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Abstract:   This paper proposes a new set of 3D rotation scaling and translation invariants of 3D radially shifted Legendre moments.
We aim to develop two kinds of transformed shifted Legendre moments: a 3D substituted radial shifted Legendre moments
(3DSRSLMs) and a 3D weighted radial one (3DWRSLMs). Both are centered on two types of polynomials. In the first case, a new 3D ra-
dial complex moment is proposed. In the second case, new 3D substituted/weighted radial shifted Legendre moments
(3DSRSLMs/3DWRSLMs) are introduced using a spherical representation of volumetric image. 3D invariants as derived from the sug-
gested 3D radial shifted Legendre moments will appear in the third case. To confirm the proposed approach, we have resolved three is-
sues. To confirm the proposed approach, we have resolved three issues: rotation, scaling and translation invariants. The result of experi-
ments shows that the 3DSRSLMs and 3DWRSLMs have done better than the 3D radial complex moments with and without noise. Sim-
ultaneously, the reconstruction converges rapidly to the original image using 3D radial 3DSRSLMs and 3DWRSLMs, and the test of 3D
images are clearly recognized from a set of images that are available in Princeton shape benchmark (PSB) database for 3D image.

Keywords:   3D radial complex moments, 3D radial shifted Legendre radial moments, radial shifted Legendre polynomials, 3D image
reconstruction, 3D rotation scaling translation invariants, 3D image recognition, computational complexities.

 

1   Introduction

Continuous  moments  such  as:  Legendre,  Laguerre,

Zernike and pseudo Zernike have been used in many ap-

plications  to  achieve  invariant  recognition and classifica-

tion of image patterns[1–6]. They have properties that rep-

resent  the  image  with  minimum  redundant  information

and  stochastic  image  under  noise-free  and  noisy

condition[7].  The  continuous  orthogonal  moments  de-

scribe the characteristics in image processing and the er-

ror  results  from  the  numerical  approximation  of  the  in-

tegral. As is well known, the difficulty in the use of mo-

ments is due to their high computational complexity, es-

pecially when a higher order of moments is used. To solve

this problem, many research works have been proposed to

improve  the  accuracy  and  efficiency  of  moment  calcula-

tions[7],  but  these  methods  mainly  focus  on  2D  and  3D

geometric  moments.  Orthogonal  moments  defined  in

terms of Legendre and Zernike polynomials have not been

analyzed in detail from the point of view of reducing the

number of computing operations. Recently, El Mallahi et

al.[8–11] discussed  the  radial  orthogonal  moment  invari-

ants  for  2D  and  3D  image  recognition.  The  translation

and scale invariants of these moments can be directly ex-

tracted but the 3D rotation invariance is hardly achieved.

References [12–14] focused on the orthogonal moments in

polar coordinates as: Charlier, Meixner and Bessel-Fouri-

er moments, which easily attain rotation invariance. The

orthogonal Legendre moments are already defined in the

cartesian coordinate. They are used in the domain of im-

age  processing  and  pattern  recognition[15, 16].  Yang  et

al.[17] studied the calculation aspects for both binary and

gray  level  images  by  the  Legendre  moments.  Chong  et

al.[18] discussed  invariant  of  the  Legendre  moments  of

both the translation and scale. A few years ago, Zhang et.

al[19, 20] proposed blurred image recognition, image water-

mark  detection  and extraction  method based  on  the  Le-

gendre moments. Recently, Xiao et al.[21–23] used the mo-

ment invariants for the rotation, translation and scale in-

variance for image recognition, and then the same group

of authors[24] proposed the moments and moment invari-

ants  in  the  Radon  space  for  image  analysis.  It  is  well

known  that  the  property  of  moment  invariants  of  rota-

tion,  scaling  and  translation  have  a  great  importance  in

3D image  processing  and 3D pattern  recognition.  Chong

et  al.[25] have  discussed  the  rotation  scaling  and  transla-

tion invariance of the 2D Legendre moments. To our best

knowledge, 3D Legendre moment invariants in both rota-

tion, scaling and translation have not been studied. This
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paper suggests a new set of 3D rotation scaling and trans-

lation invariants of 3D radial shifted Legendre moments.

