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Abstract: Single image super-resolution has attracted increasing attention and has a wide range of applications in satellite imaging,
medical imaging, computer vision, security surveillance imaging, remote sensing, objection detection, and recognition. Recently, deep
learning techniques have emerged and blossomed, producing “the state-of-the-art” in many domains. Due to their capability in feature
extraction and mapping, it is very helpful to predict high-frequency details lost in low-resolution images. In this paper, we give an over-
view of recent advances in deep learning-based models and methods that have been applied to single image super-resolution tasks. We
also summarize, compare and discuss various models from the past and present for comprehensive understanding and finally provide

open problems and possible directions for future research.
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1 Introduction

Single image super-resolution (SISR) aims to obtain
high-resolution (HR) images from a low-resolution (LR)
image. It has practical applications in many real-world
problems, where certain restrictions present in image or
video such as bandwidth, pixel size, scene details, and
other factors. Since multiple solutions exist for a given in-
put LR image, SISR is to solve an ill-posed inverse prob-
lem. There are various techniques to solve an SISR prob-
lem, which can be classified into three categories, i.e., in-
terpolation-based, reconstruction-based, and example-
based methods. The interpolation-based methods are
quite straightforward, but they can not provide any addi-
tional information for reconstruction and therefore the
lost frequency cannot be restored. Reconstruction-based
methods usually introduce certain knowledge priors or
constraints in an inverse reconstruction problem. The
representative priors can be local structure similarity,
non-local means, or edge priors. Example-based methods
attempt to reconstruct the prior knowledge from a
massive amount of internal or external LR-HR patch
pairs, in which deep learning techniques have shined new
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light on SISR.

This survey focuses mainly on deep learning-based
methods and aims to provide a comprehensive introduc-
tion to the field of SISR.

The remainder of this paper is organized as follows:
Section 2 provides the background and covers different
types of example-based SISR algorithms, followed by re-
cent advances in deep learning related models in Section 3.
Section 4 compares convolutional neural networks (CNN)-
based SISR algorithms. Section 5 presents in-depth dis-
cussions, followed by open questions for future research in
Section 6. Finally, the paper is concluded in Section 7.

2 Background

Example-based algorithms aim to enhance the resolu-
tion of LR images by learning from other LR-HR patch
pair examples. The relationship between LR and HR was
applied to an unobserved LR image to recover the most
likely HR version. Example-based methods can be classi-
fied into two types: internal learning and external learn-
ing-based methods.

2.1 Internal learning based methods
The natural image has a self-similarity property,
which tends to recur many times within both the same

scale or across different scales inside the image.
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To determine the similarity, Glasner et al.lll made a
test by comparing the original image and multiple cas-
cades of images of decreasing resolutions. A scale-space
pyramid was constructed to exploit the self-similarity in
given LR image, which was then used to impose a set of
constraints on the unknown HR image, as shown in
Fig. 101 Since the dictionary is limited on the given LR-
HR patch pairs, Huang et al.l2l extended the search space
to both planar perspectives and affine transforms of
patches to exploit abundant feature similarity. However,
the most important limitation lies in the fact that self-
similarity based methods lead to high complexity of com-
putation due to huge numbers of searching and the accur-
acy of algorithms is highly variant according to natural
properties of images.

Fig. 1 Pyramid modellll for SISR. From the bottom, when a
similar patch found in a down-scale patch (yellow at level I_),
its parent (yellow at level I) is copied to an unknown HR image
with an appropriate gap in scale and support of different kernels.
Color versions of the figures in this paper are available online.

2.2 External learning based methods

The external learning-based methods attempt to
search the similar information from other images or
patches instead. It was first introduced to estimate an un-
derlying scene X with the given image data Y®l. The al-
gorithm aimed to learn the posterior probability
P(X|Y) = ﬁP(X, Y), by adding image patches X
and its corresponding scenes Y as nodes in a Markov net-
work. It was then applied for generating super-resolution
images, where the input image is LR and the scene to be
estimated is replaced by an HR imagel4.

Locally linear embedding (LLE) is one of the mani-
fold learning algorithms, based on the idea that the high
dimensionality may be represented as a function of a few
underlying parameters. LLE begins by finding a set of
nearest neighbors of each point that can best describe
that point as a linear combination of its neighbors. It is
then determined to find the low-dimensional embedding
of points, such that each point is still represented by the
same linear combination of its neighbors. However, one of
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the disadvantages is that LLE handles non-uniform
sample density poorly because the feature represented by
the weights varied according to regions in sample densit-
ies. The concept of LLE was also applied in SISR neigh-
bor embeddingl’l, where the features are learned in the
LR space before being applied to estimate HR images.
There were several other studies based on local linear re-
gression such as: ridge regressionl6, anchored neighbor-
hood regression[”> 8, random forestl®, and manifold em-
bedding10],

