
Improving on Linear Scan Register Allocation

Shahrzad Kananizadeh 1 Kirill Kononenko 2

1 Department of Computer Science, Saarland University, Saarbrücken, Germany

2 École Normale Supérieure/French Institute for Research in Computer Science and Automation (INRIA), Paris, France

Abstract: Register allocation is a major step for all compilers. Various register allocation algorithms have been developed over the dec-
ades. This work describes a new class of rapid register allocation algorithms and presents experimental data on their behavior. Our re-
search encourages the avoidance of graphing and graph-coloring based on the fact that precise graph-coloring is nondeterministic poly-
nomial time-complete (NP-complete), which is not suitable for real-time tasks. In addition, practical graph-coloring algorithms tend to
use polynomial-time heuristics. In dynamic compilation environments, their super linear complexity makes them unsuitable for register
allocation and code generation. Existing tools for code generation and register allocation do not completely fulfill the requirements of fast
compilation. Existing approaches either do not allow for the optimization of register allocation to be achieved comprehensively with a
sufficient degree of performance or they require an unjustifiable amount of time and/or resources. Therefore, we propose a new class of
register allocation and code generation algorithms that can be performed in linear time. These algorithms are based on the mathematic-
al foundations of abstract interpretation and the computation of the level of abstraction. They have been implemented in a specialized
library for just-in-time compilation. The specialization of this library involves the execution of common intermediate language (CIL)
and low level virtual machine (LLVM) with a focus on embedded systems.

Keywords: Register allocation, just-in-time compilation, code generation, static analysis, dynamic analysis.

1 Introduction

C++

“Just-in-time” compilers during program execution are

being increasingly used for the execution of dynamic lan-

guages such as Perl and Python, and for semi-dynamic

languages, such as Java and .

Currently, however, there is one common problem,

which arises in the use of the existing approaches of fast

just-in-time compilation. In almost every case, the just-

in-time compiler is very specific to the used object model,

to the library running programs, garbage collection and

other features of bytecode for the particular system[1–3].

This inevitably leads to a situation where the effort needs

to be repeated, and all the useful work that went into

creating and developing a fast and high quality just-in-

time compiler for a single virtual machine and a program-

ming language cannot be used a second time for another

virtual machine and another programming language.

Just-in-time compilers are not only useful in the im-

plementation of programming languages. They can also

be used in other fields of mathematics and programming.

For example, graphical applications can achieve better

execution if they compile special means of just-in-time ex-

ecution of the program, specialized for “manual” genera-

tion of images, more accurately, achieving a better per-

formance than statically generated general-purpose

means. Obviously, such applications do not need object

models, garbage-collectors, or large class libraries.

The greatest amount of work during the development

of a new just-in-time compiler relates to the support oper-

ations of arithmetics, conversion of data types, reading

from memory, writing to memory, creation of loops, ana-

lysis of the data-flow graph, algorithm of register alloca-

tion, and generation of executable machine code. Only a

very small fraction of the work is dependent on the byte-

code of the virtual machine and the programming lan-

guage. The purpose of the libjit-linear-scan[4, 5] project

consists of providing a necessary and sufficient set of tools

that ensure the process of fast just-in-time compilation of

the program, liberating the developer from the work on

the features of the programming language and operating

system. In those parts where the support of common ob-

ject models is available, this is done strictly in additional

libraries of the operating system, and not in the form of

code of the kernel of the execution environment.

The libjit-linear-scan library aims to provide de-

velopers with more time and opportunity to think about

the high-level design of the virtual machine, without fo-

cusing on the details of generation and execution of bin-

ary code. At the same time, experts in optimization,

design, compiler implementation, and native code genera-

tion can focus on more low-level problems of binary code

execution, instead of working on applied problems.

O(n)

Super linear complexity algorithms, which are used in

compilers, can fail in case of an algorithmic complexity

attack. Hence, algorithms that are fast and have a linear

complexity of are often used. When this is im-

Research Article

Manuscript received November 7, 2016; accepted August 2, 2017;
published online February 28, 2018
Recommended by Associate Editor James Whidborne

© Institute of Automation, Chinese Academy of Sciences and
Springer-Verlag Gmbh Germany, part of Springer Nature 2018

International Journal of Automation and Computing 15(2), April 2018, 228-238
DOI: 10.1007/s11633-017-1100-0

possible, it is expedient to use algorithms that have a

higher complexity. The library that we have developed in

this study implements functionality via fast algorithms

based on just-in-time compilation with a linear complex-

ity. This library was created from the ground up to sup-

port just-in-time compilation, independent of any format

of bytecode or programming language. Currently, libjit-

linear-scan[4, 5] is used as a just-in-time compiler for Port-

able.NET[4, 6] and low level virtual machine (LLVM)[7, 8].

In order to facilitate just-in-time compilation in common

language runtime and embedded systems, libjit-linear-

scan as well as the just-in-time compiler of Portable.NET

have been created with the original support of the open

source automation development lab (OSADL) in the Dot-

GNU project[6]. Therefore, this extension is compatible

with all software that already uses its application pro-

gramming interface (API).

The contributions of our work are two-fold. First, we

describe a novel approach for the register allocation based

on a virtual execution environment that combines inform-

ation from static and dynamic program analyses. Second,

this paper advances the field of computer science by de-

veloping tools for the just-in-time compilation of pro-

gram code.

The remainder of this paper is organized as follows.

The next section presents an overview of the various ap-

proaches for the fast register allocation. Section 3

presents our approach. Section 3.1 presents the principles

of register allocation via graph coloring. Section 3.2

presents the formulation of the novel mathematical model.

Section 3.3 presents the principles for implementing our

approach. Section 4 contains the test results, and it

presents and analyzes the obtained experimental data in

terms of the performance. Section 5 presents a discussion

on the results. The final section concludes the paper.

2 Literature review

⟨du⟩
Register allocation involves four particular problems:

the computation of chains, the dead-code elimina-

tion, the definition of live variables, and graph coloring.

Altogether, these problems can be effectively solved

for chordal graphs. The interference graphs of program

code in static single assignment (SSA) form are chordal

(e.g., Fig. 1). Therefore, we will solve all these tasks for

chordal graphs.

The compiler optimization of register allocation in ma-

chine code causes a significant increase in code execution

performance.

The most well-known approach to global register al-

location is via graph coloring[2, 9], as formalized by

Cocke[10], Ershov[11] and Schwartz[12] and later implemen-

ted by Chaitin[13, 14], Chow and Hennessy[15]. Since the ba-

sic graph-coloring problem underlying this approach is

nondeterministic polynomial time-complete (NP-com-

plete), however, any practical algorithm must simplify

the problem using heuristics[16–19]. Many such heuristic

variations have been explored, such as linear scan[20–22],

integer linear programming[23, 24], puzzle solving[25, 26], re-

pairing[27, 28], trees[29] and traces[30]. Krause[18] proves that

given certain restrictions on the input program (e.g., for

C a limit on the use of goto labels) graph-coloring re-

gister allocation can be done in polynomial time for a

fixed number of registers. The approach is not a practic-

al choice for dynamic compilers since the execution time

is exponential in the number of registers. The work of

Lozano et al.[19] contains a proof that any optimal graph-

coloring register allocation algorithms will have execu-

tion time exponential in the number of registers. The

latest research on graph coloring based register allocation

suggests the Callahan-Koblenz algorithm[31, 32] that rep-

resents the hierarchical program structure with a tile tree.

