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Abstract:   Register allocation is a major step for all compilers. Various register allocation algorithms have been developed over the dec-
ades. This work describes a new class of rapid register allocation algorithms and presents experimental data on their behavior. Our re-
search encourages the avoidance of graphing and graph-coloring based on the fact that precise graph-coloring is nondeterministic poly-
nomial time-complete (NP-complete), which is not suitable for real-time tasks. In addition, practical graph-coloring algorithms tend to
use polynomial-time heuristics. In dynamic compilation environments, their super linear complexity makes them unsuitable for register
allocation and code generation. Existing tools for code generation and register allocation do not completely fulfill the requirements of fast
compilation. Existing approaches either do not allow for the optimization of register allocation to be achieved comprehensively with a
sufficient degree of performance or they require an unjustifiable amount of time and/or resources. Therefore, we propose a new class of
register allocation and code generation algorithms that can be performed in linear time. These algorithms are based on the mathematic-
al foundations of abstract interpretation and the computation of the level of abstraction. They have been implemented in a specialized
library for just-in-time compilation. The specialization of this library involves the execution of common intermediate language (CIL)
and low level virtual machine (LLVM) with a focus on embedded systems.

Keywords:   Register allocation, just-in-time compilation, code generation, static analysis, dynamic analysis.

 

1   Introduction

C++

“Just-in-time” compilers during program execution are

being increasingly used for the execution of dynamic lan-

guages  such  as  Perl  and  Python,  and  for  semi-dynamic

languages, such as Java and .

Currently,  however,  there  is  one  common  problem,

which arises in the use of the existing approaches of fast

just-in-time  compilation.  In  almost  every  case,  the  just-

in-time compiler is very specific to the used object model,

to  the  library  running  programs,  garbage  collection  and

other  features  of  bytecode  for  the  particular  system[1–3].

This inevitably leads to a situation where the effort needs

to  be  repeated,  and  all  the  useful  work  that  went  into

creating  and  developing  a  fast  and  high  quality  just-in-

time compiler for a single virtual machine and a program-

ming language cannot be used a second time for another

virtual machine and another programming language.

Just-in-time  compilers  are  not  only  useful  in  the  im-

plementation  of  programming  languages.  They  can  also

be used in other fields of mathematics and programming.

For  example,  graphical  applications  can  achieve  better

execution if they compile special means of just-in-time ex-

ecution of the program, specialized for “manual” genera-

tion  of  images,  more  accurately,  achieving  a  better  per-

formance  than  statically  generated  general-purpose

means.  Obviously,  such  applications  do  not  need  object

models, garbage-collectors, or large class libraries.

The greatest amount of work during the development

of a new just-in-time compiler relates to the support oper-

ations  of  arithmetics,  conversion  of  data  types,  reading

from memory, writing to memory, creation of loops, ana-

lysis  of  the data-flow graph, algorithm of register alloca-

tion, and generation of executable machine code.  Only a

very small fraction of the work is dependent on the byte-

code  of  the  virtual  machine  and  the  programming  lan-

guage.  The  purpose  of  the  libjit-linear-scan[4, 5] project

consists of providing a necessary and sufficient set of tools

that ensure the process of fast just-in-time compilation of

the  program,  liberating  the  developer  from  the  work  on

the features  of  the programming language and operating

system. In those parts where the support of common ob-

ject models is available, this is done strictly in additional

libraries of the operating system, and not in the form of

code of the kernel of the execution environment.

The  libjit-linear-scan  library  aims  to  provide  de-

velopers with more time and opportunity to think about

the  high-level  design  of  the  virtual  machine,  without  fo-

cusing on the details of generation and execution of bin-

ary  code.  At  the  same  time,  experts  in  optimization,

design, compiler implementation, and native code genera-

tion can focus on more low-level problems of binary code

execution, instead of working on applied problems.

O(n)

Super linear complexity algorithms, which are used in

compilers,  can  fail  in  case  of  an  algorithmic  complexity

attack. Hence, algorithms that are fast and have a linear

complexity  of  are  often  used.  When  this  is  im-
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possible,  it  is  expedient  to  use  algorithms  that  have  a

higher complexity. The library that we have developed in

this  study  implements  functionality  via  fast  algorithms

based on just-in-time compilation with a linear complex-

ity. This library was created from the ground up to sup-

port just-in-time compilation, independent of any format

of  bytecode  or  programming  language.  Currently,  libjit-

linear-scan[4, 5] is used as a just-in-time compiler for Port-

able.NET[4, 6] and low level virtual machine (LLVM)[7, 8].