Another group of algorithms that has received atten-
tion is sparsity-based methods. In the sparse representa-
tion theory, the data or images can be described as a lin-
ear combination of sparse elements chosen from an appro-
priately over-complete dictionary. Let D € R™*¥ be an
over-complete dictionary (K > n), we can build a dic-
tionary for most scenarios of inputs and then any new im-
age (patch) X € R™ can be represented as X = D X a,
where « is a set of sparse coefficients. Hence, there were
dictionary learning problems and sparse coding problems
to optimize D and «, respectively. The objective func-
tion for standard sparse coding is

N
1
am%yZEMngum—DmW+Mmm (1)

Unlike standard sparse coding, the SISR sparsity-
based method works with two dictionaries to learn the
compact representation for these patch pairs. Assuming
that the observed low-resolution image Y is blurred and a
down-sampled version of the high-resolution X:

Y=5-H X (2)

where H represents a blurring filter and S the down-
sampling operation. Under mild conditions, the sparest ag
can be unique for both dictionaries because the dictionary
is over-complete or very large. Hence, the joint sparse
coding can be represented as

N
. 1
e guig, 2 meming |l o= Deos [+
L 2
5 19 = Dyas [I” + Alla]]. (3)

The two dictionaries of high-resolution D; and low-
resolution D; are co-trained to find the compact coeffi-
cients aj, = oy = allll; such that sparse representation of
a high-resolution patch is the same as the sparse repres-
entation of the corresponding low-resolution patch. A dic-
tionary D; was first trained to best fit the LR patches,
then the D), dictionary was trained that worked best with
;. When these steps were completed, o; was then used to
recover a high-resolution image based on the high-resolu-
tion dictionary Dp,.

One of the major drawbacks of this method is that the
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two dictionaries are not always linearly connected. An-
other problem is that HR images are unknown in the
testing phase, hence the equivalence constraint on the HR
sparse representation does not guarantee as it has been
done in the training phase. Yang et al.ll2l suggested a
coupled dictionary learning process to pose constraints for
two spaces of LR and HR. The main disadvantage of this
method is that both dictionaries are assumed to be
strictly aligned to achieve alignment between ap and o
or the simplifying assumption of aj, = «;. To avoid this
invariance assumption, Peleg and Elad[!3] connect an, ag
via a statistical parametric model. Wang et al.l4 pro-
posed semi-couple dictionary learning, in which two diction-
aries are not fully coupled. It was based on an assumption
that there exists a mapping in sparse domain f(-): oy — ap,
or ap = f(aq). Therefore, the objective function has one
additional error term |jan — f(ay)||* and other regulariza-
tion terms. Beta process joint dictionary learning was
proposed in [15], which enables the decomposition of
these sparse coefficients to the element multiplication of
dictionary atom indicators and coefficient values, provid-
ing the much needed flexibility to fit each feature space.
Finally, sparsity-based algorithms have remaining limita-
tions in feature extraction and mapping, which are not al-
ways adaptive or optimal for generating HR images.

3 Deep learning related models

3.1 CNNs-based models

The convolutional neural networks (CNNs) have been
developed rapidly in the last two decades. The first CNN
model to solve the SISR problems is introduced by Dong
et al.ll6, 17 named super-resolution convolutional neural
network (SRCNN). Given a training set of LR and corres-
ponding HR images z*, 3*, i = 1--- N, the objective is to
find an optimal model f, which will then be applied to ac-
curately predict Y = f(X) on unobserved examples X.
The SRCNN consists of the following steps, as shown in
Fig. 2016

1) Preprocessing: Upscale the LR image to desired HR
image using bicubic interpolation.

2) Feature extraction: Extract a set of feature maps
from the upscaled LR image.

3) Non-linear mapping: Maps the features between LR
and HR patches.

4) Reconstruction: Produce the HR image from HR

Bicubic

Input LR

Feature Non-linear Reconstruction Qutput
extraction mapping HR

Fig. 2 SRCNN model for SISR

patches.

Interestingly, although only three layers have been
used, the result significantly outperforms those non-deep
learning algorithms discussed previously. However, it
seems possible that the accuracy cannot be improved fur-
ther based on this simple model. This led to the question
of whether “the deeper the better” is or is not the case in
super resolution (SR). Inspired by the success of very
deep networks, Kim et al.l!® 19 proposed two models
named very deep convolutional networks (VDSR)[8) and
deeply recursive convolutional network (DRCN)[!9, which
both stack 20 convolutional layers, as shown in Figs.3(a)
and 3(b). The VDSR is trained with a very high learn-
ing rate (107" instead of 10~* in SRCNN) in order to ac-
celerate the convergence speed and whilst gradient clip-
ping was used to control the explosion problem.

Input Input Input
Conv
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v
/ Conv — \‘-
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C* Conv —j Conv
onv {
: \
Conv Cony 3— \ G=
\ / PR {
Output 1 Output 2
N 4

(a) VDSR

(b) DRCN

4

(c) DRRN

Fig. 3 VDSR, DRCN, DRRN model for SISR. The same color
of yellow or orange indicates the sharing parameters.