Such a tree structure isolates the high-frequency and low-

frequency code regions and provides a basis for the alloc-

ator′s overall operation and spill placement decisions.

While those heuristics yield polynomial-time algorithms,

they do not generally run in linear time, with the excep-

tion of the Bouchez, Brisk, Hack et al.[28, 33–37] algorithms

for programs in static single assignment (SSA) form[38–40],

which partly inspired the present work. We also want to

draw attention to useful works[41–43] that develop a simil-

ar approach. We make the novel observation that most of

the advantages of this linear-time algorithm may be ob-

tained without actually transforming the program to SSA

form, since many realistic programs appear to have

chordal inference graphs, thereby enabling a much sim-

pler algorithm that can generate code nearly as efficiently.

3 Methods

3.1 Register allocation based on coloring

Graph coloring based on constructing an interference

Fig. 1 An example of a chordal graph

S. Kananizadeh and K. Kononenko / Improving on Linear Scan Register Allocation 229

O(n2) n

O(n)

graph of variables is the traditional approach to register

allocation. The graph is used for mapping the set of dy-

namic states of variables into the set of their static states

during program execution. Vertices in the graph are vari-

ables of the program. Thus, the vertices of the graph also

represent symbolic and machine registers that are alloc-

ated for temporary variables. The method of register al-

location based on graph coloring in the general case,

without the use of heuristics, has an NP-complexity.

Many approximate solutions of this problem have been

studied. However, they are all heuristics. Among the best

known is the heuristic of Chaitin based on graph coloring.

However, this heuristic works in time, where is

number of variables or the size of the program in a more

complex formulation. Just-in-time compilers should com-

pile and distribute registers in time. The problem of

optimal register allocation in an infinite amount of time

on making the decision can be solved by exhaustive

search. A variant of machine code for a fixed variant of

allocation of registers and local memory is generated. The

variant of generated machine code is analyzed for optim-

ality by counting the number of instructions addressing

memory in the machine code, or counting the number of

memory accesses during program execution on the basis

of the statistics.

If two variables interfere with each other, then an arc

is drawn between the vertices of the interference graph.

For non-interfering variables, we can use the same re-

gister, thereby reducing the number of registers required.

On the other hand, the arc between two variables means

that we should not assign them both to the same register,

because their liveness at a certain point in time of pro-

gram execution intersects. This graph can be represented

as a matrix of lists, depending on which operations are re-

quired.

The basic idea of global register allocation (Fig. 2) can

be expressed in five steps, which are as follows:

· · ·

1) During code generation and optimization (whatever

phase has preceded allocation of registers) or, as the first

stage of register allocation, allocate unique symbolic re-

gisters to objects that can be assigned to registers, unique

symbolic registers, for example, s1, s2, , using as many

of them as necessary to store all objects (source variables,

temporary variables, large numerical constants, etc.).

2) Determine which objects should be candidates for

allocation into registers.

3) Build a so-called interference graph. The interfer-

ence graph is a graph whose nodes represent the alloc-

ated objects and real machine registers of the target ma-

chine, and whose arcs (or directed arcs) represent inter-

ferences. Then, two allocated objects intersect if they are

alive at the same time. An object and a register interfere

if the object cannot or should not be allocated to this re-

gister (e.g., an integer operand or a register for floating-

point values).

4) Color the node of the interference graph with R

colors, where R is the number of available registers, so

that every two adjacent nodes have different colors (this

is called coloring with R-colors).

5) Select for each object a register which is of the

same color.

Fig. 3 shows an example of a program that makes ad-

dition of numbers in the variables. All the variables with

a common vertex in the interference graph are assigned

to different machine registers.

⟨du⟩

Φ

Φ

Many problems can be solved more efficiently in the

case of chordal graphs. In SSA form, chains are ex-

pressed explicitly. Interference graphs of programs in SSA

form are chordal. Nonetheless, the -functions them-

selves are not computable. The problem of optimization

of -functions for their transformation to machine code is

NP-complete. Thus, the problem of optimal register alloc-

ation is NP-complete. Chordal graphs are perfectly order-

able, which allows the rapid coloring of graphs. Is it pos-

sible to find the given ordering rapidly? It is evident that

for interval graphs, the given order is expressed explicitly.

It can be assumed that interference graphs of realistic

programs are chordal and even interval.

3.2 Mathematical model

If all variants of the execution of a program were de-

terministic and finite, then of course it would be possible

to compute the result of the execution of this program us-

ing concrete hardware at any time before its execution.

However, some programs can achieve an infinite number

of side effects from the wholly deterministic area of ac-

Program has
changed Spilling

Construct of the
interference graph Coalescing Coloring

Heuristic of
graph coloring
did not work

Fig. 2 A general description of algorithms based on graph
coloring

A

A

B

B

C

C

D

D

E

E

F

F

Fig. 3 Register allocation via graph coloring

230 International Journal of Automation and Computing 15(2), April 2018

cess for the program, such as reading and writing into the

shared memory. Those side effects can be infinite and

even incomputable. Therefore, we propose a new math-

ematical model in order to take this behavior into ac-

count. In the mathematical model that we created, there

is a possibility to compute the result of the execution of a

program using concrete hardware at any time before its

execution if all variants of its execution are deterministic

and finite. A good machine code generator supports a few

mechanisms for its generation and optimization of re-

gister allocation. Thus, in order to make the optimal de-

cision, the infinite variants must be analyzed at an appro-

priate time. This can be done with the use of domain-spe-

cific optimization and an analysis of program behavior.

For these computations, we use a linear analysis and the

mathematical apparatus of probability spaces based on

the Kolmogorov axioms. We define the level of abstrac-

tion as the probability of making a correct decision about

the properties of a program before its actual execution on

real hardware, based on the analysis of a limited set of

data performed in linear time. Thus, we formalize the hy-

pothesis that more abstract bytecode can be executed

more efficiently than less abstract bytecode. Limited re-

sources are to be allocated to the execution of solutions

with a maximum level of abstraction, with the goal of

maximizing the expectation of success in the selected

path of the execution of the program. In other words, we

look at the machine code generated by the dynamic com-

piler as a finite set of random variables. Each of these

random variables has its own distribution. Nevertheless,

those distributions can be incomputable or be infinitely

divisible.

We look at a sequence of random variables arranged

in some geometrical space (e.g., Fig. 4). First, an input

bytecode method is verified and is converted into an in-

termediate form. Each concrete realization of the binary

code is a realization of the random value. We define a

function that computes the expected values of a certain

target function defined on this binary code.

We expect monotonic properties of the target func-

tion from applications of the resources of one class to

more resources of the second class. The use of first class

resources requires much less execution time for a piece of

machine code on a hardware processor, and thus for the

entire program. On the other hand, their usage high-

lights the need to commit second-class resources at a cer-

tain moment in time. Register allocation is simply the

easiest example to demonstrate the efficiency of our mod-

el for optimization.

Unless we have fully deterministic control of concrete

realizations we believe that such realizations can have

various distributions of probability according to the con-

crete values of some input parameters.

Thus, we analyze this situation using a simple hidden

Markov model with a finite number of linearly ordered

nodes (e.g., Fig. 5). In other words, there is a description

of the properties of the signal that is analogous to wave-

let transforms and thus an analogous relation between

the apparatus of characteristic functions and the formu-

las developed by Kolmogorov, Lévy and Khintchine in

the computation of the properties of stochastic processes.