We aim to develop two kinds of transformed shifted Le-

gendre  moments:  3D  substituted  radial  shifted  Legendre

moments  (3DSRSLMs)  and  3D  weighted  radial  one

(3DWRSLMs). Both are based on two types of polynomi-

als.  New  3D  radial  complex  moment  is  proposed  in  the

first  part.  A new 3D substituted/weighted  radial  shifted

Legendre  moments  (3DSRSLMs/3DWRSLMs)  are  intro-

duced  using  a  spherical  representation  of  volumetric  im-

age in the second part. 3D invariants as derived from the

suggested  3D  radial  shifted  Legendre  moments  will  ap-

pear  in  the  third  part.  To  work  out  the  proposed  ap-

proach, we have resolved three issues. The 3D image re-

construction,  the  invariance  of  3D  rotation,  scaling  and

translation and the pattern recognition. The result of ex-

periments show that the 3DSRSLMs and 3DWRSLMs are

better  than  the  3D  radial  complex  moments.  Simultan-

eously, the reconstruction converges rapidly to the origin-

al  image  using  3D  radial  3DSRSLMs  and  3DWRSLMs,

and the  test  of  3D images  are  clearly  recognized  from a

set of images that are available in Princeton shape bench-

mark (PSB) database  for  3D image.  The rest  of  the  pa-

per  is  organized  as  follows:  Section  2  presents  an  over-

flow on 3D radial shifted Legendre moments and 3D radi-

al complex moments. Section 3 introduces 3D radial shif-

ted  Legendre  moment  invariants  under  rotation  scaling

and  translation.  Section  4  presents  the  pattern  recogni-

tion of radial shifted Legendre moment invariants. Section 5

introduces  the  simulation  results  of  3D invariant  shifted

Legendre moments while Section 6 concludes this paper.

2   3D radial shifted Legendre moments

In this section, we will propose the 3D substituted and

3D  weighted  radial  shifted  Legendre  moments

(3DSRSLMs, 3DWRSLMs) based on the substituted and

weighted radial shifted Legendre polynomials[26].

We also expressed these moments in terms of new 3D

radial  complex  moment  (3DRCM)  to  determine  the  in-

variance with respect to rotation.

2.1   3D radial complex moments

(p+ n+m+ l)

In this subsection, we propose the 3D radial  complex

moment of order  defined as

CMpnml =

∫ 1

0

∫ 2π

0

∫ π

0

∫ 2π

0

f(r, θ, φ, ψ)e−j(nθ+mφ+lψ)×

rp+1drdθdφdψ
(1)

f(r, θ, φ, ψ)

SO(3)

θ ∈ [0, 2π] φ ∈ [0, π]

ψ ∈ [0, 2π] Z,X,Z

where  represents  the  volumetric  image  in  a

radial  spherical  system.  To  prove  the  invariance  of  3D

radial  complex  moment  under  rotation  transformation,

we  will  use  the  Euler  in  3D  case [27] with  three

successive  rotations  of  Euler  angles , 

and . Let us choose  as the three axes of

R(θ, φ, ψ)the coordinate. The rotation  is defined as

R =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 1 0 0
0 cosφ sin θ
0 − sinφ cos θ

×

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 .

(2)

f(r, θ, φ, ψ)

φ ̸= 0 φ = 0

θ + ψ

Z θ

ψ f(r, θ, φ, ψ)

(r, 0, 0)T

R(θ, φ, ψ)

X,Y Z

X, Y, Z

The rotation of  the volumetric image  is  only

defined  for  any  choice  of  angles  with .  For ,

we obtain a rotation of angle  around the principal

- axis which is obtained by any mixture of values  and

.  Let  represents  the  3D image  in  the  Euler

coordinates,  which  means  the  vector  is  rotated

by  and its three components describe the voxel

at the corresponding  and  coordinates (Of course,

the  origin  of  the  coordinate  system  refers  to  the

center of the image).

f(r, θ, φ, ψ)

(θ0, φ0, ψ0)

If  3D  image  is  rotated  by  angles

 the 3D radial complex moment after rotation

is defined as,

CMr
pnml =

∫ 1

0

∫ 2π

0

∫ π

0

∫ 2π

0

e−j(nθ+mφ+lψ)rp+1×

f(r, θ + θ0, φ+ φ0, ψ + ψ0)drdθdφdψ. (3)