Instead of predicting the whole image as was done in
SRCNN, residual connection was used to force the model
to learn the difference between inputs and outputs. The
zeros were padding at borders to avoid the problem of
quickly reducing feature maps through deep networks. In
order to gain more benefits from residual learning, Tai et
al.[20 used both global residual connections and local re-
sidual connections in deeply recursive residual networks
(DRRN). The global residual learning is used in the iden-
tity branch and recursive learning in the local residual
branch, as illustrated in Fig.3(c). Mao et al.2ll proposed
a 30-layer convolutional auto-encoder network, namely
the residual encoder-decoder network (RED30). The con-
volutional layers work as a feature extractor and encode
image content, while the de-convolutional layers decode

@ Springer



416 International Journal of Automation and Computing 16(4), August 2019

and recover image details. Unlike other methods as men-
tioned above, the encoder reduces the feature map to en-
code the most important features. By doing it in this
way, noise/corruption can be efficiently eliminated.
Hence, this model has completed extended tests on sever-
al tasks of image restoration such as image de-noising,
JPEG de-blocking, non-blind de-blurring and image in-
painting(21].

Recent advances in CNN architecture such as DenseN-
et, Network in Network, and Residual Network have been
exploited for SISR applications(22 23, Among them, Resid-
ual Channel Attention Network (RCAN) and SRCliqueN-
et have recently been the-state-of-the-art (up to 2018) in
terms of pixel-wise measurement, as shown in Table 2,
Section 4.

Channel attention. Each of the learned filters oper-
ates with a local receptive field and the interdependence
between channels is entangled with spatial correlation.
Therefore, the transformation output is unable to exploit
information such as the interrelationship between chan-
nels outside the region. The RCAN[24 has been the deep-
est model (about 400 layers) for the SISR task. It integ-
rated a channel attention mechanism inside the residual
block, as shown in Fig.424: The input with shape of a
HxWxC is squeezed into the channel descriptor by aver-
aging through a spatial dimension of HxW to generate
the output shape of 1x1x(C. This channel descriptor is
put through gate activation of sigmoid f and element-
wise product with the input in order to control how much
information from each channel is passed up to the next
layer in the hierarchy.

HXWx

"5'7 IXI_XC mx% 1><15><C1><l.><C r.
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b
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HxWwxC

Fig.4 Channel attention block[?4

Joint sub-band learning with clique structure —
SRCliqueNet[25], CliqueNet is newly proposed convolu-
tional network architecture where any pair of layers in
the same block are connected bilaterally, as shown in
Fig. 5.

The Clique block encourages the features to be re-
fined, which provides more discrimination and leads to a
better performance. Zhong et al.2] proposed Super-Resol-
ution CliqueNet, which applied this architecture to
jointly learned wavelet sub-band in both the feature ex-
traction stage and sub-band refinement stage.

Concatenation for feature fusion rather than
summation — RDNI26l. As the model goes deeper, the
feature in each layer would be hierarchical with different
receptive fields. The information from each layer may not
be fully used by recent methods. Zhang et al.26] proposed
concatenated operations on the DenseNet to build hier-
archical features from all layers, as shown in Fig.6.
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Stage-I feature Stage-II feature

Fig. 5 Clique block with two stages updated. Four layers 1, 2,
3, 4 in blocks are stacked in the order of 1, 2, 3, 4, 1, 2, 3, 4 and
bilaterally connected by the residual shortcut. It has more skip
connection compared with the Densenet block.
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Fig.6 Residual dense block[26l. All previous feature are
concatenated to build hierarchical features.

Wide activation in residual block — Wide-activ-
ated deep super-resolution network (WDSR)[27].
The efficiency and higher accuracy image resolution can
be achieved with fewer parameters than that of enhanced
deep super-resolution network (EDSR) by expanding the
number of channels by a factor of /7 before rectified lin-
ear unit (RELU) activation in residual blocks. As such,
the residual identity mapping path slimmed as a factor of
4/T to maintain constant output channels.

Cascading residuals to incorporate the fea-
tures from multiple layers - Cascading Residual
Network (CARN)[28]. The most interesting finding was
that there are similar mechanisms in MemNet (Section
3.2), RDN and CARN models. In addition to the ResNet
architecture, they all use 1 x 1 convolution as a fusion
module to incorporate multiple features from previous
layers. Their results boost the performance effectively and
can be considered in model design.

Information distillation network — IDNI29l, The
IDN model uses the distillation block, which combines an
enhancement unit with a compression unit. In this block,
the information is distilled inside the block before it
passes to the next level.

