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Abstract: This paper proposes a new set of 3D rotation scaling and translation invariants of 3D radially shifted Legendre moments.
We aim to develop two kinds of transformed shifted Legendre moments: a 3D substituted radial shifted Legendre moments
(3DSRSLMs) and a 3D weighted radial one (3DWRSLMs). Both are centered on two types of polynomials. In the first case, a new 3D ra-
dial complex moment is proposed. In the second case, new 3D substituted/weighted radial shifted Legendre moments

(3DSRSLMs/3DWRSLMs) are introduced using a spherical representation of volumetric image. 3D invariants as derived from the sug-
gested 3D radial shifted Legendre moments will appear in the third case. To confirm the proposed approach, we have resolved three is-
sues. To confirm the proposed approach, we have resolved three issues: rotation, scaling and translation invariants. The result of experi-
ments shows that the 3DSRSLMs and 3DWRSLMs have done better than the 3D radial complex moments with and without noise. Sim-
ultaneously, the reconstruction converges rapidly to the original image using 3D radial 3DSRSLMs and 3DWRSLMs, and the test of 3D

images are clearly recognized from a set of images that are available in Princeton shape benchmark (PSB) database for 3D image.
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1 Introduction

Continuous moments such as: Legendre, Laguerre,
Zernike and pseudo Zernike have been used in many ap-
plications to achieve invariant recognition and classifica-
tion of image patternsi!-¢l. They have properties that rep-
resent the image with minimum redundant information
under noise-free and noisy

and stochastic image

condition”l. The continuous orthogonal moments de-
scribe the characteristics in image processing and the er-
ror results from the numerical approximation of the in-
tegral. As is well known, the difficulty in the use of mo-
ments is due to their high computational complexity, es-
pecially when a higher order of moments is used. To solve
this problem, many research works have been proposed to
improve the accuracy and efficiency of moment calcula-
tionsll, but these methods mainly focus on 2D and 3D
geometric moments. Orthogonal moments defined in
terms of Legendre and Zernike polynomials have not been
analyzed in detail from the point of view of reducing the
number of computing operations. Recently, El Mallahi et
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al.B11] discussed the radial orthogonal moment invari-
ants for 2D and 3D image recognition. The translation
and scale invariants of these moments can be directly ex-
tracted but the 3D rotation invariance is hardly achieved.
References [12-14] focused on the orthogonal moments in
polar coordinates as: Charlier, Meixner and Bessel-Fouri-
er moments, which easily attain rotation invariance. The
orthogonal Legendre moments are already defined in the
cartesian coordinate. They are used in the domain of im-
age processing and pattern recognition!516, Yang et
al.l7 studied the calculation aspects for both binary and
gray level images by the Legendre moments. Chong et
al.18] discussed invariant of the Legendre moments of
both the translation and scale. A few years ago, Zhang et.
all19; 20] proposed blurred image recognition, image water-
mark detection and extraction method based on the Le-
gendre moments. Recently, Xiao et al.2123] used the mo-
ment invariants for the rotation, translation and scale in-
variance for image recognition, and then the same group
of authors?4 proposed the moments and moment invari-
ants in the Radon space for image analysis. It is well
known that the property of moment invariants of rota-
tion, scaling and translation have a great importance in
3D image processing and 3D pattern recognition. Chong
et al.25 have discussed the rotation scaling and transla-
tion invariance of the 2D Legendre moments. To our best
knowledge, 3D Legendre moment invariants in both rota-
tion, scaling and translation have not been studied. This
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paper suggests a new set of 3D rotation scaling and trans-
lation invariants of 3D radial shifted Legendre moments.
We aim to develop two kinds of transformed shifted Le-
gendre moments: 3D substituted radial shifted Legendre
moments (3DSRSLMs) and 3D weighted radial one
(3DWRSLMs). Both are based on two types of polynomi-
als. New 3D radial complex moment is proposed in the
first part. A new 3D substituted/weighted radial shifted
Legendre moments (3DSRSLMs/3DWRSLMSs) are intro-
duced using a spherical representation of volumetric im-
age in the second part. 3D invariants as derived from the
suggested 3D radial shifted Legendre moments will ap-
pear in the third part. To work out the proposed ap-
proach, we have resolved three issues. The 3D image re-
construction, the invariance of 3D rotation, scaling and
translation and the pattern recognition. The result of ex-
periments show that the 3DSRSLMs and 3DWRSLMs are
better than the 3D radial complex moments. Simultan-
eously, the reconstruction converges rapidly to the origin-
al image using 3D radial 3DSRSLMs and 3DWRSLMs,
and the test of 3D images are clearly recognized from a
set of images that are available in Princeton shape bench-
mark (PSB) database for 3D image. The rest of the pa-
per is organized as follows: Section 2 presents an over-
flow on 3D radial shifted Legendre moments and 3D radi-
al complex moments. Section 3 introduces 3D radial shif-
ted Legendre moment invariants under rotation scaling
and translation. Section 4 presents the pattern recogni-
tion of radial shifted Legendre moment invariants. Section 5
introduces the simulation results of 3D invariant shifted
Legendre moments while Section 6 concludes this paper.

