process {x (t),t > 0} of
the stochastic system (3) is said to be bounded in probab-
ility if tli)nolo O<sup P{lz(t)| >c} =0.

Definition 2.0l For any given V (z) € C"2, associ-
ated with the stochastic differential equation (3), the dif-
ferential operator £ can be defined as

v =P p)+ v {qT ()5 <x>} -6

Moreover, recalling the lemmal? below for the suffi-
cient conditions of boundedness in the probabilistic sense.

Lemma 12, Consider system (3) and suppose that
there exists a positive-define and radially unbounded
function V (x) € C*?, u1(-), p2 (-) € Koo, positive-define
and radially unbounded function W (z) and constant
4 > 0 such that

w (z]) SV (z) Spz (Jz)) LV () < =W (z) +5  (6)

then, the solution process of the system (3) is bounded in
the probabilistic sense.

2.3 Entropy and kernel density estimation
The information theoryB®l has been introduced, where

entropy can be used as a measure of the uncertainty of
the random variables. For various purposes, a lot of dif-

ferent definitions of the entropy have been presented such
as Shannon entropy, Rényi's entropy and Hartley en-
tropy, etc. Without loss of the generality, the quadratic
Rényi's entropyl30l has been adopted in this paper.

Ha(y) = —log / ¥ ()dy (7)

where v (-) denotes the joint probability density functions
(JPDF) of the system outputs while multidimensional
kernel density estimation (MKDE)(8 can be used to
approximate the JPDF of the random variables based on
the collected sampling data. Notice that entropy of the
Gaussian random variable is equal to its variancel37.

For system outputs y € R", denoting its sampling
data as {gx : k=1, ---, N}, the probability density func-
tion of the system output y can be obtained approxim-
ately as follows:

5@) = DG (- 0) (®)
k=1

where Gy (-) is the Gaussian function with the pre-
specified covariance matrix Y. Particularly, it has been
defined as follows:

Gs (z) = (27r)_g(det Z)_% exp (—%xTE_lx) . (9

Since the JPDF can be approximated vis data-based
MKDE, (7) can be further rewritten as follows:

Hs (y) = —logV (y) (10)

where V (-) is information potential®5. Furthermore, it
can also be estimated using the sampling data as

V@) =55 O Gas @i~ ) (1)

i,j=1

2.4 Decoupling in probability sense

For a MIMO dynamic stochastic system, the coup-
lings among the system outputs are investigated by de-
coupling control based on the deterministic system model,
however the analysis cannot reflect the full information of
the randomness of the system output. Motivated by this
shortcoming, the probabilistic decoupling has been
presented in 2015[3l. In particular, the system outputs
can be considered as stochastic processes in terms of time
while the couplings can be represented by the independ-
ence of the random processes.

Using the probability density function (PDF) and
joint probability density function (JPDF), the following
definition is obtained.

Definition 3. For a multivariate dynamic stochastic
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system with n-dimensional system output, there exists a
positive real stochastic coupling coefficient

n

vJ (y7 t) - H’Y (y”t)

i=1

Csc (y,t) = (12)

to describe the probabilistic couplings of the system
outputs where v (y,t) denotes the JPDF of the multi-
dimensional system output y. Moreover, the outputs of
the multivariate stochastic

dynamic systems are

decoupled in the probabilistic sense if
7:liIn P{Csc (y7 t) > 5} =0 (13)
—00

for any small positive real constant € > 0.

Based on this definition, a weak solution can also be
defined by

Definition 4. A MIMO stochastic system with n-di-
mensional output is said to be decoupled in probability
sense, if for any positive real constant ¢ > 0 there exists a
positve real constant § such that the system output y;
satisfy the following condition when &k > 4.

n

v () =[] (@i, t)

i=1

<e (14)

where ||-|| denotes the norm of the functions.
From the view of optimisation, the definition can be
transformed as a cost function directly as follows:

n

vo (o t) = [ wirt)

=1

min

| (15)

In other words, the coupling attenuation can be
achieved if the mentioned optimisation can be implemen-
ted while the performance of the system has been en-
hanced from the view of the system output randomness.
Notice that the probabilistic decoupling is an extension of
the traditional decoupling design, thus the benefits of the
traditional decoupling design can be naturally inherited
to the decoupling in the probabilistic sense.