When we use neural networks to generate images, it
usually involves up-sampling from low resolution to high
resolution. One of the problems with the use of interpola-
tion-based methods is that it is predefined and there is
nothing that the network can learn about. This method is
also being criticized for high computational complexity
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while computing in HR space without additional informa-
tion. On the other hand, transposed convolution and
PixelShuffle concepts have learnable parameters for op-
timally up-sampling the input. It provides flexible up-
sampling and can be inserted at any place in the architec-
ture. Lai et al.3% proposed Laplacian Pyramid super-res-
olution networks (Lap-SRN) to reconstruct the image
progressively. In general, the Laplacian Pyramid scheme
decomposes an image as a series of high-pass bands and
low-pass bands. At each level of reconstruction, a trans-
posed convolution was used to up-sample the image in
both the high-pass branch and low-pass branch. Beside
the Laplace decomposition, Wavelet transform (WT) has
been shown to be an efficient and highly intuitive tool to
represent and store images in a multi-resolution way. WT
can describe the contextual and textural information of
an image at different scales. WT for super-resolution has
been applied successfully to the multi-frame SR problem.
However, conventional discrete wavelet transformation
reduces the image size by a factor of 27, which is incon-
venient when testing images are of a certain size. It is
proposed by Asamwar et al.3l] to reduce the image to any
(variable scale) size, using discrete wavelet transformation.

For comparison, most SISR algorithms have been per-
formed on the LR image, which was downsampled with
scaling factors of 2x, 3x, 4x from the HR image. Other-
wise, features available in the LR space have not sufficed
for learning. It is suggested that a training model for high
upscaling factors can benefit from the pre-trained model
on lower upscaling factorsi32l. In other words, it can be
described as transfer learning. Wang et al.33 proposed a
progressive asymmetric pyramidal structure to adapt
with multiple upscaling factors and up to a large scaling
factor of 8x. Also, a deep back projection network[34 us-
ing mutually connected up-sampling and down-sampling
stages has been used for reaching such high up-scaling
factors. These experiments support recommendations to
use progressive up-sampling or iterative up and down-
sampling when reconstructing SR images under larger
scaling factors.

When assuming a low-resolution image is down-
sampled from the corresponding high-resolution image,
CNN-based methods ignored the true degradation such as
noise in real world applications. Zhang et al.3% proposed
super-resolution multiple degradation (SRMD) training
on LR images, synthesizing with three kinds of degrada-
tions: a blur kernel, bicubicly downsampling followed by
additive white Gaussian noise (AWGN). Obviously, to
learn invariant features, this model had to use large train-
ing datasets of approximate 6000 images. Shocher et
al.3%] observed strong internal data repetition in the nat-
ural images, which is similar to that in [1]. The informa-
tion for tiny objects, for example, is better to be found in-
side the image, other than in any external database of ex-
amples. A "Zero Shot" SR (ZSSR)BS was then proposed
without relying on any prior image examples or prior

training. It exploits cross-scale internal recurrence of im-
age-specific information, where the test image itself is
trained before being fed again to the resulting trained
network. Because little research has been focused on vari-
ant degradations of SISR, more evaluations and compar-
isons are required and further investigations would be of
great help.

3.2 RNN-CNN-based models

A ResNet with weight sharing can be interpreted as
an unrolled single-state recurrent neural network
(RNN)B7. A dual-state recurrent network (DSRN)B8I al-
lows that both the LR path and HR path caption inform-
ation at different spaces and are connected at every step
in order to contribute jointly to the learning process, as
shown in Fig. 78], However, the average of all recovered
SR images at each stage may have a deteriorated result.
Another reason is that the down-sampling operation at
every stage can lead to information loss at the final re-
construction layer.

>
Jir AE
0
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/ fzi(m n

I

!

Fig. 7 Dual state model38]. The top branch operates on the HR
space, where the bottom branch works on the LR space. A
connection from LR to HR using de-convolution operation; a
delayed feedback mechanism is to connect previous predicted
HR to LR at the next stage.

Conv,

t=1 t=2

In the view of memory in RNNs, CNNs can be inter-
preted as: short-term memory. The conventional plain
CNNs adopts a single path feed-forward architecture, in
which a latter feature is influenced by a previous state.
Limited long-term memory: When the skip connection is
introduced, one state is influenced by a previous state
and specific point prior state. To enable the latter state
to see more prior states and decide whether the informa-
tion should be kept or discarded, Tai et al.3% proposed a
memory network (MemNet), which uses recursive layers
followed by a memory unit to allow the combination of
short and long-term memory for image reconstruction, as
shown in Fig. 839, In this model, a gate unit controls in-
formation from the prior recursive units, which extracts
features at different levels.

Unlike convolutional operations, which capture fea-
tures by repeatedly processing local neighborhoods of
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- -9-0-0-0 oa.