The 3D radial complex moment can be rewritten as

CMr
pnml =

∫ 1

0

∫ 2π

0

∫ π

0

∫ 2π

0

e−jn(θ−θ0)e−jm(φ−φ0)rp+1×

e−jl(ψ−ψ0)f(r, θ, φ, ψ)drdθdφdψ

CMr
pnml = ej(nθ0+mφ0+lψ0)

∫ 1

0

∫ 2π

0

∫ π

0

∫ 2π

0

rp+1×

e−j(nθ+mφ+lψ)f(r, θ, φ, ψ)drdθdφdψ

CMr
pnml = ej(nθ0+mφ0+lψ0)CMpnml.

(4)

|CMr
pnml|

(θ0, φ0, ψ0) CMpnml

From  the  above  formula,  the  norm  of  the  rotational

3D radial  complex  moments  after  rotation  are

independent of  and assigning that  is

given below:

|CMr
pnml| = |CMpnml|. (5)

CMpnml (p+ n+m+ l)

f(r, θs, φt, ψu)

We  can  recall  that  the  3D  radial  complex  moments

are invariant to 3D rotations. The 3D radial complex mo-

ments  with the order  for an im-

age with intensity  are defined as

CMpnml =
1

η + δ + ϱ

v−1∑
r=0

η−1∑
s=0

δ−1∑
t=0

ϱ−1∑
u=0

rp+1×

e
−2πj( sn

η
+ tm

δ
+ul

ϱ
)
f(r, θs, φt, ψu). (6)

where
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θs =
2πs

η
, s = 0, 1, · · · , η − 1

φt =
πt+ 0.5

δ
, t = 0, 1, · · · , δ − 1

ψu =
2πu

ϱ
, u = 0, 1, · · · , ϱ− 1. (7)

2.2   3D substituted radial shifted Legendre
moments 3DSRSLMs in terms of 3D
radial complex moment

(k + n+m+ l) f(r, θ, φ, ψ)

In this subsection, we will  present 3D substituted ra-

dial  shifted  Legendre  moments  3DSRSLMs  with  the  or-

der  where  represents the volu-

metric image in a radial spherical system.

SRknml =
2k + 1

2π3

∫ 1

0

∫ 2π

0

∫ π

0

∫ 2π

0

P̄k(r)e
−j(nθ+mφ+lψ)×

rp+1f(r, θ, φ, ψ)drdθdφdψ.
(8)

SRknml

pn(r)

Since  is defined in terms of spherical coordin-

ates, the computation of these two radial orthogonal mo-

ments requires a suitable transformation of the 3D image

coordinates to a domain inside a unit sphere. The polyno-

mial  is defined as[27]

P̄n(r) =

n∑
i=0

cnir
2i (9)

cniwhere  is defined as [27]

cni = (−1)n−i
(

n+ i

2i

)(
2i

i

)
. (10)

Figs. 1 and 2 display the first orders of Legendre poly-

nomials  and  substituted  radial  shifted  Legendre  polyno-

mials.

P̄k(r)e
−j(nθ+mφ+lψ) SRknmlThe kernel functions  of  is

orthogonal over the interior of the unit sphere.∫ 1

0

∫ 2π

0

∫ π

0

∫ 2π

0

P̄k(r)e
−j(nθ+mφ+lψ)×

P̄k′(r)× e−j(n′θ+m′φ+l′ψ)rdrdθdφdψ =

2π3

2k + 1
δkk′δnn′δmm′δll′ . (11)

Using  the  orthogonality  property,  the  inverse  trans-

form of 3DSRSLMs is given by

f̄(r, θ, φ, ψ)=

M∑
k=1

M∑
n=1

M∑
m=1

M∑
l=1

SRknmlP̄k(r)e
j(nθ+mφ+lψ).