In order to facilitate just-in-time compilation in common

language  runtime  and  embedded  systems,  libjit-linear-

scan as well as the just-in-time compiler of Portable.NET

have  been  created  with  the  original  support  of  the  open

source automation development lab (OSADL) in the Dot-

GNU  project[6].  Therefore,  this  extension  is  compatible

with  all  software  that  already  uses  its  application  pro-

gramming interface (API).

The contributions of our work are two-fold. First, we

describe a novel approach for the register allocation based

on a virtual execution environment that combines inform-

ation from static and dynamic program analyses. Second,

this paper advances the field of  computer science by de-

veloping  tools  for  the  just-in-time  compilation  of  pro-

gram code.

The  remainder  of  this  paper  is  organized  as  follows.

The next section presents an overview of the various ap-

proaches  for  the  fast  register  allocation.  Section  3

presents our approach. Section 3.1 presents the principles

of  register  allocation  via  graph  coloring.  Section  3.2

presents the formulation of the novel mathematical model.

Section  3.3  presents  the  principles  for  implementing  our

approach.  Section  4  contains  the  test  results,  and  it

presents  and analyzes  the obtained experimental  data in

terms of the performance. Section 5 presents a discussion

on the results. The final section concludes the paper.

2   Literature review

⟨du⟩
Register  allocation  involves  four  particular  problems:

the  computation  of  chains,  the  dead-code  elimina-

tion, the definition of live variables, and graph coloring.

Altogether,  these  problems  can  be  effectively  solved

for  chordal  graphs.  The  interference  graphs  of  program

code  in  static  single  assignment  (SSA)  form  are  chordal

(e.g., Fig. 1).  Therefore,  we  will  solve  all  these  tasks  for

chordal graphs.

The compiler optimization of register allocation in ma-

chine code causes a significant increase in code execution

performance.

The  most  well-known  approach  to  global  register  al-

location  is  via  graph  coloring[2, 9],  as  formalized  by

Cocke[10], Ershov[11] and Schwartz[12] and later implemen-

ted by Chaitin[13, 14], Chow and Hennessy[15]. Since the ba-

sic  graph-coloring  problem  underlying  this  approach  is

nondeterministic  polynomial  time-complete  (NP-com-

plete),  however,  any  practical  algorithm  must  simplify

the  problem  using  heuristics[16–19].  Many  such  heuristic

variations  have  been  explored,  such  as  linear  scan[20–22],

integer linear programming[23, 24],  puzzle solving[25, 26],  re-

pairing[27, 28], trees[29] and traces[30]. Krause[18] proves that

given certain restrictions on the input program (e.g.,  for

C  a  limit  on  the  use  of  goto  labels)  graph-coloring  re-

gister  allocation  can  be  done  in  polynomial  time  for  a

fixed number of registers. The approach is not a practic-

al  choice for dynamic compilers since the execution time

is  exponential  in  the  number  of  registers.  The  work  of

Lozano et al.[19] contains a proof that any optimal graph-

coloring  register  allocation  algorithms  will  have  execu-

tion  time  exponential  in  the  number  of  registers.  The

latest research on graph coloring based register allocation

suggests  the  Callahan-Koblenz  algorithm[31, 32] that  rep-

resents the hierarchical program structure with a tile tree.

Such a tree structure isolates the high-frequency and low-

frequency code regions and provides a basis for the alloc-

ator′s  overall  operation  and  spill  placement  decisions.

While  those  heuristics  yield  polynomial-time  algorithms,

they do not generally run in linear time, with the excep-

tion of the Bouchez, Brisk, Hack et al.[28, 33–37] algorithms

for programs in static single assignment (SSA) form[38–40],

which partly inspired the present work. We also want to

draw attention to useful works[41–43] that develop a simil-

ar approach. We make the novel observation that most of

the  advantages  of  this  linear-time algorithm may be  ob-

tained without actually transforming the program to SSA

form,  since  many realistic  programs  appear  to  have

chordal  inference  graphs,  thereby  enabling  a  much  sim-

pler algorithm that can generate code nearly as efficiently.

3   Methods

3.1   Register allocation based on coloring

Graph  coloring  based  on  constructing  an  interference

 

 
Fig. 1     An example of a chordal graph
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O(n2) n

O(n)

graph of  variables  is  the traditional  approach to register

allocation. The graph is used for mapping the set of  dy-

namic states of variables into the set of their static states

during program execution. Vertices in the graph are vari-

ables of the program. Thus, the vertices of the graph also

represent  symbolic  and  machine  registers  that  are  alloc-

ated for  temporary variables.  The method of  register  al-

location  based  on  graph  coloring  in  the  general  case,

without  the  use  of  heuristics,  has  an  NP-complexity.