Fig. 8 Memory block in MemNet[B9 includes multiple recursive
units and a gate unit MemNet model

pixels, the non-local operation describes a pixel as a com-
bination of weighted distance to all other pixels, regard-
less of their positional distance or channels. Non-local
means to provide an efficient procedure for image noise
reduction; however, the local and non-local based meth-
ods are treated separately, thereby not taking account of
their advantages. The non-local block was introduced in
[40], enabling integrate non-local operation into end-to-
end training with local operation based models such as
CNNs. Each pixel at point ¢ in an image can be de-
scribed as

‘71
V= Cl)

> f@iai)g(ay) (4)

jeN

where f(x;,z;) = e®@) ¢ js a weighted function,
measuring how closely related the image at point ¢ is to
the image at point j. Thus, by choosing ©(z;) = Weuz;,
o(z;) = Wez; and g(x;) = Wyzj, the self-similarity can
be jointly learned in embedding the space by following
blocks, as shown in Fig. 9[40].

fo\TxHxle(m
@
1x1x1
[ T<HXWx512
THW=512
Softmax
X
THWXTHW/J\
)
THW512 | 512xTHW THWx512
T<HxWx512 | T<HxWx512 TxHxWx512
0: 1x1x1 #: 1x1x1 | |g:1><1><1

¥ TXHxWx1024
Fig. 9 A non-local block[40]

For SISR tasks, Liu et al.[4l incorporated this model
into the RNN network by maintaining two paths: a regu-
lar path, that contains convolution operations on image,
and the other path that maintains non-local information
at each step as input branches in the regular RNNs struc-
ture. However, non-local means it has disadvantage that
remarkable denoising results are obtained at a high ex-
pense of computational cost due to the enormous amount

of weighting computations.
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3.3 GAN-based models

Generative adversarial network (GAN) was first intro-
duced in [42], targeting the minimax game between a dis-
criminative network D and a generative network G. The
generative network G takes the input z ~ p(z) as a form
of random noise, then outputs new data G(z), whose dis-
tribution pg is supposed to be close to that of the data
distribution pgata.- The task of the discriminative network
D is to distinguish a generated sample G(z) ~ py(G(2))
and the ground truth data sample £ ~ pgata(z). In other
words, the discriminative network determines whether the
given images are natural-looking images or they look like
artificial created images. As the models are trained
through alternative optimization, both networks are im-
proved until they reach a point called Nash Equilibrium
that fake images are indistinguishable from real images.
The objective function is represented as

M max Bop,,,, 108 D(2)] + Banp. [log(l — D(G(2)))] =

W0 AX By, 108 D(@)] + Bamp. l08(1 — D(x))]
(5)

This concept is consistent with the problem solving in
image super resolution. Ledig et al.[3] introduced the su-
per-resolution generative adversarial network (SRGAN)
model, of which a generative network upsamples LR im-
ages to super resolution (SR) images and the discriminat-
ive network is to distinguish the ground truth HR im-
ages and SR images. A pixel-wise quality assessment met-
ric has been critical of showing poorly to human percep-
tion. By incorporating newly adversarial loss, the GAN-
based algorithms have solved the problem and produced
highly perceptive, naturalistic images, as can be seen
from Fig. 10431,

Bicubic SRResNet SRGAN
(21.59 dB/0.6423) (23.53 dB/0.7832) (21.15 dB/0.6868) Original
S—n —

£2

Fig. 10 From left to right, image is reconstructed by bicubic
interpolation, deep residual network (SRResNet) measured by
MSE, SRGAN optimize more sensitive to human perception,
and original image. Corresponding PSNR and SSIM are
provided on top. The zoom of red rectangles are shown at right
bottom.

The GAN-based SISR model has been developed fur-
ther in [44, 45], which has resulted in an improved SR-
GAN by fusion of pixel-wise loss, perceptual loss, and
newly proposed texture transfer loss. Park et al.l[46l pro-
posed SRFeat and employed an additional discriminator
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in the feature domain. The generator is trained through
two phases: pre-training and adversarial training. In the
pre-training phase, the generator is trained to obtain high
PSNR by minimizing MSE loss. The training procedure
focuses on improving perceptual quality using perceptual
similarity loss (Section 5.2.2), GAN loss in pixel domain
and GAN loss in feature domain. Perhaps the most seri-
ous disadvantage of GAN-based SISR methods is diffi-
culties in the training models, which will be further dis-
cussed in Section 5.2.

4 Comparison of SISR algorithms

In order to provide a brief overview of the current per-
formance of deep learning-based SISR algorithms, we
compare some recent work in Tables 1 and 2. Two image
quality metrics have been used for performance evalu-
ation: A peak signal-to-noise ratio (PSNR) and a struc-
tural SIMlarity (SSIM) index. The higher the PSNR and
SSIM, the better quality of the image being reconstruc-
ted. The PSNR can be described as

2
PSNR = 10log,, % (6)

where MSE is mean squared error between two images of
I 1 and IQZ

~ 2ana((m,n) — I (m, n)]?
- M x N ’

MSE (7)

Here, M and N are the number of rows and columns
in the input images, respectively. Equation (6) shows that
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minimizing Lo loss tends to maximizing the PSNR value.