3 Output feedback stabilisation
3.1 Linear estimator

To achieve the ouput feedback, at first, the linear es-
timator can be designed as
di’l = (Az‘%z+:%z+1+L1 (g*‘%1))dt, 7= 1, ,mfl

dZm = (AmZm + U+ L (§ — 21)) dt
(16)

where L; is the gain of estimator.
Defining the estimation error as Z = Z — Z which res-
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ults in
A —L, I G1(9)
G2 (y)
G| L2 A Fdt+ dg: =
: 1
_L'm 0 Am Gm (g)
AoZdt 4+ Go () dp:. (17)

Based upon the linear observer design method, Ap
should be adjusted to be Hurwitz, thus the investigated
semi-linear stochastic system model with linear estimator
can be re-written as follows:

dzy = (A1Z1 + T2 + Z2) dt + G1 (§) dBe

dz; = (Fi 4 @ig1)dt, i =2,--- ,m—1

A%, = (Fy, + 1) dt

y=11 (18)

where F; = A;%; + L; (Q—fl) and i =2,--- ,m.

Remark 2. To estimate the states of the system, ex-
isting observation methods can be used such as high-gain
observer8] which results in the extensions from various
complex system descriptions.

3.2 Block backstepping controller

Notice that the semi-linear stochastic system with es-
timator is still in the strict-feedback format, block back-
stepping design can be used for stochastic system stabiliz-
ation.

For i-th block of the investigated system (1), denote
@i (g, &;) as the virtual input. In particular, it can be re-
expressed with elements as

@i (9, %) = [ (§,24) -+, pin (,30)]" (19)

where Z; = [thi’z,"' ,i%z} andi=1,---,m — 1.
In particular, the following equation can be obtained

for the first step following It6’s lemma, (22).
dz = d22 —d¢gr (§) =
(Fz — @1 (M@ + T2+ 22) — %Hl + 573) _
&Gy () dpe (20)

where

Oy = [Vyeu (), , Vyorn @)
Tr{G1 (%) (Hzp11 (21)) G1 (1)}
m = | (21)

Tr {GT () (Haprn (21)) Gi (1)}
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Based upon the equation above, the virtual input for
the next step can be obtained recursively and the error
variables can be formulated as follows:

>

— @i (7, %) (22)

where

Il
3
|

_ T
Zi:[zih'" 7zin] , 2

Based on It6's lemma, we have

2 A 1
dz; = [(FiJrl + ii+2) - & (Fl + 3‘32) — 51’[1_

> o (F+ ml)] dt — ®,G1 () dB: =
=2

(E- + Zit ) dt — ©1G1 (y) dB: (23)

while

@ = [Vi,00 (4, 81), -+, Vs, @in (@ a)]"

i
- Z‘PZ (Fi+ Zi41).

= (24)

- d (Fl +§2) — %Hl

S = it

To stabilize the closed-loop stochastic system, a Lya-
punov function candidate has been considered for back-
stepping design.

Ui+ g(i‘TP:E) +3 z (25)

k=1 i=1 [=1

V:

N =

where P stands for the positive definite matrix and
ATP + PAy <0.

Using the property of £V and the presented Lyapun-
ov function candidate, we have

LV =g" (A1g+ 22+ 32) + Tr{G1 )G1 (Y }+
m—1 _ ) 3 ) o
i (Si + Biv2) +5T7 {Fithl (@) (21G1(9)) } +
=1
2T {GO () (2P5;§:TP+a: PmP) Go (7 }—
bi' Pz||z|?
(26)
where
m= ek, 2]
I'; = diag (21-21, . ,zfn) . (27)

Moreover, a useful lemma is given here to deal with

the trace terms of LV .

Lemma 2. Considering the square matrices
A1, Ay, B € R"™" are of n-dimension and D € R"*" is a
A = [C_llh .
Az = [G21, - ,d2n] and D = diag {dy, -
Tr{DA;BAy} is bounded.