Many  approximate  solutions  of  this  problem  have  been

studied. However, they are all heuristics. Among the best

known is the heuristic of Chaitin based on graph coloring.

However,  this  heuristic  works  in  time,  where  is

number of variables or the size of the program in a more

complex formulation.  Just-in-time compilers  should com-

pile and distribute registers in  time. The problem of

optimal  register  allocation  in  an  infinite  amount  of  time

on  making  the  decision  can  be  solved  by  exhaustive

search.  A variant  of  machine  code for  a  fixed variant  of

allocation of registers and local memory is generated. The

variant of generated machine code is analyzed for optim-

ality  by  counting  the  number  of  instructions  addressing

memory in the machine code, or counting the number of

memory  accesses  during  program execution  on  the  basis

of the statistics.

If two variables interfere with each other, then an arc

is  drawn  between  the  vertices  of  the  interference  graph.

For  non-interfering  variables,  we  can  use  the  same  re-

gister, thereby reducing the number of registers required.

On the other hand, the arc between two variables means

that we should not assign them both to the same register,

because  their  liveness  at  a  certain  point  in  time  of  pro-

gram execution intersects. This graph can be represented

as a matrix of lists, depending on which operations are re-

quired.

The basic idea of global register allocation (Fig. 2) can

be expressed in five steps, which are as follows:

· · ·

1) During code generation and optimization (whatever

phase has preceded allocation of registers) or, as the first

stage  of  register  allocation,  allocate  unique  symbolic  re-

gisters to objects that can be assigned to registers, unique

symbolic registers,  for example, s1, s2, ,  using as many

of them as necessary to store all objects (source variables,

temporary variables, large numerical constants, etc.).

2)  Determine  which  objects  should  be  candidates  for

allocation into registers.

3)  Build  a  so-called  interference  graph.  The  interfer-

ence  graph  is  a  graph  whose  nodes  represent  the  alloc-

ated objects and real machine registers of the target ma-

chine,  and  whose  arcs  (or  directed  arcs)  represent  inter-

ferences. Then, two allocated objects intersect if they are

alive at the same time. An object and a register interfere

if the object cannot or should not be allocated to this re-

gister (e.g.,  an integer operand or a register for floating-

point values).

4)  Color  the  node  of  the  interference  graph  with R

colors,  where R is  the  number  of  available  registers,  so

that every two adjacent nodes have different colors (this

is called coloring with R-colors).

5)  Select  for  each  object  a  register  which  is  of  the

same color.

Fig. 3 shows an example of a program that makes ad-

dition of numbers in the variables. All the variables with

a  common  vertex  in  the  interference  graph  are  assigned

to different machine registers.

⟨du⟩

Φ

Φ

Many  problems  can  be  solved  more  efficiently  in  the

case of chordal graphs. In SSA form,  chains are ex-

pressed explicitly. Interference graphs of programs in SSA

form  are  chordal.  Nonetheless,  the -functions  them-

selves  are  not  computable.  The  problem  of  optimization

of -functions for their transformation to machine code is

NP-complete. Thus, the problem of optimal register alloc-

ation is NP-complete. Chordal graphs are perfectly order-

able, which allows the rapid coloring of graphs. Is it pos-

sible to find the given ordering rapidly? It is evident that

for interval graphs, the given order is expressed explicitly.

It  can  be  assumed  that  interference  graphs  of  realistic

programs are chordal and even interval.

3.2   Mathematical model

If all variants of the execution of a program were de-

terministic and finite, then of course it would be possible

to compute the result of the execution of this program us-

ing  concrete  hardware  at  any  time  before  its  execution.

However,  some programs can achieve an infinite number

of  side  effects  from  the  wholly  deterministic  area  of  ac-
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Fig. 2     A  general  description  of  algorithms  based  on  graph
coloring
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Fig. 3     Register allocation via graph coloring
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cess for the program, such as reading and writing into the

shared  memory.  Those  side  effects  can  be  infinite  and

even  incomputable.  Therefore,  we  propose  a  new  math-

ematical  model  in  order  to  take  this  behavior  into  ac-

count. In the mathematical model that we created, there

is a possibility to compute the result of the execution of a

program using  concrete  hardware  at  any  time  before  its

execution if all variants of its execution are deterministic

and finite. A good machine code generator supports a few

mechanisms  for  its  generation  and  optimization  of  re-

gister allocation. Thus, in order to make the optimal de-

cision, the infinite variants must be analyzed at an appro-

priate time. This can be done with the use of domain-spe-

cific  optimization  and  an  analysis  of  program  behavior.