Table 1 summarizes the detailed performance compar-
ison of some typical deep learning based SISR models, in-
cluding SRCNN[I7  VDSRE8, DRCNI DRRNE20L
RED3021, RCANRY SRCliqueNet[2’], RDN[26], CARNIE8]
IDNE29,  LapSRNBO, EDSRI32], Shot[36],
MemNetB39. The detailed performance comparison of
those models is presented in Table 2. The four standard
benchmark datasets are used including SETS5M47,
SET1448], B100M49, URBAN1002 which are popularly
The
sampling scale factor used include 2x, 3x, and 4x, and

Zero and

used for comparison of SR algorithms. down-
missing information that was not provided by the au-
thors is marked by [-]. All quantitative results are duplic-
ated from the original papers.

From Table 1, Table 2 and Fig.11, CARN stand out
through their high accuracy wusing small model.
SRCliqueNet+ and RCAN+ achieved higher accuracy in
comparison with EDSR in term of PSNR/SSIM measure-
ment whilst requiring smaller model size. GAN-based
models are in favour of perceptual reconstruction, which
we do not include in Table 2 and Fig.11.

5 Discussion on optimization objectives

Generally, when a random variable X has been ob-
served, the aim is to predict the random variable Y as the
output of the network. Let g(X) be the predictor, clearly
we would like to choose g so that g(X) tends to be close
to Y via the maximum likelihood estimation (MLE). One
possible criterion for closeness is to choose g to minimize
E[(Y — g(X))?], thus the optimal predictor of ¥ becomes
g(X) = E[Y|X] as the mean conditional expectation of Y’

Table1 Comparison of different SISR models

Models Input Type of network Number of params Mult-adds Reconstructions Train data Loss function
SRCNN LR + Bicubic Supervised 8K 52.7G Direct Yang91 L2(MSE)
VDSR LR + Bicubic Supervised 666 K 612 G Direct G200+Yang91 L2
DRCN LR + Bicubic Supervised 1,775 K 17974 G Direct Yang91 L2
DRRN LR + Bicubic Supervised 297K 6796 G Direct G200+Yang91 L2
RED30 LR + Bicubic Supervised 4,2 M — Direct BSD300 L2
LapSRN LR Supervised 812 K 299G Progressive G200+Yang91 Charbonnie
MemNet LR + Bicubic Supervised 677 K 2662 G Direct G200+Yang91 L2
Zero-Shot LR + Bicubic Unsupervised 225 K - Direct - L1(MAE)
Dual State LR + Bicubic Supervised 1,2M - Progressive Yang91 L2
SRGAN LR Supervised - - Direct ImageNet L2 + Perceptual loss
EDSR LR Supervised 43 M 2890 G Direct DIV2K L1
IDN LR Supervised 677 K - Direct G200+Yang91l L1
CARN LR Supervised 1,6 M 222 G Direct DIV2K+Yang91+4+B200 L1
RDN LR Supervised 22.6 M 1300 G Direct DIV2K L1
SRCliqueNet+ LR Supervised - - Direct DIV2K+Flickr L1+ L2
RCAN+ LR Supervised 16 M - Direct DIV2K L1
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Table 2 Quantitative evaluation of the-state-of-the-art SR algorithm. Average PSNR/SSIM for scale factor 2x, 3x, 4x. Red text
indicates that the best and blue text indicates the second best performance.

Scale Set5 PSNR/SSIM Set14 PSNR/SSIM B100 PSNR/SSIM Urban100 PSNR/SSIM
SRCNN 2 36.66/0.9542 32.45/0.9067 - -
3 32.75/0.9090 29.30/0.8215 - -
4 30.49/0.8628 27.50/0.7513 - -
VDSR 2 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140
3 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279
4 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524
DRCN 2 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133
3 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276
4 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510
DRRN 2 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188
3 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378
4 31.68/0.8880 28.21/0.7720 25.44/076 34 25.44/0.7638
RED30 2 37.66/0.9599 32.94/0.9144 - -
3 33.82/0.9230 29.61/0.8341 - -
4 31.51/0.8869 27.86/0.7718 - -
MemNet 2 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195
3 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376
4 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630
LapSRN 2 37.52/0.9590 33.08/0.9130 31.80/0.8950 30.41/0.9100
3 _ - - _
4 31.54/0.8850 28.19/0.7720 27.32/0.7280 25.21/0.7560
Zero Shot 2 37.37/0.9570 33.00/0.9108 - -
3 33.42/0.9188 29.800.8304 - -
4 31.13/0.8796 28.01/0.7651 - -
EDSR 2 38.20/0.9606 34.02/0.9204 32.37/0.9018 33.10/0.9363
3 34.77/0.9290 30.66/0.8481 29.32/0.8104 29.02/0.8685
4 32.62/0.8984 28.94/0.7901 27.79/0.7437 26.86,/0.8080
IDN 2 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196
3 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359
4 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632
CARN 2 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256
3 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493
4 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837
RDN 2 38.30/0.9616 34.10/0.9218 32.40/0.9022 33.09/0.9368
3 34.78/0.9300 30.67/0.8482 29.33/0.8105 29.00/0.8683
4 32.61/0.9003 28.92/0.7893 26.82/0.8069 26.82/0.8069
SRCliqueNet+ 2 38.28/0.9630 34.03/0.9240 32.40/0.9060 32.95/0.9370
3 _ _ _ _
4 32.67/0.9030 28.95/0.7970 27.81/0.7520 26.80/0.8100
RCAN+ 2 38.27/0.9614 34.23/0.9225 32.46/0.9031 33.54/0.9399
3 34.85/0.9305 30.76/0.8494 29.39/0.8122 29.31/0.8736
4 32.73/0.9013 28.98/0.7910 27.85/0.7455 27.10/0.8142
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Fig.11 Comparing the PSNR accuracy of different algorithms
on 4 testing datasets with factor of 4x