— T
) al"] ’

,dn}, such that,

diagonal matrix, in particular,

Tr{DA1BA2} <) ||d;| llaws]| llaz:]| || B] - (28)

=1

Proof. Using the structure of the matrices which has

been mentioned above, we can have

Tr{DA1BAs} =
[ dy 1T an

Tr B[am CLQn] =
L dn | L ain
[ d1 1 [ annBaaa a1 Bazn

T'f’ . . =
L dn | | a1nBa2: a1nBaoy

M:z

d alzBan >

@
Il
-

Ms

||d axi Baz;l|.

i

(29)

Using the norm operation, the following inequality can
be obtained

> lldiarsBagi|| <Y llds| llawsl| [lazi | B (30)
i=1 i=1
which completes the proof. O

Using Lemma 2 repeatedly, the following inequalities
can be obtained to simplify the trace terms in (26) based
upon Young's inequality.

Firstly,

Tr {F<1>1G1 @) 6T () @f} <
Z St
Z et
2
Z oot
2

Vool )] IVs0n @16 @)1L]|6 @), <

29011 y H +Z 2 2 ”Gl ”2 -

19017, Z1 H +Z 2 01

Next, the following inequalities are also obtained.
rr{ct @G @)} <nlG @I =nof  (32)
and
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27 { G5 (9) (2P32" P + 3" PiP) Go (7)) =

4bHGO ) P7 H +2b5&TP§:TT{PG0(?J)GoT(?3)}§
wvs||63 @) 1P| eI+

20||7r { PGo (5) GF (@) } | 1] 131

(51 +62> 171 + 8b2 SHGO )H4HPH4+
(f |63 (.«7>H2>

~2 ~2
(B2 al +

where &1, &2, £1; stand for specified real positive numbers

(33)

and ||-|| » denotes the Frobenius norm.
Moreover, as ¢ > 0, we have

2
_ 8b? 4. 2
o= 22t o] 1o+ 0P (S o)
(34)
and
—bz" Pi||z||* < —bAmin {P} 7" (35)

Substituting (23)—(26) to £V, (26) can be rewritten as
a result. Particularly, the following inequality can be fur-
ther given to illustrate the property of the controller for
system stabilization.

m—1

LV < ?j (A1y+$2+£2)+ nUl—i—Zm _1—|—x1+2)+

i=1

z@h 1” +Z22 >_

BAunin {13} Iz + (%) &t +e=

g" (Alﬂ + &2+ 3232) +
m—1

Z ni (i + Zig1 + @it1 (Y, Big1))+
1=2

2
%ZHHV:W% @)HZ
m |21+ 22+ @2 (ﬂ,‘%z)ﬁ- +

LmnHszoln @)

25 kot e (v {2} - T2 ) o)

(36)

Motivated by Lemma 1, the virtual inputs and con-
trol input can be designed as follows:
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@1(9) = (W — A1)§ — 22

©2 (g,i'Q) =-E1—-2—-A-Ciz1
@i+1 (7, $z+1) = -5 —Ziy1 — CiZ
U= 5077”« ( ) Emfl —Zm — Um—1Zm-1 (37)

where W is a positive definite matrix.

5%1 2
quHVzSOu( )”

A=
% T 2
C; = diag [Cil, cee ,Cin] , Cij > 0. (38)

Furthermore, LV can be re-expressed as

m—1 n

LV =—g"Wy—pllz|* = > > cazi+e (39)
i=1 1=1
while
~2 ~2 n
~ €1 +€2 _ 3 1 4 ~
= min P} — ) =35 4
P=bhmn (P) = S o= 03 ol ve (0)

Therefore, the following theorem can be summarised
for the stabilisation problem of the investigated closed-
loop semi-linear stochastic system.

Theorem 1. Using the linear estimator (16) and con-
trol law (37), the system outputs of the semi-linear
stochastic system (1) are bounded in the probabilistic
sense if there exists a positive definite matrix P satisfy-
ing the conditions: p > 0 and AUTP + PAy < 0.