(12)

P̄k(r)e
−j(nθ+mφ+lψ) SRknmlThe kernel  of  function  of 

can be expressed as radial polynomials

P̄k(r)e
−j(nθ+mφ+lψ) =

k∑
i=0

ckie
−j(nθ+mφ+lψ)r2i. (13)

SRknmlTherefore,  the  can  be  expressed  as  linear

combination of 3D radial complex moments

SRknml =
2k + 1

(2π3)

k∑
i=0

ckiCMpnml

p = 2i. (14)

2.3   3D weighted radial shifted Legendre

moments 3DWRSLMs in terms of 3D

radial complex moment

(k + n+m+ l) f(r, θ, φ, ψ)

In  this  section,  we  will  present  3D  weighted  radial

shifted  Legendre  moments  3DWRSLMs  with  the  order

 where  represents the volumet-

ric image in a radial spherical system.
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Fig. 1     Plot  of  Legendre  polynomials  for  the  first  five  orders
defined in interval [–1, 1]. Color versions of one or more of the
figures in this paper are available online.
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Fig. 2     Plot of substituted radial shifted Legendre polynomial
for the first six orders defined in interval [0, 1]
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WRknml =
2k + 1

4π3

∫ 1

0

∫ 2π

0

∫ π

0

∫ 2π

0

P̃n(r)e
−j(nθ+mφ+lψ)×

f(r, θ, φ, ψ)drdθdφdψ.
(15)

WRknml

P̃n(r)

Since  is defined in terms of spherical coordin-

ates, the computation of these two radial orthogonal mo-

ments requires a suitable transformation of the 3D image

coordinates to a domain inside a unit sphere, where 

is defined as[26]

P̃n(r) =

n∑
i=0

cnir
i− 1

2 . (16)

P̃k(r)e
−j(nθ+mφ+lψ) WRknml

Fig. 3 displays  the  first  five  orders  of  weighted  radial

shifted  Legendre  polynomials  defined  in  interval  [0,  1].

 of  are  orthogonal  over  the

interior of the unit sphere∫ 1

0

∫ 2π

0

∫ π

0

∫ 2π

0

P̃k(r)e
−j(nθ+mφ+lψ) × P̃k′(r)×

rdrdθdφdψ =
4π3

(2k + 1)
δkk′δnn′δmm′δll′ . (17)

Using  the  orthogonality  property,  the  inverse  trans-

form of 3DWRSLMs is given by

f̃(r, θ, φ, ψ)=

M∑
k=1

M∑
n=1

M∑
m=1

M∑
l=1

WRknmlP̃k(r)e
j(nθ+mφ+lψ).

(18)

P̃k(r)e
−j(nθ+mφ+lψ) WRknmlThe  kernel  of  function  of 

can be expressed as radial polynomials:

P̃k(r)e
−j(nθ+mφ+lψ) =

k∑
i=0

ckie
−j(nθ+mφ+lψ)ri−

1
2 . (19)

WRknmlTherefore,  can  be  expressed  as  linear

combination of 3D radial complex moments

WRknml =
2k + 1

4π3

k∑
i=0

ckiCMp′nml

p′ = i− 1

2
. (20)

3   Rotation, scaling and translation
invariance of 3D radial shifted
Legendre moments

fsr(r, θ, φ, ψ)

f(r, θ, φ, ψ) λ

(θ0, φ0, ψ0)

In  this  section,  we  present  a  rotation,  scaling  and

translation  invariance  of  3D radial  shifted  Legendre  mo-

ments. For this, we will present the invariant moment as

linear combination of 3D radial complex. The translation

invariance  of  3DSRSLMs and 3DWRSLMs can be easily

achieved  by  transforming  the  3D  original  image  to  the

geometric center before, the calculation of 3D radial shif-

ted  Legendre  moments.  The  scaling  and  rotation  invari-

ance  can  be  achieved  by  replacing  complex  moments  in

(14) with the complex moment invariants derived in [26] .

The  3DSRSLMs  and  3DWRSLMs  can  be  expressed  as

linear  combination  of  3D  complex  moments.  Let

 be the scaled, and rotated version of image

function  with the scale factor  and rotation

angles , we have

fsr(r, θ, φ, ψ) = f(
r

λ
, θ + θ0, φ+ φ0, ψ + ψ0). (21)

According  to  (8),  the  3DSRSLMs  of  scaled  and  ro-

tated image is

SRsrknml =
2n+ 1

2π3

∫ 1

0

∫ 2π

0

∫ π

0

∫ 2π

0

P̄n(r)e
−jnθe−jmφ×

e−jlψf(
r

λ
, θ+θ0, φ+φ0, ψ+ψ0)rdrdθdφdψ.