2 3D radial shifted Legendre moments

In this section, we will propose the 3D substituted and
3D weighted radial shifted Legendre moments
(3DSRSLMs, 3DWRSLMs) based on the substituted and
weighted radial shifted Legendre polynomials(26].

We also expressed these moments in terms of new 3D
radial complex moment (3DRCM) to determine the in-
variance with respect to rotation.

2.1 3D radial complex moments

In this subsection, we propose the 3D radial complex
moment of order (p 4+ n + m + 1) defined as

1 27 T 27
CMym= [ [ [ [ s000mpe 0o 1)
0 0 0 0

Pt drddedy
(1)

where f(r,0,¢,1) represents the volumetric image in a
radial spherical system. To prove the invariance of 3D
radial complex moment under rotation transformation,
we will use the Euler in 3D case SO(3)27 with three
successive rotations of Euler angles 6 € [0, 2], ¢ € [0, 7]
and v € [0,27]. Let us choose Z, X, Z as the three axes of
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the coordinate. The rotation R(f, p,) is defined as

cosf sinf 0 1 0 0
R=| —sinf® cosf 0 0 cosy sinf X
0 0 1 0 —singp cosé
cosy siny 0
—siny  cosy 0
0 0 1

(2)

The rotation of the volumetric image f(r,0,p,) is only
defined for any choice of angles with ¢ # 0. For ¢ =0,
we obtain a rotation of angle 6 4 v around the principal
7- axis which is obtained by any mixture of values 6 and
. Let f(r,0,¢,1) represents the 3D image in the Euler
coordinates, which means the vector (r,0,0)" is rotated
by R(0,¢,1) and its three components describe the voxel
at the corresponding X,Y and Z coordinates (Of course,
the origin of the coordinate system X,Y,Z refers to the
center of the image).
If 3D image f(r,60,p,v)is rotated by angles

(6o, @0, 10) the 3D radial complex moment after rotation
is defined as,

1 27 T 27
M :/ / / / IOt metiy) pr1
P 0 0 0 0
F(r,04 00,0 + @o, ¥ + 1bo)drdfdepdy.  (3)

The 3D radial complex moment can be rewritten as

27
priml —/ / / / e I1(0=00) o —im(e—¢0) P+l

e YY) £ (1, 0, 4p)drddpdy

2w 2w
OMgnml: i(nbo+mepo+io) // //

e IMOFmetlV) £ g 5 4h)drdodpdy
CM;nml = ej(n90+m¢0+lw0)CManl .

(4)

From the above formula, the norm of the rotational
3D radial complex moments |C'M,,,,,,| after rotation are
independent of (0o, po, o) and assigning that CMpnm is

given below:
|CM;;nml| = |CMpnml| (5)

We can recall that the 3D radial complex moments
are invariant to 3D rotations. The 3D radial complex mo-
ments CMpnm; with the order (p+n+ m+1) for an im-
age with intensity f(r,0s, ¢, %) are defined as

v—1n—15—-1p0—1

B ) B

=0 s=0 t=0 u=0

CMpnml

_opi(sn g tm  ul
e QJ("+5+Q)f(T7037@t7w“)' (6)

where
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2.2 3D substituted radial shifted Legendre
moments 3DSRSLMs in terms of 3D
radial complex moment

In this subsection, we will present 3D substituted ra-
dial shifted Legendre moments 3DSRSLMs with the or-
der (k +n+m +1) where f(r,0, p,1) represents the volu-
metric image in a radial spherical system.