Proof. Notice that Ag, P and p have been shown in
(17), (25) and (40), the proof has been completed follow-
ing the analysis obtained above. |

4 Output transient optimization

The parametric optimisation can be further taken in-
to account following the criterion in order to attenuate
the randomness and probabilistic coupling respectively.
Motivated by stochastic distribution optimisation3%, the
distribution information will be adopted. To implement
the optimisation operation, the transient process should
be sampled where k is the sampling index.

4.1 Owutput randomness attenuation
Following the discussion in Section 2, in order to de-
scribe the randomness of the system outputs, the per-

formance criterion can be given using the concept of the
entropy.

Je = —log Vi (7, W) (41)
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where Vj (y,Wo) stands for the estimated information
potential of §, Wo = {W,&1,82,61;,Ci},i=1,--- ,n has
been defined as the design parametric set while k is the
sampling index. Note that the log(-) function is a
monotonic  increasing  function, maximizing  the
information potential can be used to take the place of
minimizing of the entropy, then the performance criterion
can be simplified only using the information potential
1% (g, Wo).

Furthermore, another theorem is given to state that
the presented performance criterion is globally convex, if
another assumption is added as follows.

Assumption 2. The vector-valued stochastic system

output y satisfies the following inequality:

9y

<M (42)

where the real positive matrix A denotes the upper
bound.

Theorem 2. Based upon the presented control al-
gorithm, there exists a real positive number §o > 0, such
that the information potential is globally concave in
terms of the design parameter Wy for all Apmin (2) > do. It
implies that the equivalent performance criterion (41) is
globally convex and the optimum exists.

Proof. Denote €551 = ¥i,x — Uj,k then we have

PV (Wo) 1 9 EN: a
=1

oWg T N2 OWo L= OW, Gas (Ei) =
19 ﬁ: 9G oy (cijik) Deijr
N2 oWy ) aEij,k oWy —

N
1 -1 9 -
B ﬁ(ﬁz) o Z G a5 (Eijk) X €ijM =
ig=1

M (vax)” S G ()

i,j=1
_ -1
(6;‘[.;’]‘: (M — (\/52) ) Eij,k) . (43)
2
Note that aavi‘;/(;) <0 if M > (v2%)"". Tt implies
0
82Vk (E)

that the eigenvalues of approach 07 as Amin ()

oOW¢

goes to infinity. Using the Leomma 3 in [40], Vi (7, Wo) is
a concave function once Apin (X) is sufficiently large.
Thus, the performance criterion (41) is a convex function
which results in the global optimum. It ends the proof of
this theorem. O

Once the performance criterion is proved to be a con-
vex function, the standard convex optimization approach,
e.g., gradient descent optimization, can be adopted dir-
ectly. In particular, we have

Vi (Wo)
OWo

Wo=Wo i

Wok+1 = Wok — €1 (44)

where €1 > 0 stands for the pre-specified searching rate
and the information potential of each system outputs
which can be approximated by MKDE.

4.2 Output probabilistic coupling attenu-
ation

Notice that decoupling design is an important topic
for multi-variable control systems, then the couplings
among the system outputs can also be attenuated based
on the presented framework. Motivated by the concept of
probabilistic decoupling, the performance criterion can be
described using mutual information (MI) of the system
outputs/4ll,
information
(CSMI) and quadratic Rényi entropy, the multi-variable
CSMI is expressed as follows:

</7(17)ﬁ%‘ (yi)dy>2
(/W(Q)dy) (/1_17 <yi>dy)'

Notice that Ics () > 0 with equality if and only if the
system outputs are probabilistic independent. Further-
more, we have

Combining Cauchy-Schwarz mutual

(45)

Ics (§) =logVy +log Var — 2log Vo (46)

where
Vo= [+ @)y
Var —/f[l’yf (ys)dy
Vo= [ ljv (y:)dy (47)

stand for information potentials. Compared with the
definition of Rényi's entropy in Section 2, the value of the
information potentials can be estimated by sampling data.

In particular, the kernel density estimation can also be
used where the performance criterion mentioned above
can be rewritten as

_ i=1j=1k k=1
Ics (§) = log TN (48)
— i
where
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N/\
NZV ,7)

Vi (4,9) = G yzs (Yri — Yk.5)
X

Vk:NZI k(l)7k:1727 x4
J=

Thus, the performance criterion can be estimated for
each sampling instant using the collected data.