We believe that in the context of uncertainties, non-

determinism and a set of possibilities with equal or vari-

able weights, resources should be directed toward the

solution with the maximal probability of obtaining the

correct solution based on the ahead-of-time prediction of

the program in the given domain of optimization.

3.3 Implementation

We apply abstract interpretation[44–46] in order to pre-

dict the properties and behavior of a program before its

execution.

We define the goals of register allocation for a given

set of properties of a program as, first, the correctness of

execution and, second, the minimization of the number of

accesses of the local stack memory. We predict the prop-

erties of the given program before its execution on real

hardware. Each binary property has a certain probability

of being obtained. We store each of these binary proper-

ties in a bit. Each bit is a degree of freedom. Static ana-

lysis creates sets of these bits. Our register allocation al-

gorithms commit the set of bits created by static analys-

is for optimization and code generation. For a given pro-

gram there is one deterministic such set of bits.

The probability of predicting the properties of a given

program before its execution in a linear time is inversely

proportional to the size of the analyzed program. We also

describe below the required transformation for the com-

putation of that probability and its properties. We call

this probability the level of abstraction. Because it is

practically difficult to build a simple deterministic pro-

Program Intervals Interference graph

a a a

b b
b

c c
cd d

d
e e

e

a + b

c + 1

...

...

...

Fig. 4 A sequence of variables

A2A1 V1 V2 V3 V4A3 A4 ...

Fig. 5 Markov model

S. Kananizadeh and K. Kononenko / Improving on Linear Scan Register Allocation 231

cess for the computation of all possible variants of beha-

vior for a defined program, we also look at the defined

properties of the generated machine code. Each piece of

machine code has an expected weight given by an ap-

proximation which depends linearly on the computed

level of abstraction.

Properties are defined on a certain domain of optimiz-

ation. For example, as mentioned above, they can be the

number of accesses of the memory, the security of the

machine code and/or the size of the generated machine

code. In all cases, there should be an interval of machine

code for achieving some set (or singleton) of the defined

strategies of optimization. Thus, we look at the process of

register allocation for just-in-time compilers as the result

of the defined process of static analysis. For that defined

process, each managed method is mapped onto a set of

random variables in a defined probability space. That

random variable vector is a set of possible machine codes

as well as a set of data for which the source code is com-

piled. In other words, each compiled object is a realiza-

tion of an ordered set of random variables. We consider

their distributions below.

⟨X⟩

We define this weight as the difference between the

expected optimistic gains and the expected pessimistic

losses. In other words, we look at the expected best vari-

ant and the expected worst variant. We then define a

function of wins and losses, which are defined on primit-

ive chains of events :

E(losses(⟨X⟩)) =∫ t=T

t=0

abstraction(⟨X(t)⟩)E(losses(⟨X(t)⟩))dt

E(wins(⟨X⟩)) =∫ t=T

t=0

abstraction(⟨X(t)⟩)E(wins(⟨X(t)⟩))dt

E(weight(⟨X⟩)) = E(wins(⟨X⟩)− losses(⟨X⟩)) =
E(wins(⟨X⟩))− E(losses(⟨X⟩)) =∫ t=T

t=0

abstraction(⟨X(t)⟩)E(weight(⟨X(t)⟩))dt.

weight⟨X(t)⟩
i(t)

E() defines the expected weight that a

block with index should have in case there is a cor-

rect decision with a probability 1. Moreover, if the block

does indeed have that given property, then the informa-

tion about the properties of that signal has been used cor-

rectly to achieve the expected benefits. We expect that

when all accessible information has been used, rather

than just a part of it, then the correct decision can be

made.

We represent the intermediate code by independent

sets, in which there are variables. Each variable is as-

signed a virtual register for all ranges of its life. There is

a limited set of resources for the allocation of hardware

registers. We optimize the use of this limited resource of

hardware registers for register allocation. Below, we show

the expected weight that a variable should be assigned a

hardware register.

Let us look at the step in which there is already in-

formation about the ranges of a live variable. Suppose the

distribution of properties of the intermediate code in a

certain continuous region that contains the properties for

optimization is uniform and the level of abstraction is

constant. This is a valid assumption because a general

distribution can usually be approximated by various uni-

form distributions in different regions, and we may even

let the number of regions become infinite. Our motiva-

tion for this assumption is that the probability of finding

properties for a sequence of bits with only a limited num-

ber of bits in finite time is inversely proportional to the

total number of bits in that sequence and proportional to

the total number of bits that can be analyzed in linear

time. Of course, it is possible to have an unknown distri-

bution. Nevertheless, we believe that a uniform distribu-

tion is a good approximation at this scale. Thus,

abstraction(⟨X⟩) = 1

Power(⟨X⟩) .

t

The power function returns the number of bits that

can be used in the representation of the set of all pos-

sible variants of the behavior of the machine code and

data. Each block of bits can either use a variable or ig-

nore it. We introduce the function ∆() which is equal to

the expected number of times a given variable is used in

a set of bits to access memory in the time interval from t

to t + ∆t. We conclude that

E(weight(⟨X⟩))=
∫ B

A

1

Power(⟨X⟩)∆(t)dt=
U

B −A
.

Here, U is the total number of usages of the variable.

Each variable has a physical geometrical space in the pro-

gram representation where it is live. A is the coordinate

of the appearance of the first-used live range of the vari-

able, and B is the coordinate of its last-used live range.

When U is constant for all the variables and there is a

high intensity of appearance of new variables and A is

much smaller than B, we get the formula for the weights

of the original heuristic linear scan.

E(weight(⟨X⟩)) = 1

B
.

4 Results

This section discusses the experimental results of the

use of the developed library. Five levels of optimization

are supported. Optimization level 0 uses the default call-

ing convention, global register allocation based on the

number of uses, and floating-point operations are using

floating point unit (FPU). Optimization level 1 uses only

local register allocation in each block of instructions. Op-

timization level 2 uses linear scan, and fast analysis of the

232 International Journal of Automation and Computing 15(2), April 2018

liveness of variables is using the graph of control flow. At

optimization level 2, only one interval of liveness of vari-

ables for each virtual register is present. Optimization

level 3 uses the algorithm of second-chance bin-packing

based on multiple intervals of liveness of variables for

each virtual register. Optimization level 4 includes dead-

code elimination. In addition, the new generator of ma-

chine code uses single instruction, multiple data (SIMD)

extensions and streaming SIMD extension registers

(XMM) registers to represent floating-point operations.

C++

PnetMark[47, 48] was created on the basis of Caffeine-

Mark benchmarks for the Java virtual machine. Conver-

sion of test was made using the transformation of bench-

marks from descriptions in Java language into . The

main purpose of this performance benchmark is to com-

pare different versions of Portable.NET and identify the

place that requires improvement. Higher values mean bet-

ter performance of the runtime in certain particular con-

ditions. The SciMark2 shows the performance in scientif-

ic and numeric computations. PnetMark benchmark con-

sists of a set of benchmarks Sieve, Loop, Logic, String,

Float, and Method. Linpack shows the performance of the

system in solving problems of numeric linear algebra.

Each benchmark was executed 80 times for each vari-

ant of the execution environment, shown in Table 1, and

the algorithm of register allocation. This number was se-

lected as a result of consultations with the specialists,

who develop Portable.NET.