For these computations, we use a linear analysis and the

mathematical  apparatus  of  probability  spaces  based  on

the  Kolmogorov  axioms.  We  define  the  level  of  abstrac-

tion as the probability of making a correct decision about

the properties of a program before its actual execution on

real  hardware,  based  on  the  analysis  of  a  limited  set  of

data performed in linear time. Thus, we formalize the hy-

pothesis  that  more  abstract  bytecode  can  be  executed

more  efficiently  than  less  abstract  bytecode.  Limited  re-

sources  are  to  be  allocated  to  the  execution  of  solutions

with  a  maximum  level  of  abstraction,  with  the  goal  of

maximizing  the  expectation  of  success  in  the  selected

path of the execution of the program. In other words, we

look at the machine code generated by the dynamic com-

piler  as  a  finite  set  of  random  variables.  Each  of  these

random  variables  has  its  own  distribution.  Nevertheless,

those  distributions  can  be  incomputable  or  be  infinitely

divisible.

We  look  at  a  sequence  of  random variables  arranged

in  some  geometrical  space  (e.g., Fig. 4).  First,  an  input

bytecode method is  verified and is  converted into an in-

termediate  form.  Each concrete  realization  of  the  binary

code  is  a  realization  of  the  random  value.  We  define  a

function  that  computes  the  expected  values  of  a  certain

target function defined on this binary code.

We  expect  monotonic  properties  of  the  target  func-

tion  from  applications  of  the  resources  of  one  class  to

more resources of the second class.  The use of first class

resources requires much less execution time for a piece of

machine code on a hardware processor,  and thus for the

entire  program.  On  the  other  hand,  their  usage  high-

lights the need to commit second-class resources at a cer-

tain  moment  in  time.  Register  allocation  is  simply  the

easiest example to demonstrate the efficiency of our mod-

el for optimization.

Unless we have fully deterministic control of concrete

realizations  we  believe  that  such  realizations  can  have

various distributions of probability according to the con-

crete values of some input parameters.

Thus, we analyze this situation using a simple hidden

Markov  model  with  a  finite  number  of  linearly  ordered

nodes (e.g., Fig. 5). In other words, there is a description

of the properties of the signal that is analogous to wave-

let  transforms  and  thus  an  analogous  relation  between

the  apparatus  of  characteristic  functions  and  the  formu-

las  developed  by  Kolmogorov,  Lévy  and  Khintchine  in

the computation of the properties of stochastic processes.

We believe  that  in  the  context  of  uncertainties,  non-

determinism and a set of possibilities with equal or vari-

able  weights,  resources  should  be  directed  toward  the

solution  with  the  maximal  probability  of  obtaining  the

correct solution based on the ahead-of-time prediction of

the program in the given domain of optimization.

3.3   Implementation

We apply abstract interpretation[44–46] in order to pre-

dict  the  properties  and behavior  of  a  program before  its

execution.

We define  the  goals  of  register  allocation  for  a  given

set of properties of a program as, first, the correctness of

execution and, second, the minimization of the number of

accesses of the local stack memory. We predict the prop-

erties  of  the  given  program  before  its  execution  on  real

hardware. Each binary property has a certain probability

of being obtained. We store each of these binary proper-

ties in a bit. Each bit is a degree of freedom. Static ana-

lysis creates sets of these bits. Our register allocation al-

gorithms commit the set of bits created by static analys-

is for optimization and code generation. For a given pro-

gram there is one deterministic such set of bits.

The probability of predicting the properties of a given

program before its execution in a linear time is inversely

proportional to the size of the analyzed program. We also

describe  below  the  required  transformation  for  the  com-

putation  of  that  probability  and  its  properties.  We  call

this  probability  the  level  of  abstraction.  Because  it  is

practically  difficult  to  build  a  simple  deterministic  pro-
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cess for the computation of all possible variants of beha-

vior  for  a  defined  program,  we  also  look  at  the  defined

properties  of  the  generated  machine  code.  Each  piece  of

machine  code  has  an  expected  weight  given  by  an  ap-

proximation  which  depends  linearly  on  the  computed

level of abstraction.

Properties are defined on a certain domain of optimiz-

ation. For example, as mentioned above, they can be the

number  of  accesses  of  the  memory,  the  security  of  the

machine  code  and/or  the  size  of  the  generated  machine

code. In all cases, there should be an interval of machine

code for  achieving some set  (or  singleton) of  the defined

strategies of optimization. Thus, we look at the process of

register allocation for just-in-time compilers as the result

of the defined process of static analysis. For that defined

process,  each  managed  method  is  mapped  onto  a  set  of

random  variables  in  a  defined  probability  space.  That

random variable vector is a set of possible machine codes

as well as a set of data for which the source code is com-

piled.  In  other  words,  each  compiled  object  is  a  realiza-

tion  of  an  ordered  set  of  random variables.  We consider

their distributions below.