given X. Most of the objective functions originally comes
from MLE and we will show that the typical objective
functions below are special cases of MLE.

5.1 Content loss

By using CNNs, the mapping between a pair of corres-
ponding LR and HR images is non-linear. The classical
content loss function for the regression problem are LAD
(least absolutes deviations) (or Li) and LSE (least
squared errors) (or L) defined as

Li=3 1§yl (8)

L= (v ©)

i=1

where the estimation of y can be defined as y = WTz and
¢y is the ground truth. This objective function is to
minimize the cost function with regard to the weight
matrix W. If we could write the regression target as
9 =y + & and the model regression target as a Gaussian
random variable y ~ N(u, 0?) with p= y = WTx, the
prediction model is

P(jlz,W) = N@gW " z,0%) =

1 (5 —W'a)®
hE exp ( 557 (10)

then, the optimum W can be determined by using the
maximum likelihood estimation (MLE):

WL = argmvng(:ﬁ|WT$702) =

(5- WTx)Q) |

202

(11)

arg max exp <—
w

Taking the logarithm of the likelihood function, and
making use of the standard form (o = 1), we obtain the

objective function:
1
WMLE = arg mwi/n 5(3} —whz)? (12)

which is equal to the minimum the loss function Lo in
(9). In other words, least square estimate is actually the
same as the maximum likelihood estimate under a
Gaussian model. We have to replace the Lo loss function
with Ly loss: E[(Y — g(X)] as mentioned previously, the
solution is g(z) = median(Y|X), which is also a solution
for MLE. It is important to bear in mind that the
assumption is for uni-modal distribution with a single
peak, which will not work well to predict multi-modal
distributions. Another problem with content loss is that a
minor change in pixels, for example shifting, can lead to a
dramatically decreased PSNR. This problem has been
mentioned in our previous work[® with experimental
results.

5.2 Perceptual loss

5.2.1 Adversarial loss

A key relationship between images and statistics is
that we can interpret images as samples from a high-di-
mensional probability distribution. The probability distri-
bution goes over the pixels of images and is what we use
to define whether an image is natural or not. This is
when a Kullback-Leibler (KL) divergence measurement
comes into place. It measures the difference between two
probability distributions, which is different from the Euc-
lidean distance, i.e., L1, L2 loss. It may be tempting to
think of it as a distance metric, but, we cannot use KL
divergence to measure distance between two distribu-
tions because it is not symmetric. Given two distribution
Piata and Pyoder, the forward KL Divergence can be com-
puted as follow:

P,
DKL[Pz\dataHPz\model] = ErNPdma log leﬂ =
z|model
EacNPdata [log Pz\data] - Ea:NPdam [log Pz\modal]~ (13)

The left term is entropy of Ppjqai, Which is dependent
on the model and thus can be ignored. If we sample N of
T € Ppldata When N goes to infinity, following by the law
of large numbers we have

1 n
N Z log P(zilmodel) = —Eznp, 4., [P(z|model)] (14)

where the right term is negative log-likelihood. The
minimum Kullback-Leibler divergence is also equivalent
to the maximum the Log likelihood.

When P,0det = Paata the KL divergence comes to the
minimum 0. It is assumed that human observers learn
Pdata @S a natural distribution or a kind of prior belief.
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The GAN-based model is to encourage reconstructed im-
ages to have similar distributions to the ground truth im-
ages, which refer to adversarial loss as part of the percep-
tual loss in SRGANM3]. Adversarial learning is actually
useful when facing the complicated manifold distribu-
tions in natural images. However, training a GANs-based
model is elusive due to several drawbacks:

1) Hard to achieve Nash Equilibrium®!: According to
game theory, the GANs-based model converges when the
discriminator and generator reach a Nash Equilibrium.
However, updating each model with no respect to each
other cannot guarantee the convergence. Both models can
reach a state when the action of each model does not
matter to each other.