(22)

r′ = r
λ

θ′ = θ + θ0 φ′ = φ+ φ0

ψ′ = ψ + ψ0 r = λr′ θ = θ′ − θ0 φ = φ′ − φ0

ψ = ψ′ − ψ0 dr = λdr′ dθ = dθ′ dφ = dφ′ dψ = dψ′

By  letting , , ,

,  we  have , , ,

, , ,  and .

Equation (22) can be written as

SRsrknml=λ
2 2n+ 1

4π3

∫ 1

0

∫ 2π

0

∫ π

0

∫ 2π

0

P̄n(λr)e
−jn(θ′−θ0)×

e−jm(φ′−φ0)e−jl(ψ′−ψ0)f(r′, θ′, φ′, ψ′)rdrdθdφdψ =

ej(nθ0+mφ0+lψ0)
k∑
r=0

(2k + 1)

(2r + 1)

k∑
i=r

λ2i+2ckidirSRrnml

(23)

P̄n(λr)where  is defined as[27]

P̄n(λr) =

n∑
k=0

n∑
i=k

λ2ickidirP̄k(r) (24)

cki dir Ck Dkwhere  and  are the elements of matrix  and ,

respectively.

dir is given by[27]
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Fig. 3     Plot of weighted radial shifted Legendre polynomial the
first five orders defined in interval [0, 1]
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dir =
(2r + 1)(i!)(i!)

(i− r)!(i+ r + 1)!
. (25)

SRknmlAnalogous with the derivation process of , the

3DWRSLMs of scaled and rotated image can be written as

WRsrknml =ej(nθ0+mφ0+lψ0)
k∑
r=0

2k + 1

2r + 1

k∑
i=r

λi+
3
2 ckidir×

WRrnml.
(26)

We  can  define  the  substituted  radial  shifted  3D  Le-

gendre moment invariants and weighted radial shifted 3D

Legendre moment invariants as follows:

SIknml =ejnarg(SR0100)ejmarg(SR0010)ejlarg(SR0001)×
k∑
r=0

2k + 1

2r + 1

k∑
i=r

WR
2i+3

3
0000 ckidirSRrnml (27)

WIknml =ejnarg(WR0100)ejmarg(WR0010)ejlarg(WR0001)×
k∑
r=0

2k + 1

2r + 1

k∑
i=r

WR
2i+3

3
0000 ckidirWRrnml.

(28)

SIknml WIknmlThen,  and  are scaling and rotation in-

variants  radial  shifted  3D  Legendre  moment  for  any  or-

ders k, n, m and l. For the proof, see Appendix.

4   Pattern recognition

4.1   Objet recognition

V3D

These 3DSRSLMs and 3DWRSLMs can then be used

to form the descriptor vector of every 3D object. Specific-

ally, the descriptor vector is composed of 3DSRSLMs and

3DWRSLMs up to order S, where S is experimentally se-

lected. The characteristic vectors  are represented as

V3D = [SIknml/WIknml|k+n+m+ l ∈ [0, 1, · · · , S]]. (29)

Vquery Vtest V

V3D

To perform the recognition of 3D objects to their ap-

propriate  classes,  we  use  two  methods  based  on  Euc-

lidean  distances  and  distance  of  correlations  measuring

the distance from  and  where  represents the

characteristic vectors .

dEuclidean(Vquery, V
K
test) =

√√√√ T∑
j=0

(V jquery − V jtest)
2 (30)

and

dCorrelation(Vquery, V
K
test) =

T∑
j=0

(V jqueryV
j
test)×∣∣∣∣∣

r∑
j=0

(V jqueryV
j
query)

∣∣∣∣∣− 1
2 ×

∣∣∣∣∣
r∑
j=0

(V jtestV
j
test)

∣∣∣∣∣− 1
2 (31)

Vquerywhere the T-dimensional feature  is represented as

Vquery = [V 1
query, V

2
query, · · · , V T

query] (32)

Kand  the T-dimensional  training  vector  of  class  is

represented as

V Ktest = [V 1
test, V

2
test, · · · , V T

test]. (33)

4.2   Classification criteria

dEuclidean
dCorrelation

Therefore, to classify the images, one takes the minim-

um  values  for  and  the  maximum  values  for

. The recognition precision is represented as

ζ =
Number of correctly classified images

Number of images used in the test
× 100%.