⟨X⟩

We  define  this  weight  as  the  difference  between  the

expected  optimistic  gains  and  the  expected  pessimistic

losses. In other words, we look at the expected best vari-

ant  and  the  expected  worst  variant.  We  then  define  a

function of wins and losses, which are defined on primit-

ive chains of events :

E(losses(⟨X⟩)) =∫ t=T

t=0

abstraction(⟨X(t)⟩)E(losses(⟨X(t)⟩))dt

E(wins(⟨X⟩)) =∫ t=T

t=0

abstraction(⟨X(t)⟩)E(wins(⟨X(t)⟩))dt

E(weight(⟨X⟩)) = E(wins(⟨X⟩)− losses(⟨X⟩)) =
E(wins(⟨X⟩))− E(losses(⟨X⟩)) =∫ t=T

t=0

abstraction(⟨X(t)⟩)E(weight(⟨X(t)⟩))dt.

weight⟨X(t)⟩
i(t)

E( )  defines  the  expected  weight  that  a

block with index  should have in  case  there  is  a  cor-

rect decision with a probability 1. Moreover, if the block

does indeed have that given property,  then the informa-

tion about the properties of that signal has been used cor-

rectly  to  achieve  the  expected  benefits.  We  expect  that

when  all  accessible  information  has  been  used,  rather

than  just  a  part  of  it,  then  the  correct  decision  can  be

made.

We  represent  the  intermediate  code  by  independent

sets,  in  which  there  are  variables.  Each  variable  is  as-

signed a virtual register for all ranges of its life. There is

a  limited  set  of  resources  for  the  allocation  of  hardware

registers. We optimize the use of this limited resource of

hardware registers for register allocation. Below, we show

the expected weight that a variable should be assigned a

hardware register.

Let  us  look  at  the  step  in  which  there  is  already  in-

formation about the ranges of a live variable. Suppose the

distribution  of  properties  of  the  intermediate  code  in  a

certain continuous region that contains the properties for

optimization  is  uniform  and  the  level  of  abstraction  is

constant.  This  is  a  valid  assumption  because  a  general

distribution can usually be approximated by various uni-

form distributions in different regions,  and we may even

let  the  number  of  regions  become  infinite.  Our  motiva-

tion for this assumption is that the probability of finding

properties for a sequence of bits with only a limited num-

ber  of  bits  in  finite  time is  inversely  proportional  to  the

total number of bits in that sequence and proportional to

the  total  number  of  bits  that  can  be  analyzed  in  linear

time. Of course, it is possible to have an unknown distri-

bution. Nevertheless,  we believe that a uniform distribu-

tion is a good approximation at this scale. Thus,

abstraction(⟨X⟩) = 1

Power(⟨X⟩) .

t

The  power  function  returns  the  number  of  bits  that

can  be  used  in  the  representation  of  the  set  of  all  pos-

sible  variants  of  the  behavior  of  the  machine  code  and

data.  Each block  of  bits  can  either  use  a  variable  or  ig-

nore it. We introduce the function ∆( ) which is equal to

the expected number of times a given variable is used in

a set of bits to access memory in the time interval from t

to t + ∆t. We conclude that

E(weight(⟨X⟩))=
∫ B

A

1

Power(⟨X⟩)∆(t)dt=
U

B −A
.

Here, U is the total number of usages of the variable.

Each variable has a physical geometrical space in the pro-

gram representation where it  is  live. A is  the coordinate

of the appearance of the first-used live range of the vari-

able,  and B is  the  coordinate  of  its  last-used  live  range.

When U is  constant  for  all  the  variables  and  there  is  a

high  intensity  of  appearance  of  new  variables  and A is

much smaller than B, we get the formula for the weights

of the original heuristic linear scan.

E(weight(⟨X⟩)) = 1

B
.