On the Y-axis in Figs. 6–12 is the average number of

invocations of the function in a given unit of time. The

increase of performance in the presented benchmarks was

computed as the number, which is determined relatively

to the performance of PnetMark benchmark for the mode

LS-O4 internal and direct unrolled.

Analogically, the performance values for the SciMark2

and Linpack benchmarks are also computed below.

Fig. 6 determines the time of passing all regression

tests of the library of classes.

Figs. 7 and 8 present the results for the PnetMark,

SciMark2, and Linpack benchmarks.

Higher values mean better performance of the runtime

in benchmarks. The increase of performance in Pnet-

Mark is 116%, in SciMark2 it is 239%, and in Linpack it

is 136%.

As seen from the estimates of standard deviation, the

variance of the results in our environment is substan-

tially less than other variants of the execution environ-

ment of .NET from competitors and the previous version

of the just-in-time compiler.

Let us look at two examples of functions that we call

power, and methods for computation of the expected be-

nefit. The first definition uses the number of operational

Table 1 Programs′ execution environments

VM Variant of the environment Optimization level Symbol

1 Portable.NET Internal ABI 4 LS-O4 internal

2 Portable.NET Cdecl ABI 4 LS-O4 cdecl

3 Portable.NET Internal ABI 3 LS-O3 internal

4 Portable.NET Cdecl ABI 3 LS-O3 cdecl

5 Portable.NET Internal ABI 2 LS-O2 internal

6 Portable.NET Cdecl ABI 2 LS-O2 cdecl

7 Portable.NET Internal ABI 1 LS-O1 internal

8 Portable.NET Cdecl ABI 1 LS-O1 cdecl

9 Portable.NET

Cdecl ABI allocation of registers using the number of usages of the variable
for the operations with numbers with a floating point. For operations with
numbers with a floating point, the x87 co-processor is used. Priority is for
the variables with the maximal number of uses

0 O0 cdecl

10 Portable.NET Unrolling of the interpreter loop Direct unrolled

11 Portable.NET Interpreter based on pointers on handlers of the byte-code (direct threaded) Direct threaded

12 Portable.NET Interpreter Token threaded

13 Portable.NET Mode of interpreter of libjit Libjit interpreter

14 Microsoft.NET
Framework 2.0 .NET 2.0

15 Mono 2.4 Mono 2.4

16 Mono 2.2 Mono 2.2

17 Mono 2.0 Mono 2.0

18 Mono 1.1 Mono 1.1

19 Mono Mint 1.1.11 Mint 1.1

S. Kananizadeh and K. Kononenko / Improving on Linear Scan Register Allocation 233

codes included in the set of intervals of liveness, and the

number of times the variable was used. This register al-

locator is designated as abstract linear scan (ALS). The

second definition uses the size of the machine code and

the number of times the memory in the generated ma-

chine code was accessed. In other words, each operation-

al code has two elements with two offsets, wherein the

machine code starts with the current operational code

and ends with it. Computations are performed for the

number of accesses to the primitive code generator

i486_membase_emit, to which a counter based on a glob-

al variable is added. In other words, we computed the

number of expected memory accesses in the generated

machine code, excluding loops. This register allocator is

denoted as an abstract linear scan based on the heurist-

ics of machine code. The allocators of registers are com-

pared to the heuristics of simple linear scan, which saves

the register with the farthest end of time of liveness. We

denote this register allocator as linear scan (LS).

Moreover, another heuristic of register allocation is used,

which is based on the number of intervals of liveness of

each register. The results of the application of these heur-

istics are presented in Fig. 8. An analysis of the results

demonstrates that the improvement in code speed results

in smaller size of machine code.

The graphs in Figs. 9–12 show the estimation of stand-

ard deviation for various performance benchmarks. It is

worth noting that the numerical expression of estima-

16

14

12

10

8

6

4

2

0

LS-O
4 c

dec
l

LS-O
3 c

dec
l

LS-O
2 c

dec
l

LS-O
1 c

dec
l

O0 c
dec

l

Dire
ct_

un
rol

led

Dire
ct_

thr
ead

ed

Libj
it i

nte
rpr

ete
r

Fig. 6 Time of passing tests of the library of classes of
Portable.NET (in seconds)

Mint 1.1
Mono 1.1
Mono 2.0
Mono 2.2
Mono 2.4
NET 2.0

Libjit interpreter
Token_threaded
Direct_threaded
Direct_unrolled

O0 cdecl
LS-O1 cdecl

LS-O2 cdecl
LS-O1 internal

LS-O2 internal
LS-O3 cdecl

LS-O3 internal
LS-O4 cdecl

LS-O4 internal

0 50 100 150 250200
PnetMark/200 SciMark 2 Linpack

Fig. 7 PnetMark, SciMark2, Linpack benchmarks

Number of ranges-O4
Machine code-O4

ALS-O4
LS-O4

Number of ranges-O3
Machine code-O3

ALS-O3
LS-O3

Number of ranges-O2
Machine code-O2

ALS-O2
LS-O2

Number of ranges-O1
Machine code-O1

ALS-O1
LS-O1

O0

0 20 40 60 12010080
PnetMark/200 SciMark 2 Linpack

Fig. 8 PnetMark, SciMark2, Linpack benchmarks

Mint 1.1
Mono 1.1
Mono 2.0
Mono 2.2
Mono 2.4
NET 2.0

Libjit interpreter
Token_threaded
Direct_threaded
Direct_unrolled

O0 cdecl
LS-O1 cdecl

LS-O2 cdecl
LS-O1 internal

LS-O2 internal
LS-O3 cdecl

LS-O3 internal
LS-O4 cdecl

LS-O4 internal

0 5 10 15 20
PnetMark/200 SciMark 2 Linpack

Fig. 9 Estimation of deviation of values of PnetMark,
SciMark2 and Linpack benchmarks

234 International Journal of Automation and Computing 15(2), April 2018

tions of dispersion for these random values has a largely

demonstrative and relative character. This is because the

obtained results of its numerical expression vary depend-

ing on the hardware platform and a variety of other

factors. Each point on the graphs took 2 hours of compu-

tation and required 80 runs of the benchmark. It has de-

termining value for the analysis of the research results. It

tells that objective unbiased statistical studies over a con-

siderable period of time were conducted, a significant

sample from realizations of random variables was taken.

These results are objective for this hardware platform and

operating system. They show the possibility of conduct-

ing repeated measurements and are analogous in quality

to the results for other platforms and operating systems.

5 Discussions

As follows from the data in Figs. 6–12, the new heur-

istics of register allocation show improvements in per-

formance benchmarks in comparison with the use of the

simple heuristic of linear scan. When using register alloca-

tion based on machine code, analysis of the assembly lan-

guage code shows the inefficiency of the algorithm of loc-

al allocation of registers, applied to the chosen path of

optimization using the algorithm of global allocation of

registers. The algorithm of local allocation of registers is

the next object for further research and optimization.