1 27 ™ 27
_2k+1 / / / / Bu(r)e i nometiv) o
2m3 Jo Jo o Jo

SRknml T 2
Pt E(r, 0, 0, 4)drdfdedip.

(8)

Since SRknm! is defined in terms of spherical coordin-
ates, the computation of these two radial orthogonal mo-
ments requires a suitable transformation of the 3D image
coordinates to a domain inside a unit sphere. The polyno-
mial p,(r) is defined asl7

P.(r)= Z cnir™ )
i=0

where ¢,; is defined as [27]

S n4+1 2
cm:(—l)“( _ )( _ ) (10)
21 7

Figs.1 and 2 display the first orders of Legendre poly-
nomials and substituted radial shifted Legendre polyno-
mials.

The kernel functions Py (r)e0Tme+H) of SRy is

orthogonal over the interior of the unit sphere.

1 27 T 27
[ momreeen
0 0 0 0

Py (1) x efj("l9+m,“’+l/w)rdrd0dgodw =

oS

mékkldnn/émm’éll“ (11)

Using the orthogonality property, the inverse trans-
form of 3DSRSLMs is given by

M M M M

f(r, 0,,%) IZZ Z Z SRinmi P (T)ej(n9+m<p+l1j;).

k=1In=1m=1[=1
(12)

The kernel of function Py (r)e 30+me %) of SRy

can be expressed as radial polynomials
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Fig.1 Plot of Legendre polynomials for the first five orders
defined in interval [-1, 1]. Color versions of one or more of the
figures in this paper are available online.
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Fig. 2 Plot of substituted radial shifted Legendre polynomial
for the first six orders defined in interval [0, 1]

k
Pi(r)e i (n0mette) _ §7 gy o inobmett) 20 (13)
1=0

Therefore, the SRgnmi can be expressed as linear

combination of 3D radial complex moments

k

2k+1

(271'3) chiCMpnml
=0

p=2i. (14)

SRknml =

2.3 3D weighted radial shifted Legendre
moments 3DWRSLMs in terms of 3D
radial complex moment

In this section, we will present 3D weighted radial
shifted Legendre moments 3DWRSLMs with the order
(k+n+m+1) where f(r,0,¢,1) represents the volumet-
ric image in a radial spherical system.
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WRknml

2k + 1 / /Qﬁ/ /Qﬂ- P 7‘](TL9+7TL§D+Z'¢J)
4md

f(r,0,¢,1¢)drdodedi.
(15)
Since W Rinmi is defined in terms of spherical coordin-
ates, the computation of these two radial orthogonal mo-
ments requires a suitable transformation of the 3D image
coordinates to a domain inside a unit sphere, where P, (r)

is defined as(26]
r)= Zcmri*%. (16)
=0

Fig.3 displays the first five orders of weighted radial
shifted Legendre polynomials defined in interval [0, 1].
By (r)e 0+ met V) of W Rypmi are orthogonal over the

interior of the unit sphere

I

rdrdfdedy =

,J(n9+m<p+lw) % Pk/( )X

473

(2]{;—|— 1) 5kk’5nn’5mm’5ll" (17)

Using the orthogonality property, the inverse trans-
form of 3DWRSLMs is given by

M M M M

r,@ 1) ZZZZWRknmPk e i(n0-+me-+iy)

k=1ln=1m=1[=1
(18)

The kernel of function Ij’k(r)efj<"9+m”+w) of W Rinmi

can be expressed as radial polynomials:

k
= 3 e ST E (1)
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Fig.3 Plot of weighted radial shifted Legendre polynomial the
first five orders defined in interval [0, 1]

Therefore, W Rknmi can be expressed as linear

combination of 3D radial complex moments
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k
2k + 1