(34)

To prove the accuracy of the reconstruction, classifica-

tion  and  recognition  of  images  using  radial  shifted  Le-

gendre  moment  invariants  for  3D  image  recognition,  we

will use Princeton shape benchmark (PSB) database[28].

5   Simulation results

3DSRSLMs 3DWRSLMs

SIknml WIknml

3DSRSLMs 3DWRSLMs

In  this  section,  we  give  the  experimental  results  to

validate  the  theoretical  framework  results  developed  in

the  previous  sections.  This  section  is  divided  into  three

subsections.  In  the  first  subsection,  the  3D image recon-

struction  capability  of  and  is

addressed.  In  the  second  subsection,  the  invariability  of

 and  under  the  three  transformations  in-

cluding  translation,  scaling  and  rotation  is  presented.  In

the  third  subsection,  we  discuss  the  computational  com-

plexities  of , ,  and  the  comparis-

on with that of 3D radial complex moments.

5.1   Volumetric image reconstruction of
3DSRSLMs and 3DWRSLMs

In  this  experiment,  the  volumetric  image  reconstruc-

tion capability of 3DSRSLMs and 3DWRSLMs is shown.

A  comparison  with  3D  radial  complex  moments  is  also

given in this subsection. We employed the 3D statistical

normalization  image  reconstruction  error  to  measure  the

performance of the volumetric image reconstruction.

ε̄2 =

∫ ∫ ∫ +∞
−∞

[
f(x, y, z)− f̄(x, y, z)

]2
dxdydz∫ ∫ ∫ +∞

−∞ f(x, y, z)2dxdydz
(35)

f(x, y, z) f̄(x, y, z)where  is  the  original  image,  is  the

reconstructed volumetric image. The plot of reconstructed

volumetric  images  with  different  order  moments  of  3D

radial complex moments, 3DSRSLMs and 3DWRSLMs is

shown in Fig. 4(a).
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5.2   Computational complexities

128× 128× 128

This experiment is designed to test the computational

complexities of 3DSRSLMs and 3DWRSLMs. A compar-

ison with that of 3DRCMs is also provided in this experi-

ment.  The simulation experiment was run on a personal

computer with CPU Intel core I3, 2.53 GHz, 4 GB RAM,

and the operating system was Windows 10. The volumet-

ric images from the Princeton shape benchmark with size

of  were employed for experimenting. The

recurrence formula of 3D substituted and 3D weighted ra-

dial  Legendre  polynomials  of  3DSRSLMs  and

3DWRSLMs provided in (13) and (19) are used for rapid

and exact  computation, Fig. 4(b) shows the  computation

time  of  3DSRSLMs,  3DWRSLMs  and  3DRCMs  with

maximum order of moments increased from 1 to 35. Fur-

thermore,  the  computation  time  of  3DSRSLMs  and

3DWRSLMs  is  lower  than  3DRCMs.  Therefore,  the

3DSRSLMs  and  3DWRSLMs  are  very  efficient  and  will

see vast potential in image analysis and recognition.
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128× 128× 128
Fig. 4     Reconstruction error and computation time. (a) Comparative study of reconstruction error of 3DSRSLMs, 3DWRSLMs and 3D
radial  complex  moments  for  the  head  volumetric  image,  the  size  of  image  is  ;  (b)  Computation  time  to  compute
3DSRSLMs and 3DWRSLMs and 3DRCMs with maximum order of moments increased from 1 to 35.
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λ = 0.8; θ0 = 90;φ0 = −180;ψ0 = 120 λ = 0.9; θ0 = −90;φ0 = −90;ψ0 = −180 λ = 1.2; θ0 = 90;φ0 = 90;ψ0 = 180
Fig. 5     A  set  of  transformed  pattern  of  the  original  head  image  with  combination  of  rotation.  (a)  Original  volumetric  image;  (b)
( ); (c) ( ); (d) ( ).
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5.3   Invariability for 3D radial shifted Le-

gendre moment

128× 128× 128

(λ = 0.8, θ0 = 90, φ0 = −180, ψ0 = 120) (λ =

0.9, θ0 = −90, φ0 = −90, ψ0 = −180) (λ = 1.2, θ0 = 90,

φ0 = 90, ψ0 = 180)

(SI0000,WI0000)

(SI0011,WI0011) (SI1010, WI1010) (SI1101, WI1101);