When using the heuristic with machine code, there is an

improvement of the PnetMark benchmark. However, the

performance of SciMark2 and Linpack decreases. Studies

show that this appears to be due to the inefficiency of us-

ing only two points of optimization. This methodology

and further possible improvements are similar to the ap-

proach of applying the simplex method for finding the op-

timal result. In this case, the global algorithm of alloca-

tion of registers yields impressive results, both the num-

ber of virtual registers that use the local stack and the

size of the local stack used for global variables are smal-

ler. However, the local algorithm of allocation of registers

adds many accesses to the memory stack. This can be

solved by using a larger number of experimental points

and a greater number of optimization passes. The experi-

ment confirms that most of the variables in the interme-

diate representation, which is obtained from the compila-

tion of common intermediate language (CIL), have only

one interval of liveness. Most of the intervals of liveness

of virtual registers are short and have a length not great-

er than three operational codes if dead-code elimination is

not applied previously. Most intervals of liveness of virtu-

al registers are not above four operational codes if dead-

code elimination was applied. Most of these variables are

temporary. Thus, the use of the heuristic of saving into

memory virtual registers with the largest number of inter-

vals of liveness is justified. Fig. 13 shows the sample dis-

tribution function of the lengths of liveness of variables.

The number of intervals of liveness with optimization

level 2 is always equal to 1. The distribution of the num-

ber of intervals of liveness with optimization levels 3 and

4 is shown in Fig. 14.

The improvement in performance benchmarks is the

result of the analysis of variables′ liveness space and

900
800
700
600
500
400
300
200
100

0

LS-O
4 i

nte
rna

l

LS-O
4 c

dec
l

LS-O
3 i

nte
rna

l

LS-O
3 c

dec
l

LS-O
2 i

nte
rna

l

LS-O
2 c

dec
l

LS-O
1 i

nte
rna

l

LS-O
1 c

dec
l

O0 c
dec

l

Dire
ct_

un
rol

led

Dire
ct_

thr
ead

ed

Tok
en_

thr
ead

ed

Libj
it i

nte
rpr

ete
r

NET 2.
0

Mon
o 2

.4

Mon
o 2

.2

Mon
o 2

.0

Mon
o 1

.1

Mint
 1.

1

PnetMark

Fig. 10 Estimation of deviation of values of PnetMark
benchmark

12

10

8

6

4

2

0

LS-O
4 i

nte
rna

l

LS-O
4 c

dec
l

LS-O
3 i

nte
rna

l

LS-O
3 c

dec
l

LS-O
2 i

nte
rna

l

LS-O
2 c

dec
l

LS-O
1 i

nte
rna

l

LS-O
1 c

dec
l

O0 c
dec

l

Dire
ct_

un
rol

led

Dire
ct_

thr
ead

ed

Tok
en_

thr
ead

ed

Libj
it i

nte
rpr

ete
r

NET 2.
0

Mon
o 2

.4

Mon
o 2

.2

Mon
o 2

.0

Mon
o 1

.1

Mint
 1.

1

SciMark 2

Fig. 11 Estimation of deviation of values of SciMark2 bench-
mark

20

12
14
16
18

10
8
6
4
2
0

LS-O
4 i

nte
rna

l

LS-O
4 c

dec
l

LS-O
3 i

nte
rna

l

LS-O
3 c

dec
l

LS-O
2 i

nte
rna

l

LS-O
2 c

dec
l

LS-O
1 i

nte
rna

l

LS-O
1 c

dec
l

O0 c
dec

l

Dire
ct_

un
rol

led

Dire
ct_

thr
ead

ed

Tok
en_

thr
ead

ed

Libj
it i

nte
rpr

ete
r

NET 2.
0

Mon
o 2

.4

Mon
o 2

.2

Mon
o 2

.0

Mon
o 1

.1

Mint
 1.

1

Linpack

Fig. 12 Estimation of deviation of values of Linpack bench-
mark

S. Kananizadeh and K. Kononenko / Improving on Linear Scan Register Allocation 235

dead-code elimination. The most productive algorithm

variant is the one that uses the intermediate representa-

tion for the computation of variables′ weights. In our

opinion, the heuristic based on the candidates of machine

code has greater potential. It gives results that are close

to the heuristic described above with the use of two

points. In addition, it requires more computational time,

because it can use more experimental points for finding

the optimal solution. It can be used to advantage, be-

cause not all machine code properties are clearly defined

in intermediate code.

It should be noted that the original implementation of

the algorithm of linear scan, which uses only one interval

of liveness for compilation, worked two times faster than

the algorithm of register allocation, based on the number

of uses of variables. In order to implement the use of mul-

tiple intervals of liveness, it was necessary to implement

the more general algorithm. This algorithm slowed down

compilation time.

The increased performance of the new algorithms of

register allocation happens at all levels, but it is particu-

larly significant on low levels of optimization. In addition,

it is much more significant after the use of information

provided by static analysis of the space of liveness of vari-

ables and after dead-code elimination.

Compared with the interpretation mode, fast compila-

tion with libjit-linear-scan does not increase the time of

execution of the virtual machine or the time of compila-

tion, and thus the quality of the machine code improves.

The increased performance of the abstract linear scan

compared with simple linear scan at optimization level 2

in PnetMark is 5.30%, in SciMark2 – 4.00%, and in Lin-

pack – 12.59%. In addition, improvements were noted in

all intermediate benchmarks in PnetMark, SciMark2 and

Linpack.

New algorithms do not have any unnecessary compu-

tational costs, and additionally use only the information

about the number of uses of variables. It should be noted

that when simple linear scan is enabled, this information

is computed anyway in invocations of the API.

6 Conclusions

The paper studied a new class of rapid register alloca-

tion algorithms and presented experimental data on their

behavior. Thus, the authors found that the increase of

runtime performance for PnetMark is 116%, for SciMark2

– 239%, and 136% for Linpack. As seen from the estim-

ates of standard deviation, the variance of the results in

the environment is substantially less than other variants

of .NET execution environment of competitors and the

previous version of the just-in-time compiler. The results

of heuristics application for PnetMark is 105%, 155% for

SciMark2, and 93% for Linpack. These results are object-

ive for this hardware platform and operating system.

They show the possibility of performing repeated meas-

urements and are similar in quality to the results for oth-

er platforms and operating systems. The paper provides

the estimation of value deviation of PnetMark, SciMark2,

and Linpack benchmarks. The maximum value deviation

of PnetMark benchmark is for internal LS-O2. The max-

imum value deviation of SciMark2 and Linpack bench-

marks is for mono 2.0. Thus, the new heuristics of re-

gister allocation show improvements in benchmarks per-

formance in comparison with the use of simple heuristics

of linear scan. The researchers also found that the per-

formance of SciMark2 and Linpack decreases and this ap-

pears to be due to the inefficiency of using only two

points of optimization. The conducted experiment con-

firmed that most of the variables in the intermediate rep-

resentation of libjit-linear-scan, obtained from the compil-

ation of CIL, have only one interval of liveness.

The results of the performed research may be useful

for the development of rapid just-in-time compilers,

methods of automatic neutralization of vulnerabilities,

converters of bytecodes of virtual machines, and com-

pilers for executing the programs of virtual machines such

as Java, Python, Perl, Ruby, LLVM, and Parrot.