W Rinmi = Z CkiCMp’nml

1=0
;1

=7i——. 20
p=i-g (20)
3 Rotation, scaling and translation

invariance of 3D radial shifted

Legendre moments

In this section, we present a rotation, scaling and
translation invariance of 3D radial shifted Legendre mo-
ments. For this, we will present the invariant moment as
linear combination of 3D radial complex. The translation
invariance of 3DSRSLMs and 3DWRSLMs can be easily
achieved by transforming the 3D original image to the
geometric center before, the calculation of 3D radial shif-
ted Legendre moments. The scaling and rotation invari-
ance can be achieved by replacing complex moments in
(14) with the complex moment invariants derived in [26] .
The 3DSRSLMs and 3DWRSLMs can be expressed as
linear combination of 3D complex moments. Let
F°(r,0,p,1) be the scaled, and rotated version of image
function f(r,8,p, ) with the scale factor A and rotation
angles (6o, o, ¥0), we have

fsr(r79a¢7w):f(§79+907§0+§007w+¢0)' (21)

According to (8), the 3DSRSLMs of scaled and ro-
tated image is

1 27 27
SRimmi :27;7:; / / / / P e infemime

e*J“"f(X,0+eo,sowo,wwo)rdrdedsodw.
(22)

By letting ' =% 0 =60+6, ¢ =¢+vo,
Y =1+, we have r= X', 0 =0"— 0o, = ¢ — o,
=1 — o, dr = Mdr’, d§ = d6’, dp = d¢’ and dyp = dy’.
Equation (22) can be written as

1 27 ™ 27
SRanZ_ 227’L+ 1/ / / / Pn(AT')eijnwliQO)X
ar® Jo Jo Jo Jo
efjm(w'*wo)e*jl(w'fwo)f(rf 0, 4,0, ¢ )rdrdfdedy =

k
; (2k+1) ;
eJ(n9o+m<Po+lwo) Z + Z )\2Z+20kidirSanml
=0

(2r+1)
(23)
where P, ()\r) is defined as[27]
Ar) =3 AP egidir Pe(r) (24)

k=0 i=k

where ci; and d;. are the elements of matrix Cyx and Dy,
respectively.
d;, is given by(27]
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_ @+ 1)@EH3E
dir = G—7)GE+r+1)" (25)

Analogous with the derivation process of SRinmi, the
3DWRSLMs of scaled and rotated image can be written as

— el (MPo+meo+ivo) Z 2k+1 Z )\i+%ckidir><

W Rj,
knml o + 1

Wanml-
(26)

We can define the substituted radial shifted 3D Le-
gendre moment invariants and weighted radial shifted 3D
Legendre moment invariants as follows:

jnarg(SRo100) Jjmarg(SRoo10) zilarg(SRooo1)

SIknml =€

k
2k+1
Z 2+ 1 Z WRoooo Ckidir S Rrnmi (27)

W Tinmi _e.lnaTg(WRomo) .lmm‘g(WRoom)eJlam(WRoom) %

2k +1
Z o +1 Z WROO()O CkidirW Rypmi.
0

r=

(28)

Then, Slknmi and W lg,m are scaling and rotation in-
variants radial shifted 3D Legendre moment for any or-
ders k, n, m and I. For the proof, see Appendix.

4 Pattern recognition
4.1 Objet recognition

These 3DSRSLMs and 3DWRSLMs can then be used
to form the descriptor vector of every 3D object. Specific-
ally, the descriptor vector is composed of 3DSRSLMs and
3DWRSLMs up to order S, where S is experimentally se-
lected. The characteristic vectors Vsp are represented as

Vip = [kanml/WIknml\k+n+m+l (S [0,1,--- ,SH (29)

To perform the recognition of 3D objects to their ap-
propriate classes, we use two methods based on Euc-
lidean distances and distance of correlations measuring
the distance from Vgyery and Vies: where V' represents the
characteristic vectors V3p.