4   Results

This  section  discusses  the  experimental  results  of  the

use  of  the  developed  library.  Five  levels  of  optimization

are supported. Optimization level 0 uses the default call-

ing  convention,  global  register  allocation  based  on  the

number  of  uses,  and  floating-point  operations  are  using

floating point unit (FPU). Optimization level 1 uses only

local register allocation in each block of instructions. Op-

timization level 2 uses linear scan, and fast analysis of the
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liveness of variables is using the graph of control flow. At

optimization level 2, only one interval of liveness of vari-

ables  for  each  virtual  register  is  present.  Optimization

level  3  uses  the  algorithm  of  second-chance  bin-packing

based  on  multiple  intervals  of  liveness  of  variables  for

each virtual register. Optimization level 4 includes dead-

code  elimination.  In  addition,  the  new  generator  of  ma-

chine code uses  single  instruction,  multiple  data (SIMD)

extensions  and  streaming  SIMD  extension  registers

(XMM) registers to represent floating-point operations.

C++

PnetMark[47, 48] was  created  on  the  basis  of  Caffeine-

Mark benchmarks for the Java virtual  machine.  Conver-

sion of test was made using the transformation of bench-

marks from descriptions in Java language into . The

main  purpose  of  this  performance  benchmark  is  to  com-

pare  different  versions  of  Portable.NET and identify  the

place that requires improvement. Higher values mean bet-

ter performance of the runtime in certain particular con-

ditions. The SciMark2 shows the performance in scientif-

ic and numeric computations. PnetMark benchmark con-

sists  of  a  set  of  benchmarks  Sieve,  Loop,  Logic,  String,

Float, and Method. Linpack shows the performance of the

system in solving problems of numeric linear algebra.

Each benchmark was executed 80 times for each vari-

ant of the execution environment, shown in Table 1, and

the algorithm of register allocation. This number was se-

lected  as  a  result  of  consultations  with  the  specialists,

who develop Portable.NET.

On the Y-axis  in Figs. 6–12 is  the average number of

invocations  of  the  function  in  a  given  unit  of  time.  The

increase of performance in the presented benchmarks was

computed as  the  number,  which is  determined relatively

to the performance of PnetMark benchmark for the mode

LS-O4 internal and direct unrolled.

Analogically, the performance values for the SciMark2

and Linpack benchmarks are also computed below.

Fig. 6 determines  the  time  of  passing  all  regression

tests of the library of classes.

Figs. 7 and 8 present  the  results  for  the  PnetMark,

SciMark2, and Linpack benchmarks.

Higher values mean better performance of the runtime

in  benchmarks.  The  increase  of  performance  in  Pnet-

Mark is 116%, in SciMark2 it is 239%, and in Linpack it

is 136%.

As seen from the estimates of standard deviation, the

variance  of  the  results  in  our  environment  is  substan-

tially  less  than  other  variants  of  the  execution  environ-

ment of .NET from competitors and the previous version

of the just-in-time compiler.

Let us look at two examples of functions that we call

power, and methods for computation of the expected be-

nefit.  The first definition uses the number of operational

 

Table 1    Programs′ execution environments

VM Variant of the environment Optimization level Symbol

1 Portable.NET Internal ABI 4 LS-O4 internal

2 Portable.NET Cdecl ABI 4 LS-O4 cdecl

3 Portable.NET Internal ABI 3 LS-O3 internal

4 Portable.NET Cdecl ABI 3 LS-O3 cdecl

5 Portable.NET Internal ABI 2 LS-O2 internal

6 Portable.NET Cdecl ABI 2 LS-O2 cdecl

7 Portable.NET Internal ABI 1 LS-O1 internal

8 Portable.NET Cdecl ABI 1 LS-O1 cdecl

9 Portable.NET

Cdecl ABI allocation of registers using the number of usages of the variable
for the operations with numbers with a floating point. For operations with
numbers with a floating point, the x87 co-processor is used. Priority is for
the variables with the maximal number of uses

0 O0 cdecl

10 Portable.NET Unrolling of the interpreter loop Direct unrolled

11 Portable.NET Interpreter based on pointers on handlers of the byte-code (direct threaded) Direct threaded

12 Portable.NET Interpreter Token threaded

13 Portable.NET Mode of interpreter of libjit Libjit interpreter

14 Microsoft.NET
Framework 2.0 .NET 2.0

15 Mono 2.4 Mono 2.4

16 Mono 2.2 Mono 2.2

17 Mono 2.0 Mono 2.0

18 Mono 1.1 Mono 1.1

19 Mono Mint 1.1.11 Mint 1.1
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codes included in the set of intervals of liveness, and the

number of  times  the variable  was used.  This  register  al-

locator  is  designated  as  abstract  linear  scan  (ALS).  The

second  definition  uses  the  size  of  the  machine  code  and

the  number  of  times  the  memory  in  the  generated  ma-

chine code was accessed. In other words, each operation-

al  code  has  two  elements  with  two  offsets,  wherein  the

machine  code  starts  with  the  current  operational  code

and  ends  with  it.  Computations  are  performed  for  the

number  of  accesses  to  the  primitive  code  generator

i486_membase_emit, to which a counter based on a glob-

al  variable  is  added.  In  other  words,  we  computed  the

number  of  expected  memory  accesses  in  the  generated

machine  code,  excluding  loops.  This  register  allocator  is

denoted as an abstract linear scan based on the heurist-

ics  of  machine code.  The allocators  of  registers  are com-

pared to the heuristics of simple linear scan, which saves

the register with the farthest end of time of liveness. We

denote  this  register  allocator  as  linear  scan  (LS).