To validate  the  rotational  invariance  property  of  the

3D  radial  Legendre  moments,  the  head

image  is  illustrated.  There  scaled  and  rotated  version

which  has ; 

; 

 as  shown  in Fig. 5 will  be  used.  The

selected  orders  of  the  invariants ;

; ; 

(SI1110, W1110) (SI1111,WI1111) η =
N

2
δ = 4N

σ

µ

σ

µ
σ

µ

 and  with , 

are  computed  for  each  image.  The  results  of  simulation

are shown in Table 1. Lastly, the ratio  can be used to

measure  the  capability  of  the  proposed  3D rotation  in-

variants  under  different  image  transformation,  where 

represents  the  standard  deviation,  and  is  the  equival-

ent  mean  value. Table  1 shows  that  the  ratio  is  very

low and consequently the 3D radial shifted Legendre mo-

ment  invariants  are  very  stable  under  different  types  of

3D image rotation. Hence, the property of invariability of
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Fig. 6     Different types of noises. (a) Zero-mean Gaussian noise with variance = 0.1; (b) Zero-mean Gaussian noise with variance = 0.2;
(c) Salt-and-pepper noise; (d) Comparative analysis of reconstruction errors using different noise.
 

 

Table 1    Proposed extracted invariants for the head image

Original image (a) Transformation (b) Transformation (c) Transformation (d) σ/µ

SI0000 230.675 4 230.675 4 230.675 4 230.675 4 0.000 000×100

WI0001 242.501 1 242.501 1 242.501 1 242.501 1 0.000 000×100

SI0010 312.231 0 312.956 7 312.181 8 312.428 8 1.096 331×10–3

WI0100 324.110 1 324.341 0 324.980 0 324.110 1 1.089 800×10–3

SI1000 411.751 1 411.809 1 413.554 1 412.200 6 1.230 091×10–3

WI0011 414.543 0 414.098 7 416.009 1 415.671 0 1.120 098×10–3

SI0101 512.120 1 513.234 1 513.420 1 514.121 1 1.452 699×10–3

WI1001 513.541 1 514.009 8 516.143 1 517.109 8 1.477 900×10–3

SI1100 675.331 0 676.120 9 677.341 0 679.998 0 1.492 612×10–3

WI1100 681.098 0 682.435 6 684.564 3 685.890 1 1.507 099×10–3
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radial  shifted  Legendre  moment  will  be  used  for  pattern

recognition.

5.4   Robustness of 3D reconstruction with
Gaussian noise

To show the robustness of the proposed 3D radial shif-

ted Legendre moments against the negative effects of dif-

ferent  types  of  noise,  a  numerical  experiment  is  per-

formed  using  three  types  of  noises.  The  first  type  of

Gaussian  noise  is  with  (mean  =  0  and  variance  =  1%),

the second type is Gaussian noise is with (mean = 0 and

variance  =  2%),  and  the  third  type  is  salt  and  pepper

(5%),  these three types are shown in Fig. 6.  The 3D im-

age is reconstructed using the proposed 3D radial shifted

Legendre  moments  of  order  ranging  from  0  to  100.  The

plotted curves of mean squared error (MSE) for the noise

contaminated 3D image are clearly displayed in Fig. 6(d).

The  results  of  these  experiments  show the  robustness  of

3D  radial  shifted  Legendre  moments  against  different

types  of  noise.  Therefore,  we  can  say  that  the  proposed

descriptor  is  very  robust  against  salt  and  pepper  noise

and less robust against Gaussian noise. We can see from

the Figs. 6(a) to 6(d) that proposed descriptor is very ro-

bust against zero-mean Gaussian noise less robust against

salt-and-pepper noise.