T
2
dBuclidean (unery: V;f}e(st) = Z query test) (30)

Jj=0
and
T
dCorrelation(uneryav;teef E query tpgt X

Jj=0

s T 1

. . 1 . .
E J J -3 J J -3
(unerquuery) 2 X (‘/test‘/test) 2 (31)
j=0 j=0

where the T-dimensional feature Vjyery is represented as

1 2
unery = [unery7 une'r'ya Tt

Vinery) (32)

and the T-dimensional training vector of class K is
represented as

Vit = Vibst, Viests -+ Viest]- (33)

4.2 Classification criteria

Therefore, to classify the images, one takes the minim-
um values for dguciidean and the maximum values for
dcorrelation- The recognition precision is represented as

Number of correctly classified images

x 100%.
Number of images used in the test ¢

(34)

C:

To prove the accuracy of the reconstruction, classifica-
tion and recognition of images using radial shifted Le-
gendre moment invariants for 3D image recognition, we
will use Princeton shape benchmark (PSB) databasel28].

5 Simulation results

In this section, we give the experimental results to
validate the theoretical framework results developed in
the previous sections. This section is divided into three
subsections. In the first subsection, the 3D image recon-
struction capability of 3DSRSLMs and 3DWRSLMs is
addressed. In the second subsection, the invariability of
Slknmi and Wlgnm under the three transformations in-
cluding translation, scaling and rotation is presented. In
the third subsection, we discuss the computational com-
plexities of 3DSRSLMs, 3DWRSLMs, and the comparis-
on with that of 3D radial complex moments.

5.1 Volumetric image reconstruction of
3DSRSLMs and 3DWRSLMs

In this experiment, the volumetric image reconstruc-
tion capability of 3DSRSLMs and 3DWRSLMs is shown.
A comparison with 3D radial complex moments is also
given in this subsection. We employed the 3D statistical
normalization image reconstruction error to measure the
performance of the volumetric image reconstruction.

o IS @y, 2) - f(,y,2)] dadydz
fffjf; f(z,y, z)’dedydz

where f(z,y,2) is the original image, f(x,y,z2)is the
reconstructed volumetric image. The plot of reconstructed
volumetric images with different order moments of 3D
radial complex moments, 3DSRSLMs and 3DWRSLMs is
shown in Fig.4(a).
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5.2 Computational complexities

This experiment is designed to test the computational
complexities of 3DSRSLMs and 3DWRSLMs. A compar-
ison with that of 3DRCMs is also provided in this experi-
ment. The simulation experiment was run on a personal
computer with CPU Intel core 13, 2.53 GHz, 4 GB RAM,
and the operating system was Windows 10. The volumet-
ric images from the Princeton shape benchmark with size
of 128 x 128 x 128 were employed for experimenting. The

0.6

——3DWRSLMs
——3DSRSLMs
——3DRCMs

05

04 r

2
203
02 |

0.1

0 10 20 30 40 50 60 70 80 90 100
Maximum odrer of moments

(2)

Computation CPU time (s)
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recurrence formula of 3D substituted and 3D weighted ra-
dial Legendre polynomials of 3DSRSLMs and
3DWRSLMs provided in (13) and (19) are used for rapid
and exact computation, Fig.4(b) shows the computation
time of 3DSRSLMs, 3DWRSLMs and 3DRCMs with
maximum order of moments increased from 1 to 35. Fur-
thermore, the computation time of 3DSRSLMs and
3DWRSLMs is lower than 3DRCMs. Therefore, the
3DSRSLMs and 3DWRSLMs are very efficient and will
see vast potential in image analysis and recognition.

45 : : : : : :
40 + ——3DRCMs T
351 ---3DWRSLMs 1

30
251
20 1
15
1.0 |
05
0

——3DSRSLMs

0 5 10 15 20 25
Maximum order of moments

(b

35

Fig.4 Reconstruction error and computation time. (a) Comparative study of reconstruction error of SDSRSLMs, 3DWRSLMs and 3D
radial complex moments for the head volumetric image, the size of image is 128 x 128 x 128; (b) Computation time to compute
3DSRSLMs and 3DWRSLMs and 3DRCMs with maximum order of moments increased from 1 to 35.