Moreover, another heuristic of register allocation is used,

which  is  based  on  the  number  of  intervals  of  liveness  of

each register. The results of the application of these heur-

istics  are  presented  in Fig. 8.  An  analysis  of  the  results

demonstrates that the improvement in code speed results

in smaller size of machine code.

The graphs in Figs. 9–12 show the estimation of stand-

ard  deviation  for  various  performance  benchmarks.  It  is

worth  noting  that  the  numerical  expression  of  estima-
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Fig. 7     PnetMark, SciMark2, Linpack benchmarks
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Fig. 8     PnetMark, SciMark2, Linpack benchmarks
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tions of dispersion for these random values has a largely

demonstrative and relative character. This is because the

obtained results of its numerical expression vary depend-

ing  on  the  hardware  platform  and  a  variety  of  other

factors. Each point on the graphs took 2 hours of compu-

tation and required 80 runs of the benchmark. It has de-

termining value for the analysis of the research results. It

tells that objective unbiased statistical studies over a con-

siderable  period  of  time  were  conducted,  a  significant

sample  from realizations  of  random variables  was  taken.

These results are objective for this hardware platform and

operating  system.  They  show  the  possibility  of  conduct-

ing  repeated measurements  and are  analogous  in  quality

to the results for other platforms and operating systems.

5   Discussions

As follows from the data in Figs. 6–12, the new heur-

istics  of  register  allocation  show  improvements  in  per-

formance  benchmarks  in  comparison with  the  use  of  the

simple heuristic of linear scan. When using register alloca-

tion based on machine code, analysis of the assembly lan-

guage code shows the inefficiency of the algorithm of loc-

al  allocation  of  registers,  applied  to  the  chosen  path  of

optimization  using  the  algorithm  of  global  allocation  of

registers.  The algorithm of  local  allocation of  registers  is

the  next  object  for  further  research  and  optimization.

When using the heuristic with machine code, there is an

improvement of  the PnetMark benchmark.  However,  the

performance of  SciMark2 and Linpack decreases.  Studies

show that this appears to be due to the inefficiency of us-

ing  only  two  points  of  optimization.  This  methodology

and further possible improvements are similar to the ap-

proach of applying the simplex method for finding the op-

timal  result.  In  this  case,  the  global  algorithm of  alloca-

tion of  registers  yields  impressive results,  both the num-

ber  of  virtual  registers  that  use  the  local  stack  and  the

size of the local stack used for global variables are smal-

ler. However, the local algorithm of allocation of registers

adds  many  accesses  to  the  memory  stack.  This  can  be

solved  by  using  a  larger  number  of  experimental  points

and a greater number of optimization passes. The experi-

ment confirms that most of the variables in the interme-

diate representation, which is obtained from the compila-

tion  of  common  intermediate  language  (CIL),  have  only

one interval  of  liveness.  Most of  the intervals  of  liveness

of virtual registers are short and have a length not great-

er than three operational codes if dead-code elimination is

not applied previously. Most intervals of liveness of virtu-

al registers are not above four operational codes if  dead-

code elimination was applied. Most of these variables are

temporary.  Thus,  the  use  of  the  heuristic  of  saving  into

memory virtual registers with the largest number of inter-

vals of liveness is justified. Fig. 13 shows the sample dis-

tribution function of the lengths of liveness of variables.

The number of intervals of liveness with optimization

level 2 is always equal to 1. The distribution of the num-

ber of intervals of liveness with optimization levels 3 and

4 is shown in Fig. 14.

The  improvement  in  performance  benchmarks  is  the

result  of  the  analysis  of  variables′ liveness  space  and
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dead-code  elimination.  The  most  productive  algorithm

variant is the one that uses the intermediate representa-

tion  for  the  computation  of  variables′ weights.  In  our

opinion, the heuristic based on the candidates of machine

code has greater potential.  It  gives results that are close

to  the  heuristic  described  above  with  the  use  of  two

points. In addition, it requires more computational time,

because  it  can  use  more  experimental  points  for  finding

the  optimal  solution.  It  can  be  used  to  advantage,  be-

cause not all  machine code properties are clearly defined

in intermediate code.