5.5   Classification for 3D radial shifted Le-
gendre moment

To  prove  the  proposed  method  for  classification,  we

have  taken  the  image  from  the  Princeton  shape  bench-

mark (PSB) database[28]. Being known, this database con-

sists  of  907  3D  models  into  35  main  categories  and  92

 

Table 2    Euclidean distance and correlation coefficient between noise-free image and same images of classes from PSB database
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dEuclidianTable 3    Classification results of Princeton shape benchmark using  distance

3D invariant moments Noise free 1% 2% 3% 4%

3D radial Krawtchouk 100% 89.61% 86.25% 80.97% 61.36%

Proposed method 100% 93.25% 90.32% 85.35% 69.03%
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128× 128× 128

dEuclidean
dCorrelation

Vquery Vtest

1%, 2%, 3% and 4%

subcategories.  All  images  of  this  database  have  the  size

.  The  similarity  between  the  3D  image

query  and  all  of  the  other  selected  3D  objects  has  been

determined, and the obtained results have been shown in

Table  2.  Based  on  these  results,  the  minimum  value  of

the  Euclidean  distances  and  the  maximum

value of the correlation coefficients  have been

computed  between  feature  vectors  and 

(class).  The test set also is  degraded by salt  and pepper

noise  with  noise  densities .  The  fea-

ture  vector  based  on  3D  rotational  radial  shifted  Le-

gendre′s moment invariants cited in (29) are used to clas-

sify  these  images  and  their  recognition  accuracy  is  com-

pared with that of 3D radial complex moment invariants.

The  results  of  the  classification  using  all  features  are

presented in Table 3.

6   Conclusions

In this article, we have proposed a new set of 3D rota-

tion,  scaling  and  translation  invariants  based  on  3D  or-

thogonal  radial  shifted  Legendre  moments.  In  the  first

case,  a  new  3D  radial  complex  moment  has  been  pro-

posed.  In  the  second  case,  new 3D substituted/weighted

radial  shifted  Legendre  moments  (3DSRSLMs/

3DWRSLMs) have been introduced using a spherical rep-

resentation of volumetric image. 3D invariants as derived

from the  suggested  3D  radial  shifted  Legendre  moments

have  appeared  in  the  third  case.  In  order  to  prove  the

proposed approach, we have resolved three issues, 3D im-

age  reconstruction,  geometric  transformations  and  pat-

tern  recognition.  Furthermore,  the  result  of  experiments

have  shown  that  the  3DSRSLMs  and  3DWRSLMs  mo-

ments have done better than the 3D radial complex mo-

ments.  Simultaneously,  the  reconstruction  has  converged

rapidly to the original image using 3D radial 3DSRSLMs

and 3DWRSLMs moments, and the test of 3D images has

been  clearly  recognized  from  a  set  of  images  that  are

available in PSB database for 3D image.

Appendix

Proof.

We can rewrite (27) in matrix form as



SIsr0nml

SIsr1nml

...

SIsrknml


= ejnarg(SR

sr
0100)ejmarg(SR

sr
0010)ejlarg(SR

sr
0001)



1

3

. . .

2k + 1





c00

c10 c11

. . .

ck0 ck1 ckk


×



(SRsr0nml)
−1

(SRsr0nml)
−2

. . .

(SRsr0nml)
−(k+1)





d00

d10 d11

...
. . .

dk0 dk1 dkk





1

1

3

. . .

1

2k + 1





SRsr0nml

SRsr1nml

...

SRsrknml



arg(SRsr0100) = arg(SR0100) + θ0

arg(SRsr0010) = arg(SR0010) + φ0

arg(SRsr0001) = arg(SR0001) + ψ0

SRsr0000 = λ2SR0000.

From (27), we can also get

M. El Mallahi et al. / Rotation Scaling and Translation Invariants of 3D Radial Shifted Legendre Moments 177

 





SRsr0nml

SRsr1nml

...

SRsrknml


= ejnθ0ejmφ0ejlψ0



1

3

. . .

2k + 1





c00

c10 c11

...
. . .

ck0 ck1 ckk
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d10 d11

. . .

dk0 dk1 dkk





1

1
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. . .

1
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SR0nml

SR1nml

...

SRknml


.

By substituting the two last equations, we get



SIsr0nml

SIsr1nml

...

SIsrknml


= ejnarg(SR

sr
0100)ejmarg(SR

sr
0010)ejlarg(SR

sr
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.

Equation (27) can be rewritten as
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SIsr0nml

SIsr1nml

...

SIsrknml


= ejnarg(SR0100)ejmarg(SR0010)ejlarg(SR0001)



1

3

. . .

2k + 1





c00

c10 c11

. . .

ck0 ck1 ckk


×



(SRsr0nml)
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×
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=



SI0nml
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...
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.

Proof of (28) is same as the proof of (27). □
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