150 0

©
Fig. 5

150

120

150 0
(d

A set of transformed pattern of the original head image with combination of rotation. (a) Original volumetric image; (b)

(A= 0.8;00 = 90; 0o = —180; 0o = 120); (c) (A = 0.9;00 = —90; o = —90; b0 = —180); (d) (A = 1.2;00 = 90; o = 90; b = 180).
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Table 1 Proposed extracted invariants for the head image

175

Original image (a)

Transformation (b)

Transformation (c)

Transformation (d)

o/u

SToo00
W o001
Sloo1o
W lo100
STo00
Wlgo11
SToi01
W oot
STh100
W10

230.6754

242.5011

312.2310

324.1101

411.7511

414.5430

512.1201

513.5411

675.3310

681.0980

230.6754

242.5011

312.9567

324.3410

411.8091

414.0987

513.2341

514.0098

676.1209

682.4356

230.6754

242.5011

312.1818

324.9800

413.5541

416.0091

513.4201

516.1431

677.3410

684.564 3

230.6754

242.5011

312.4288

324.1101

412.2006

415.6710

514.1211

517.1098

679.9980

685.8901

0.000000 X 10°

0.000000X10°

1.096331X 103

1.089800X 103

1.230091X1073

1.120098 X103

1.452699X 103

1.477900X 1073

1.492612X103

1.507099X 103

5.3 Invariability for 3D radial shifted Le-
gendre moment

To validate the rotational invariance property of the
3D radial Legendre moments, the 128 x 128 x 128 head
image is illustrated. There scaled and rotated version
which has (A= 0.8, 8y = 90, wo = —180, 1o = 120); (A =
0.9, 6o = —90, po = —90, o = —180); (A = 1.2, 6y = 90,
wo = 90, Yo = 180) as shown in Fig.5 will be used. The
of the invariants (SToo00, W10000);

(STio10, Wlio1o); (STiror, Wliio1);

selected orders
(SToo11, Wloon1);

0 7150

100

x 150 y
(©)

Fig. 6

Reconstruction errors

. N
(511110, W1110) and (511111, WIHH) with n = 5, 6 =4N

are computed for each image. The results of simulation
are shown in Table 1. Lastly, the ratio 7 can be used to
I

measure the capability of the proposed 3D rotation in-
variants under different image transformation, where o
represents the standard deviation, and g is the equival-

ent mean value. Table 1 shows that the ratio _ is very

low and consequently the 3D radial shifted Legendre mo-
ment invariants are very stable under different types of
3D image rotation. Hence, the property of invariability of

120
1001

80

60
40
20

0 L 1§

0 50
0.6 ———

——Zero-mean Gaussian noise
05 with variance = 0.2
-+ Zero-mean Gaussian noise
04 % with variance = 0.1
\! .

03 \ Salt-and-pepper noise
0.2
0.1

0 10 20 30 40 50 60 70 80 90 100

Order
(d)

Different types of noises. (a) Zero-mean Gaussian noise with variance = 0.1; (b) Zero-mean Gaussian noise with variance = 0.2;

(c) Salt-and-pepper noise; (d) Comparative analysis of reconstruction errors using different noise.
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radial shifted Legendre moment will be used for pattern
recognition.

5.4 Robustness of 3D reconstruction with
Gaussian noise

To show the robustness of the proposed 3D radial shif-
ted Legendre moments against the negative effects of dif-
ferent types of noise, a numerical experiment is per-
formed using three types of noises. The first type of

0 and variance = 1%),

Gaussian noise is with (mean
the second type is Gaussian noise is with (mean = 0 and
variance = 2%), and the third type is salt and pepper
(5%), these three types are shown in Fig.6. The 3D im-
age is reconstructed using the proposed 3D radial shifted
Legendre moments of order ranging from 0 to 100. The
plotted curves of mean squared error (MSE) for the noise

International Journal of Automation and Computing 15(2), April 2018

contaminated 3D image are clearly displayed in Fig.6(d).
The results of these experiments show the robustness of
3D radial shifted Legendre moments against different
types of noise. Therefore, we can say that the proposed
descriptor is very robust against salt and pepper noise
and less robust against Gaussian noise. We can see from
the Figs. 6(a) to 6(d) that proposed descriptor is very ro-
bust against zero-mean Gaussian noise less robust against
salt-and-pepper noise.