It should be noted that the original implementation of

the algorithm of linear scan, which uses only one interval

of liveness for compilation, worked two times faster than

the algorithm of register allocation, based on the number

of uses of variables. In order to implement the use of mul-

tiple  intervals  of  liveness,  it  was necessary to implement

the more general algorithm. This algorithm slowed down

compilation time.

The  increased  performance  of  the  new  algorithms  of

register allocation happens at all levels, but it is particu-

larly significant on low levels of optimization. In addition,

it  is  much  more  significant  after  the  use  of  information

provided by static analysis of the space of liveness of vari-

ables and after dead-code elimination.

Compared with the interpretation mode, fast compila-

tion  with  libjit-linear-scan  does  not  increase  the  time  of

execution of the virtual machine or the time of compila-

tion, and thus the quality of the machine code improves.

The  increased  performance  of  the  abstract  linear  scan

compared with simple linear scan at optimization level 2

in PnetMark is 5.30%, in SciMark2 – 4.00%, and in Lin-

pack – 12.59%. In addition, improvements were noted in

all intermediate benchmarks in PnetMark, SciMark2 and

Linpack.

New algorithms do not have any unnecessary compu-

tational  costs,  and additionally  use  only  the  information

about the number of uses of variables. It should be noted

that when simple linear scan is enabled, this information

is computed anyway in invocations of the API.

6   Conclusions

The paper studied a new class of rapid register alloca-

tion algorithms and presented experimental data on their

behavior.  Thus,  the  authors  found  that  the  increase  of

runtime performance for PnetMark is 116%, for SciMark2

– 239%, and 136% for Linpack.  As seen from the estim-

ates of  standard deviation, the variance of  the results in

the environment is  substantially less than other variants

of  .NET  execution  environment  of  competitors  and  the

previous version of the just-in-time compiler. The results

of heuristics application for PnetMark is 105%, 155% for

SciMark2, and 93% for Linpack. These results are object-

ive  for  this  hardware  platform  and  operating  system.

They  show  the  possibility  of  performing  repeated  meas-

urements and are similar in quality to the results for oth-

er  platforms  and  operating  systems.  The  paper  provides

the estimation of value deviation of PnetMark, SciMark2,

and Linpack benchmarks. The maximum value deviation

of PnetMark benchmark is for internal LS-O2. The max-

imum  value  deviation  of  SciMark2  and  Linpack  bench-

marks  is  for  mono  2.0.  Thus,  the  new  heuristics  of  re-

gister  allocation  show  improvements  in  benchmarks  per-

formance in comparison with the use of simple heuristics

of  linear  scan.  The  researchers  also  found  that  the  per-

formance of SciMark2 and Linpack decreases and this ap-

pears  to  be  due  to  the  inefficiency  of  using  only  two

points  of  optimization.  The  conducted  experiment  con-

firmed that most of the variables in the intermediate rep-

resentation of libjit-linear-scan, obtained from the compil-

ation of CIL, have only one interval of liveness.

The  results  of  the  performed  research  may  be  useful

for  the  development  of  rapid  just-in-time  compilers,

methods  of  automatic  neutralization  of  vulnerabilities,

converters  of  bytecodes  of  virtual  machines,  and  com-

pilers for executing the programs of virtual machines such

as Java, Python, Perl, Ruby, LLVM, and Parrot.

We  have  outlined  a  theoretical  possibility  and  have

demonstrated the possibility of the practical applicability

of  the  proposed  approach.  We  have  tested  various  op-

tions  and  have  specified  the  optimal  algorithm  imple-

mentations,  based  on  the  practical  use  purposes.  It  is

worth noting that the proposed approach is  open to im-
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provement,  and  although  we  have  demonstrated  the  ap-

plicability  of  the  principle  and  the  possibility  of  the  al-

gorithm, the proposed approach at the moment-in a great

measure  a  theoretical  possibility.  Further  research  direc-

tions could be concerned with various possibilities of dy-

namic  compilation  and  the  dynamic  neutralization  of

data  leakages.  For  example,  it  is  possible  to  create  new

domain-oriented  algorithms  for  the  optimization  of  the

performance  of  code  and  neutralization  of  threats  that

target  the  narrow specifics  of  the  application.  The given

algorithms  can  be  specialized  and  optimized  for  the  ap-

plication in a variety of areas where embedded systems or

mainframes can be or are being used. These areas include,

for instance, power consumption or various aspects of the

secure  execution  of  programs  in  operating  systems  for

general and specialized purposes.
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