1 N N n R n R
w2 2 Ve + [TV
k=1

1 k=1

H (49)

Ics () =

Similar to the criterion (41) and Theorem 2, it can be
shown that the mutual information criterion is convex
based on similar assumptions to those in Theorem 2.
Then the decoupling in the probabilistic sense can be
achieved as follows:

0lcs (Wo)

W =Wor —
0,k+1 0,k — €2 W

(50)
Wo=Wo, i

while €2 > 0 stands for the pre-specified searching rate.
4.3 Design procedure
To clearly illustrate progress of the presented control

algorithm, one flow chart (Fig.1) is shown here to clarify
the design procedure.

Obtain JPDF
using MKDE
| Select 4,: ¢, (7) | l
i | Evaluate J, |
| Initialize 7, | Yes l
Gradient descent
No NP
optimization
Sampling?
Complete the
I\io optimization?

Run the closed-
loop stochastic

system Yes
Update the controller l

Obtain the data of L Obtain the optimal
outputs and inputs parameters

Fig. 1 Flowchart of the presented control framework design
procedure
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5 A numerical example

To demonstrate the presented algorithm procedure, a
multi-variable semi-linear stochastic system is shown as
follows:

dz, = ([ Bl 0_2 :| T1 + :Eg) dt + sin (fl)dﬂz
ﬂ) dt + cos (Z1)d St
y=1I1 (51)

where the matrices Ai, A2, G1 and G2 are obtained as the
coefficient matrices.

In addition, the linear observer can be designed with
the observation gain Li = Lp = diag{15,15}. Then, the
entire system with linear estimator has been further re-
written as follows:

_ -1 05 | _ = 2

. (=15 0 1. [20]-  _
d“_({—()ﬁ —1}‘”24{0 3}‘““&)“

-3 05 1 0
z 1o -5 0 1| [&
d[ 52} -2 0 -15 0 L::sz#
0 -3 -05 -1
sin (/)
|: cos (g) :| dﬁt (52)

while the matrices Ao and G are obtained. Note that Ag
is Hurwitz.

Following the discussion in Section 3, the control in-
put and first virtual control input can be obtained by
(37), which shows that the performance of the controller
will be affected by the design parameters Wy, Based on
the afore-mentioned optimisation operation, the optimal
parameters can be searched with the pre-selected initial
value Wy = diag {—20,25} and other parameters can also
be pre-specified randomly as positive numbers.

To set up the simulation, k is designed as 0.01s then
Figs.2—-6 indicate the performance of the investigated
closed-loop stochastic semi-linear system, especially for
the transient performance of the system outputs. In par-
ticular, Fig.2 shows the trajectories of the system out-
puts where all the system outputs are bounded in the
probabilistic sense. Fig.3 indicates the control inputs sig-
nal which is also bounded in the probabilistic sense while
the entropy-based performance criterion is given in Fig. 4.
It has been shown that the transient randomness has
been attenuated along the decrease of the performance
criterion. In other words, J descends by searching the op-
timal design parameters in control law. Note that the en-
tropy is approximated by KDE. In addition, all the res-
ults shown above are based on the model where



Q. C. Zhang et al. / Output Feedback Stabilization for MIMO Semi-linear Stochastic Systems with - 91

0.3

,0'4 1 1 1
0 2.5 5.0 7.5 10.0

Time

Fig. 2 System outputs’ trajectories of the closed-loop semi-
linear stochastic system
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Fig.3 Designed control inputs for the closed-loop semi-linear
stochastic system
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Fig.4 Value of entropy-based performance criterion J to
attenuate the transient randomness of the system outputs

G2 (0) # 0. Alternatively, the system outputs will con-
verge to 0 simultaneously in the probabilistic sense if
G2 (g) = sin(y) which has been demonstrated by Fig.5.
Furthermore, the probabilistic decoupling problem can
also be considered following the presented algorithm
where y; and y2 are coupled with each other transiently
before the stabilisation of system output is achieved. To
quantify the system output’s coupling, the mutual inform-
ation performance criterion can be used to replace the en-

0.25
0.20
0.15
0.10
0.05
0
-0.05
-0.10
-0.15

,0.20 1 1 1
0 25 5.0 7.5 10.0

Time

Fig. 5 System outputs’ trajectories of the closed-loop semi-
linear stochastic system with G2 (0) = 0

0.45
0.40 | —e
035
030
025
020 |
0.15 |
0.10 |
0.05 |

0 e

Time

Fig.6 Value of mutual information based performance
criterion I¢g to attenuate the transient probabilistic couplings
of the system outputs

tropy-based criterion, then the following results are given
where the mutual information of the system output has
been minimised. It implies that the independence of the
system outputs for transient performance is increasing.