5.5 Classification for 3D radial shifted Le-
gendre moment

To prove the proposed method for classification, we
have taken the image from the Princeton shape bench-
mark (PSB) databasel28l. Being known, this database con-
sists of 907 3D models into 35 main categories and 92

Table 2 Euclidean distance and correlation coefficient between noise-free image and same images of classes from PSB database

100 120 20

Original volumetric chair image of size 128 X 128 X 128 voxels

w60
40
2045
x 8 D40
dbm»udfan 2.887 6 2.8231 2498 1
Correlation 0451 7 0371 2 0120 O
90
11 ; 90 { 70
90 ! N
w701 - 70 Z:é
50 “ﬁr—‘ S
39 - 50 28 632 Y70
20730 255520 0 20 40 60 80 100 *° 8030 40" 60 80 100
¥ X
Euclidian 3.770 0 17787 25611
Correlation 0.8619 0.8909 0.234 4
11
90
100 W 70 -
"o 50.
20 100
60 60 3
T 100720 30 50 70 9070 0
D 5
Dctiian 2741 1 2.898 6
Correlation 0.160 8 0.1211

Table 3 Classification results of Princeton shape benchmark using d gyciidian distance

3D invariant moments Noise free 1% 2% 3% 4%
3D radial Krawtchouk 100% 89.61% 86.25% 80.97% 61.36%
Proposed method 100% 93.25% 90.32% 85.35% 69.03%
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subcategories. All images of this database have the size
128 x 128 x 128. The similarity between the 3D image
query and all of the other selected 3D objects has been
determined, and the obtained results have been shown in
Table 2. Based on these results, the minimum value of
the Euclidean distances dguciidean and the maximum

value of the correlation coefficients dcorrelation have been
computed between feature vectors Viyuery and Viest

(class). The test set also is degraded by salt and pepper
noise with noise densities 1%, 2%, 3% and 4%. The fea-
ture vector based on 3D rotational radial shifted Le-
gendre's moment invariants cited in (29) are used to clas-
sify these images and their recognition accuracy is com-
pared with that of 3D radial complex moment invariants.
The results of the classification using all features are
presented in Table 3.

6 Conclusions

In this article, we have proposed a new set of 3D rota-

Appendix

Proof.
We can rewrite (27) in matrix form as

sr
SIOnml
sr
SIlnml
_ ejnarg(SRg{Oo)ejmarg(SR(sJSlU)ejla’rg(SRSSOl)

sT
S[knml

(SRinm) ™"

(SRS”,V‘LTVLl ) -

(SREm) Y

arg(SRy100) = arg(SRo100) + 6o
arg(SRoo10) = arg(SRoo10) + %o
arg(SRoo1) = arg(SRooo1) + Yo
SR3600 = A*SRoooo.

From (27), we can also get

tion, scaling and translation invariants based on 3D or-
thogonal radial shifted Legendre moments. In the first
case, a new 3D radial complex moment has been pro-
posed. In the second case, new 3D substituted/weighted
radial  shifted (3DSRSLMs/
3DWRSLMSs) have been introduced using a spherical rep-

Legendre  moments
resentation of volumetric image. 3D invariants as derived
from the suggested 3D radial shifted Legendre moments
have appeared in the third case. In order to prove the
proposed approach, we have resolved three issues, 3D im-
age reconstruction, geometric transformations and pat-
tern recognition. Furthermore, the result of experiments
have shown that the 3DSRSLMs and 3DWRSLMs mo-
ments have done better than the 3D radial complex mo-
ments. Simultaneously, the reconstruction has converged
rapidly to the original image using 3D radial 3DSRSLMs
and 3DWRSLMs moments, and the test of 3D images has
been clearly recognized from a set of images that are
available in PSB database for 3D image.

€00
3 cio  Ci1
X
2k +1 Cko  Chki Ckk
1 sTr
dOO SROnml
1
dio  di1 3 SRpmi
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By substituting the two last equations, we get
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Equation (27) can be rewritten as
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ST
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Proof of (28) is same as the proof of (27). O
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