We have outlined a theoretical possibility and have

demonstrated the possibility of the practical applicability

of the proposed approach. We have tested various op-

tions and have specified the optimal algorithm imple-

mentations, based on the practical use purposes. It is

worth noting that the proposed approach is open to im-

1.0

0.6
0.7
0.8
0.9

0.5
0.4
0.3
0.2
0.1

0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

LS-O4 LS-O3 LS-O2

Fig. 13 Sample distribution function of the length of the
interval

1.0
1.2

0.6
0.8

0.4
0.2

0
1 2 3 4 5 6 7 8 9 10

LS-O4 LS-O3

Fig. 14 Sample distribution function of the number of intervals

236 International Journal of Automation and Computing 15(2), April 2018

provement, and although we have demonstrated the ap-

plicability of the principle and the possibility of the al-

gorithm, the proposed approach at the moment-in a great

measure a theoretical possibility. Further research direc-

tions could be concerned with various possibilities of dy-

namic compilation and the dynamic neutralization of

data leakages. For example, it is possible to create new

domain-oriented algorithms for the optimization of the

performance of code and neutralization of threats that

target the narrow specifics of the application. The given

algorithms can be specialized and optimized for the ap-

plication in a variety of areas where embedded systems or

mainframes can be or are being used. These areas include,

for instance, power consumption or various aspects of the

secure execution of programs in operating systems for

general and specialized purposes.

References

D. D. Niu, L. Liu, X. Zhang, S. Lü, Z. Li. Security analys-
is model, system architecture and relational model of en-
terprise cloud services. International Journal of Automa-
tion and Computing, vol. 13, no. 6, pp. 574–584, 2016. DOI:
10.1007/s11633-016-1014-2.

[1]

R. Odaira, T. Nakaike, T. Inagaki, H. Komatsu, T. Na-
katani. Coloring-based coalescing for graph coloring re-
gister allocation. In Proceedings of the 8th Annual
IEEE/ACM International Symposium on Code Genera-
tion and Optimization, ACM, Toronto, Canada, pp. 160–
169, 2010.

[2]

Q. Liang, Y. Z. Wang, Y. H. Zhang. Resource virtualiza-
tion model using hybrid-graph representation and conver-
ging algorithm for cloud computing. International Journal
of Automation and Computing, vol. 10, no. 6, pp. 597–
606, 2013. DOI: 10.1007/s11633-013-0758-1.

[3]

K. Kononenko. Libjit linear scan: A model for fast and effi-
cient compilation. International Review on Modelling &
Simulations, vol. 3, no. 5, pp. 1035–1044, 2010.

[4]

K. Kononenko. A unified approach to identifying and heal-
ing vulnerabilities in x86 machine code. In Proceedings of
the 18th Annual International Conference on Mobile Com-
puting and Networking, ACM, Istanbul, Turkey,
pp. 397–398, 2012. DOI: 10.1145/2348543.2348593.

[5]

F. P. Miller, A. F. Vandome, J. McBrewster. Mono (Soft-
ware): MonoDevelop, Software Patents and Free Software,
Novell, Comparison of Application Virtual Machines, Dot-
GNU, Portable .NET, .NET Framework, … Free and
Open Source Software, Ximian. Alpha Press, 2009.

[6]

M. Pandey, S. Sarda. LLVM Cookbook. Birmingham, UK:
Packt Publishing, 2015.

[7]

J. Z. Zhao, S. Nagarakatte, M. M. K. Martin, S.
Zdancewic. Formal verification of SSA-based optimiza-
tions for LLVM. In Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, ACM, Seattle, USA, pp. 175–186, 2013.
DOI: 10.1145/2499370.2462164.

[8]

M. D. Smith, N. Ramsey, G. Holloway. A generalized al-
gorithm for graph-coloring register allocation. In Proceed-
ings of the 34th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, ACM,
Seattle, USA, pp. 277–288, 2004. DOI: 10.1145/996893.
996875.

[9]

J. Cocke, J. Markstein. Measurement of code improve-[10]

ment algorithms. In Proceedings of the IFIP Congress,
Tokyo, Japan, pp. 221–228, 1980.

A. P. Ershov. Alpha-an automatic programming system of
high efficiency. ALGOL Bull, France. pp. 19–27, 1965.

[11]

J. R. Schwartz. On programming: An interim report on
the SETL project. Installment I: Generalities; Installment
II: The SETL Language and Examples of Its Use, Technic-
al Report COO-3077-94, New York University, New York,
USA, 1975.

[12]

G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke,
M. E. Hopkins, P. W. Markstein. Register allocation via
coloring. Computer Languages, vol. 6, no. 1, pp. 47–57,
1981. DOI: 10.1016/0096-0551(81)90048-5.

[13]

G. Chaitin. Register allocation and spilling via graph col-
oring. ACM SIGPLAN Notices, vol. 39, no. 4, pp. 66–74,
2004. DOI: 10.1145/989393.989403.

[14]

F. C. Chow, J. L. Hennessy. The priority-based coloring
approach to register allocation. ACM Transactions on
Programming Languages and Systems, vol. 12, no. 4,
pp. 501–536, 1990. DOI: 10.1145/88616.88621.

[15]

F. Rastello, B. Diouf, A. Cohen. A polynomial spilling
heuristic: Layered allocation. In Proceedings of
IEEE/ACM International Symposium on Code Genera-
tion and Optimization, IEEE, Washington DC, USA,
pp. 1–10, 2013.

[16]

P. K. Krause. Optimal register allocation in polynomial
time. In Proceedings of International Conference on Com-
piler Construction, Rome, Italy, pp. 1–20, 2013.

[17]

P. K. Krause. The complexity of register allocation. Dis-
crete Applied Mathematics, vol. 168, pp. 51–59, 2014. DOI:
10.1016/j.dam.2013.03.015.

[18]

R. C. Lozano, M. Carlsson, F. Drejhammar, C. Schulte.
Constraint-based register allocation and instruction
scheduling. In Proceedings of the 18th international con-
ference on Principles and Practice of Constraint Program-
ming, Quebec City, Canada, pp. 750–766, 2012. DOI: 10.
1007/978-3-642-33558-7_54.

[19]

V. Sarkar, R. Barik. Extended linear scan: An alternate
foundation for global register allocation. In Proceedings of
the 16th International Conference on Compiler Construc-
tion, Springer-Verlag, Braga, Portugal, pp. 141–155, 2007.

[20]

O. Traub, G. Holloway, M. D. Smith. Quality and speed in
linear-scan register allocation. In Proceedings of ACM
SIGPLAN Conference on Programming Language Design
and Implementation, ACM, Montreal, Canada, pp. 142–
151, 1998. DOI: 10.1145/277652.277714.

[21]

C. Wimmer, M. Franz. Linear scan register allocation on
SSA form. In Proceedings of the 8th Annual IEEE/ACM
International Symposium on Code Generation and Optim-
ization, ACM, Toronto, Canada, pp. 170–179, 2010. DOI:
10.1145/1772954.1772979.

[22]

G. Calinescu, M. M. Li. Register loading via linear pro-
gramming. Algorithmica, vol. 72, no. 4, pp. 1011–1032,
2015. DOI: 10.1007/s00453-014-9888-2.

[23]

I. H. R. Jiang, G. J. Nam, H. Y. Chang, S. R. Nassif, J.
Hayes. Smart grid load balancing techniques via simultan-
eous switch/tie-line/wire configurations. In Proceedings of
IEEE/ACM International Conference on Computer-aided
Design, IEEE, San Jose, pp. 382–388, 2014. DOI: 10.1109/
ICCAD.2014.7001380.

[24]

F. M. Quintão Pereira, J. Palsberg. Register allocation by
puzzle solving. In Proceedings of the 29th ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, ACM, Tucson, USA, pp. 216–226, 2008.
DOI: 10.1145/1379022.1375609.