Notice that G2 (0) # 0 and the value of the mutual in-
formation based performance criterion has been pro-
cessed using sliding average mode, while the mutual in-
formation does not converge to zero due to the random-
ness of B;. However, as an optimisation problem, the min-
imum is achieved which also satisfied our design require-
ment for decoupling design in probability sense.

As an additional extension of the given numerical ex-
ample, the system coefficient matrices can be replaced as
follows to validate the performance of the presented al-
gorithm for the system model with an unstable system
dynamic matrix.

O R B e B

where A; and A are not Hurwitz. Gi, G2 and initial
values are given as same as the example above. Thus, the
performances of the system output and control input are
shown by Figs.7 and 8 with the presented controller
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Fig.7 System outputs’ trajectories of the closed-loop semi-
linear stochastic system with unstable A matrix
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Fig. 8 Designed control inputs for the closed-loop semi-linear
stochastic system with unstable A matrix

design. In particular, the system outputs are stabilised
and converge to zero in probability one, meanwhile the
control inputs converge to zero once the system outputs
are stabilised. In addition, the transient randomness has
been attenuated following the minimum entropy criterion.

To highlight the power of the presented control al-
gorithm, the performances are also compared to widely
used proportional integration (PI) design for the system
model (53), where Kp = diag {10, 14} and
Ki = diag {0.05, —0.01}. Note that the PI controller para-
meters have been tuned following the minimum entropy
criterion, however most of the parameters we tried can-
not stabilise the system outputs and the best perform-
ance obtained has been demonstrated by Fig.9. Compar-
ing with Fig.7, the system outputs are bounded however
the convergence performance cannot be guaranteed even
if the parametric optimisation has been adopted.

6 Conclusions

In this paper, the transient performance optimisation
has been investigated for a class of MIMO semi-linear
stochastic systems. Based on the system stabilisation and
transient optimisation, a control framework has been
presented, in particular, the linear estimator has been
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Fig.9 PI control inputs for the closed-loop semi-linear
stochastic system with unstable A matrix

first designed which forms the entire strict-feedback
format with the investigated system model. Based upon
the entire closed-loop system model, the m-block back-
stepping design has been adopted with the free design
parameters while the system performance can be further
taken into account following the parametric optimisation
of the presented controller. Basically, the system output
randomness and the probabilistic decoupling have been
proposed via the entropy-based performance criterion and
the mutual information based performance criterion, re-
spectively. Following the standard gradient descent
searching, the control objectives can be achieved when
the performance criterion has been attenuated. Moreover,
the convergence in the probabilistic sense has also been
analysed following the Lyapunov method with the back-
stepping design. Generally, the optimisation only affects
the transient performance due to the fact that the sys-
tem outputs will be stabilised in the probabilistic sense
based on the convergence analysis.

Notice that both presented performance criteria can
be represented by the information potential which can be
simply approximated using MKDE with sampling data.
The convexity of the presented performance criteria is
also analysed in the paper which guarantees that the op-
timum exists and the presented control framework is im-
plementable in practice. To evaluate the presented con-
trol algorithm, a numerical example has been given and
the simulation results illustrate its effectiveness and cor-
rectness. In addition, other performance criteria can fur-
ther be considered following the similar approach by re-
placing the presented performance criteria which means
that the design approach can be adopted to achieve oth-
er design requirements in the future. Motivated by finite-
time convergencel*2 and H>\Hs fault diagnosis applica-
tion[43l, the presented framework extensions should also
focus on theoretical performance enhancement based on
the transient optimization.
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