2) Vanishing problem[52: As given in (5), when the
discriminator knows better we can assume that
D(z) =1, V& € pdata and D(z) = 0, Va € pp, and the loss
function falls to 0 and ends up with a vanishing gradient.
As a result, the learning is super slow and even jammed.
Conversely, when the discriminator behaves badly, the
generator does not give accurate feedback.

3) Mode collapsel®3l: a generator generates a limited
diversity of samples, or even the same sample regardless
of the input. We have demonstrated that L; and Ls loss
are special cases of MLE and further KLD is equivalent
to MLE. This finding leads to a question whether there
exists another effective representation of MLE which is a
better representation for image super resolution.

5.2.2 MSE in feature space

The MSE in feature space is to compare two images
based on high-level representations from pre-trained con-
volutional neural networks (trained on image classifica-
tion tasks, e.g., the ImageNet Dataset, as given in
Fig.12).

Style target ph1eul 2 phrchi2 2 ph i3 g3

style style style

T TSN LSO TS (Y
| w A i I N R
'
'
| .

image ™ tranisform riet _Loss network lL ..
4 (VGG-16)

Content target 57&;71"3’3

Fig. 12 Model structure for calculating perceptual loss(43]

Given an input image z, Image Transform Net trans-
forms it into the output image §. Rather than matching
the pixels of output image to the pixels of the target im-
age, they were encouraged to have similar feature repres-
ents as measured by loss network. The perceptual loss
was defined by computing MSE between later set of ac-
tivations, particularly in applied super-resolution or style
transfer. In practice, we can combine different kinds of
loss functions, but, each loss function mentioned has a
particular property. There is not a single loss function
that works for all kinds of data.

@ Springer

6 Challenges and trends

Despite the success of deep learning for SISR tasks,
there are open research questions regarding SISR model
design as discussed below:

1) Need for light structure model: Although
deeper is better, most recent SISR models contain no
more than a hundred layers due to the overfitting prob-
lem. This is because SISR models work on pixel level,
which requires many more parameters than that of im-
age classification. As the model is getting deeper, the
vanishing gradient is becoming more challenging. This
suggests the preference of a light structure model with
fewer parameters and less computation.

2) Adapt well to unknown degradation: Most al-
gorithms highly depend on predetermined assumptions
that LR images are simply down-sampling from HR im-
ages. They were unsuccessful in recovering SR images
with big scale factors due to the lack of learnable fea-
tures on LR images. If noise is present, the accuracy of
reconstruction is deteriorated as a result of the increas-
ing ill-posed problems. A good way to feasibly deal with
unknown degradation is to use transfer learning or a huge
number of training examples. However, there has been
little research on this task hence this needs be further in-
vestigated.

3) Requirement for different assessment criter-
ia: No methods can achieve low distortion and good per-
ceptual quality at the same time. The traditional meas-
urements such as L1/L2 loss can help to generate images
with low distortion, but there is still considerable dis-
agreement with regard to human perception. In contrast,
the integration of perceptual assessment produces more
realistic images, but it suffers from low PSNR. Therefore,
it is necessary to extend more criteria of assessment for
particular applications.

4) Efficiently interpret and exploit prior know-
ledge to reduce ill-posed problems: Until recently,
the deep architecture appears like a black box and we
have limited knowledge of why it works and how it
works. Meanwhile, most SISR algorithms have intro-
duced different structures or connections based on the ex-
periments, neglecting to explain further on why the res-
ult is improved. Another important solution for ill-posed
problems is to combine different constraints as regulizers
for prediction. For example, the combination of different
loss functions, or the use of image segmentation informa-
tion to constrain reconstructed images. That is why a se-
mantic categorical prior[®4 was introduced, attempting to
achieve richer and more realistic textures. The simple
ways to use more prior knowledge are that we can use
MLE as a proxy to incorporate prior knowledge as condi-
tional probability or feed directly into the network whilst
forcing parameters sharing for all kinds of inputs.
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7 Conclusions

This survey has reviewed key papers in single image
super-resolution that underly example-based learning
methods. Among these, we noticed that deep learning
based methods have recently achieved state-of-the-art
performance. Before going into more detail of each al-
gorithm, the general background in each of the categor-
ies was introduced. We have highlighted important con-
tributions of these algorithms, discussed their pros and
cons and suggested future work possible either within cat-
egories or in designated sections. Up to now, we cannot
define which SISR algorithms are the most state-of-the-
art, as this is highly dependent on applications. For in-
stance, an algorithm which is good for medical imaging or
facing processing purposes is not necessarily effective for
remote sensing images. The different constraints imposed
in a problem indicates a need to generate a benchmark
database that specifies the concerns of applications in dif-
ferent fields. Finally, there are outstanding challenges to
exploit algorithms in practical applications since they
have been mainly applied to standard benchmark data-
sets and poorly adapted to different scenarios. This sur-
vey paper has enhanced the understanding of deep learn-
ing based algorithms applied to single image super-resolu-
tion, which can be used as a comprehensive guide for the
beginner and throws up many questions in need of fur-
ther investigation.
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