[25]

S. Kananizadeh and K. Kononenko / Improving on Linear Scan Register Allocation 237

http://dx.doi.org/10.1007/s11633-016-1014-2
http://dx.doi.org/10.1007/s11633-013-0758-1
http://dx.doi.org/10.1145/2348543.2348593
http://dx.doi.org/10.1145/2499370.2462164
http://dx.doi.org/10.1145/996893.996875
http://dx.doi.org/10.1145/996893.996875
http://dx.doi.org/10.1016/0096-0551(81)90048-5
http://dx.doi.org/10.1145/989393.989403
http://dx.doi.org/10.1145/88616.88621
http://dx.doi.org/10.1016/j.dam.2013.03.015
http://dx.doi.org/10.1007/978-3-642-33558-7_54
http://dx.doi.org/10.1007/978-3-642-33558-7_54
http://dx.doi.org/10.1007/978-3-642-33558-7_54
http://dx.doi.org/10.1145/277652.277714
http://dx.doi.org/10.1145/1772954.1772979
http://dx.doi.org/10.1007/s00453-014-9888-2
http://dx.doi.org/10.1109/<linebreak/>ICCAD.2014.7001380
http://dx.doi.org/10.1109/<linebreak/>ICCAD.2014.7001380
http://dx.doi.org/10.1145/1379022.1375609
http://dx.doi.org/10.1007/s11633-016-1014-2
http://dx.doi.org/10.1007/s11633-013-0758-1
http://dx.doi.org/10.1145/2348543.2348593
http://dx.doi.org/10.1145/2499370.2462164
http://dx.doi.org/10.1145/996893.996875
http://dx.doi.org/10.1145/996893.996875
http://dx.doi.org/10.1016/0096-0551(81)90048-5
http://dx.doi.org/10.1145/989393.989403
http://dx.doi.org/10.1145/88616.88621
http://dx.doi.org/10.1016/j.dam.2013.03.015
http://dx.doi.org/10.1007/978-3-642-33558-7_54
http://dx.doi.org/10.1007/978-3-642-33558-7_54
http://dx.doi.org/10.1007/978-3-642-33558-7_54
http://dx.doi.org/10.1145/277652.277714
http://dx.doi.org/10.1145/1772954.1772979
http://dx.doi.org/10.1007/s00453-014-9888-2
http://dx.doi.org/10.1109/<linebreak/>ICCAD.2014.7001380
http://dx.doi.org/10.1109/<linebreak/>ICCAD.2014.7001380
http://dx.doi.org/10.1145/1379022.1375609

F. M. Quintão Pereira. Register alocation by puzzle solv-
ing, Ph. D. dissertation, University of California, USA,
2008.

[26]

R. Barik, J. S. Zhao, V. Sarkar. A decoupled non-SSA
global register allocation using bipartite liveness graphs.
ACM Transactions on Architecture and Code Optimiza-
tion, vol. 10, no. 4, Article number 63, 2013. DOI: 10.1145/
2544101.

[27]

Q. Colombet, B. Boissinot, P. Brisk, S. Hack, F. Rastello.
Graph-coloring and treescan register allocation using re-
pairing. In Proceedings of the 14th International Confer-
ence on Compilers, Architectures and Synthesis for Em-
bedded Systems, ACM, Taipei, Taiwan, China, pp. 45–54,
2011. DOI: 10.1145/2038698.2038708.

[28]

H. B. Rong. Tree register allocation. In Proceedings of the
42nd Annual IEEE/ACM International Symposium on
Microarchitecture, ACM, New York, USA, pp. 67–77,
2009. DOI: 10.1145/1669112.1669123.

[29]

J. Eisl. Trace register allocation. In Proceedings of ACM
SIGPLAN International Conference on Systems, Program-
ming, Languages and Applications: Software for Human-
ity, ACM, Pittsburgh, USA, pp. 21–23, 2015. DOI:
10.1145/2814189.2814199.

[30]

D. Callahan, B. Koblenz. Register allocation via hierarch-
ical graph coloring. In Proceedings of ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, ACM, Toronto, Canada, pp. 192–203, 1991.
DOI: 10.1145/113446.113462.

[31]

K. D. Cooper, A. Dasgupta, J. Eckhardt. Revisiting graph
coloring register allocation: A study of the Chaitin-Briggs
and Callahan-Koblenz algorithms. In Proceedings of the
18th International Conference on Languages and Com-
pilers for Parallel Computing, Hawthorne, USA, pp. 1–16,
2006. DOI: 10.1007/978-3-540-69330-7_1.

[32]

M. Mohr, A. Grudnitsky, T. Modschiedler, L. Bauer, S.
Hack, J. Henkel. Hardware acceleration for programs in
SSA form. In Proceedings of International Conference on
Compilers, Architectures and Synthesis for Embedded
Systems, IEEE, Montreal, Canada, Article number 14,
2013.

[33]

P. K. Krause. Bytewise register allocation. In Proceedings
of the 18th International Workshop on Software and Com-
pilers for Embedded Systems, ACM, Sankt Goar, Ger-
many, pp. 22–27, 2015. DOI: 10.1145/2764967.2764971.

[34]

F. Bouchez. A Study of Spilling and Coalescing in Re-
gister Allocation as Two Separate Phases, Ph. D. disserta-
tion, École Normale supérieure de Lyon, Lyon, France,
2009.

[35]

S. Hack, Register allocation for programs in SSA form,
Ph. D. dissertation, University of Karlsruhe, Germany,
2007.

[36]

B. Boissinot, F. Brandner, A. Darte, B. D. de Dinechin, F.
Rastello. A non-iterative data-flow algorithm for comput-
ing liveness sets in strict SSA programs. In Proceedings of
the 9th Asian Conference on Programming Languages and
Systems, Kenting, Taiwan, China, pp. 137–154, 2011. DOI:
10.1007/978-3-642-25318-8_13.

[37]

Q. Colombet, F. Brandner, A. Darte. Studying optimal
spilling in the light of SSA. In Proceedings of the 14th In-
ternational Conference on Compilers, Architectures and
Synthesis for Embedded Systems, ACM, Taipei, Taiwan,
China, pp. 25–34, 2011. DOI: 10.1145/2038698.2038706.

[38]

B. Boissinot, P. Brisk, A. Darte, F. Rastello. SSI proper-[39]

ties revisited. ACM Transactions on Embedded Comput-
ing Systems, vol. 11S, no. 1, Article number 21, 2012. DOI:
10.1145/2180887.2180898.

P. Brisk, M. Sarrafzadeh. Interference graphs for proced-
ures in static single information form are interval graphs.
In Proceedings of the 10th International Workshop on
Software & Compilers for Embedded Systems, ACM, Nice,
France, pp. 101–110, 2007. DOI: 10.1145/1269843.1269858.

[40]

A. F. Deon, Y. A. Menyaev. The complete set simulation
of stochastic sequences without repeated and skipped ele-
ments. Journal of Universal Computer Science, vol. 22,
no. 8, pp. 1023–1047, 2016. DOI: 10.3217/jucs-022-08-1023.

[41]

A. F. Deon, Y. A. Menyaev. Parametrical tuning of twist-
ing generators. Journal of Computer Science, vol. 12, no. 8,
pp. 363–378, 2016. DOI: 10.3844/jcssp.2016.363.378.

[42]

D. E. Knuth. Art of Computer Programming, volume 2:
Seminumerical Algorithms. Boston, USA: Addison-Wes-
ley Longman Publishing Co., Inc., 1997.

[43]

P. Cousot, R. Cousot. Static determination of dynamic
properties of programs. In Proceedings of the 2nd Interna-
tional Symposium on Programming, Dunod, France,
pp. 106–130, 1976.

[44]

P. Cousot, R. Cousot. Abstract interpretation: Past,
present and future. In Proceedings of Joint Meeting of the
23rd EACSL Annual Conference on Computer Science Lo-
gic and the 29th Annual ACM/IEEE Symposium on Logic
in Computer Science, ACM, Vienna, Austria, Article num-
ber 2, 2014. DOI: 10.1145/2603088.2603165.

[45]

P. Cousot, R. Cousot, L. Mauborgne. Theories, solvers and
static analysis by abstract interpretation. Journal of the
ACM, vol. 59, no. 6, Article number 31, 2012. DOI:
10.1145/2395116.2395120.

[46]

J. R. Dick, K. B. Kent, J. C. Libby. A quantitative analys-
is of the .NET common language runtime. Journal of Sys-
tems Architecture, vol. 54, no. 7, pp. 679–696, 2008. DOI:
10.1016/j.sysarc.2007.11.004.

[47]

T. Davies, C. Karlsson, H. Liu, C. Ding, Z. Z. Chen. High
performance linpack benchmark: A fault tolerant imple-
mentation without checkpointing. In Proceedings of Inter-
national Conference on Supercomputing, ACM, Tucson,
USA, pp. 162–171, 2011. DOI: 10.1145/1995896.1995923.

[48]

 Shahrzad Kananizadeh received the B. Sc. degree in cyber
security from University of Tubingen, Germany. She is cur-
rently a researcher at Saarland University, Germany and works
in Robert Bosch, Germany.
 Her research interests include programming languages, com-
pilers and program analysis. Her areas of expertise include com-
puter engineering, communication engineering and telecommu-
nications.
 E-mail: kananiz_sh@hotmail.com
 ORCID iD: 0000-0003-3226-5129

 Kirill Kononenko is a mathematician who is interested in
the theoretical and mathematical foundations of computer sci-
ence. He is also interested in linguistics and foreign languages.
He developed the libjit-linear-scan library for dynamic compila-
tion. He is a member of ACM and IEEE.
 His research interests include theoretical physics, stochastic
processes and mathematical logic.
 E-mail: kirill.kononenko@acm.org (Corresponding author)
 ORCID iD: 0000-0002-7882-6326

238 International Journal of Automation and Computing 15(2), April 2018

http://dx.doi.org/10.1145/<linebreak/>2544101
http://dx.doi.org/10.1145/<linebreak/>2544101
http://dx.doi.org/10.1145/2038698.2038708
http://dx.doi.org/10.1145/1669112.1669123
http://dx.doi.org/10.1145/2814189.2814199
http://dx.doi.org/10.1145/113446.113462
http://dx.doi.org/10.1007/978-3-540-69330-7_1
http://dx.doi.org/10.1007/978-3-540-69330-7_1
http://dx.doi.org/10.1145/2764967.2764971
http://dx.doi.org/10.1007/978-3-642-25318-8_13
http://dx.doi.org/10.1007/978-3-642-25318-8_13
http://dx.doi.org/10.1145/2038698.2038706
http://dx.doi.org/10.1145/2180887.2180898
http://dx.doi.org/10.1145/1269843.1269858<linebreak/>
http://dx.doi.org/10.3217/jucs-022-08-1023
http://dx.doi.org/10.3844/jcssp.2016.363.378
http://dx.doi.org/10.1145/2603088.2603165
http://dx.doi.org/10.1145/2395116.2395120
http://dx.doi.org/10.1016/j.sysarc.2007.11.004
http://dx.doi.org/10.1145/1995896.1995923
http://dx.doi.org/10.1145/<linebreak/>2544101
http://dx.doi.org/10.1145/<linebreak/>2544101
http://dx.doi.org/10.1145/2038698.2038708
http://dx.doi.org/10.1145/1669112.1669123
http://dx.doi.org/10.1145/2814189.2814199
http://dx.doi.org/10.1145/113446.113462
http://dx.doi.org/10.1007/978-3-540-69330-7_1
http://dx.doi.org/10.1007/978-3-540-69330-7_1
http://dx.doi.org/10.1145/2764967.2764971
http://dx.doi.org/10.1007/978-3-642-25318-8_13
http://dx.doi.org/10.1007/978-3-642-25318-8_13
http://dx.doi.org/10.1145/2038698.2038706
http://dx.doi.org/10.1145/2180887.2180898
http://dx.doi.org/10.1145/1269843.1269858<linebreak/>
http://dx.doi.org/10.3217/jucs-022-08-1023
http://dx.doi.org/10.3844/jcssp.2016.363.378
http://dx.doi.org/10.1145/2603088.2603165
http://dx.doi.org/10.1145/2395116.2395120
http://dx.doi.org/10.1016/j.sysarc.2007.11.004
http://dx.doi.org/10.1145/1995896.1995923
http://dx.doi.org/10.1145/<linebreak/>2544101
http://dx.doi.org/10.1145/<linebreak/>2544101
http://dx.doi.org/10.1145/2038698.2038708
http://dx.doi.org/10.1145/1669112.1669123
http://dx.doi.org/10.1145/2814189.2814199
http://dx.doi.org/10.1145/113446.113462
http://dx.doi.org/10.1007/978-3-540-69330-7_1
http://dx.doi.org/10.1007/978-3-540-69330-7_1
http://dx.doi.org/10.1145/2764967.2764971
http://dx.doi.org/10.1007/978-3-642-25318-8_13
http://dx.doi.org/10.1007/978-3-642-25318-8_13
http://dx.doi.org/10.1145/2038698.2038706
http://dx.doi.org/10.1145/<linebreak/>2544101
http://dx.doi.org/10.1145/<linebreak/>2544101
http://dx.doi.org/10.1145/2038698.2038708
http://dx.doi.org/10.1145/1669112.1669123
http://dx.doi.org/10.1145/2814189.2814199
http://dx.doi.org/10.1145/113446.113462
http://dx.doi.org/10.1007/978-3-540-69330-7_1
http://dx.doi.org/10.1007/978-3-540-69330-7_1
http://dx.doi.org/10.1145/2764967.2764971
http://dx.doi.org/10.1007/978-3-642-25318-8_13
http://dx.doi.org/10.1007/978-3-642-25318-8_13
http://dx.doi.org/10.1145/2038698.2038706
http://dx.doi.org/10.1145/2180887.2180898
http://dx.doi.org/10.1145/1269843.1269858<linebreak/>
http://dx.doi.org/10.3217/jucs-022-08-1023
http://dx.doi.org/10.3844/jcssp.2016.363.378
http://dx.doi.org/10.1145/2603088.2603165
http://dx.doi.org/10.1145/2395116.2395120
http://dx.doi.org/10.1016/j.sysarc.2007.11.004
http://dx.doi.org/10.1145/1995896.1995923
http://dx.doi.org/10.1145/2180887.2180898
http://dx.doi.org/10.1145/1269843.1269858<linebreak/>
http://dx.doi.org/10.3217/jucs-022-08-1023
http://dx.doi.org/10.3844/jcssp.2016.363.378
http://dx.doi.org/10.1145/2603088.2603165
http://dx.doi.org/10.1145/2395116.2395120
http://dx.doi.org/10.1016/j.sysarc.2007.11.004
http://dx.doi.org/10.1145/1995896.1995923

