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Abstract: This paper investigates the problem of estimation of the wheelchair position in indoor environments with noisy mea-

surements. The measuring system is based on two odometers placed on the axis of the wheels combined with a magnetic compass to

determine the position and orientation. Determination of displacements is implemented by an accelerometer. Data coming from sensors

are combined and used as inputs to unscented Kalman filter (UKF). Two data fusion architectures: measurement fusion (MF) and

state vector fusion (SVF) are proposed to merge the available measurements. Comparative studies of these two architectures show that

the MF architecture provides states estimation with relatively less uncertainty compared to SVF. However, odometers measurements

determine the position with relatively high uncertainty followed by the accelerometer measurements. Therefore, fusion in the navigation

system is needed. The obtained simulation results show the effectiveness of proposed architectures.
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1 Introduction

Navigation system is one of the most used applications

on wheelchairs in the field of robotic systems, it can

provide advantages to users of this type of chairs due

to its simplicity. In ordinary life, this category needs to

navigate and to know strategic places such as parking,

metro stations and also inside a building composed of

several places without the help of anyone. This requires the

development of a system capable to accomplish these tasks,

which allow the places identification and easy navigation,

including helping to locate the chair mobility at any time.

Practically, the location determination using a single sensor

is insufficient to capture all relevant characteristics of real

environments. Then, it is necessary to combine data from

multiple sensors in a process known as fusion. Multi-sensor

data fusion is a technology to allow combining information

from several sensors, where the goal is to have a better

accuracy and to give a more precise result than the one

that could be obtained by the use of one single sensor[1, 2].

On the other hand, the multi-sensor data fusion techniques

are applied to improve the system performance in several

ways, such as increasing the robustness and reliability,

and the methods are used to optimize uncertainty and to

reduce the reduction time of measurement and cost[3, 4]. In

the literature, a few authors have worked in this research

area[5, 6]. For instance, Naidu[7] presented different fusion

architectures to combine the radar data with infra-red
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search and track (IRST) in the target tracking system

by using extended Kalman filter (EKF). In [8], an EKF

was designed. It combines the noisy data measurements

of encoders (ENC), compass and accelerometer (ACC) in

order to obtain the best position estimate while reducing

measurement uncertainties. The proposed algorithm is

based on two data fusion architectures, state vector fusion

(SVF) and measurement fusion (MF). Simpson et al.[9]

developed smart wheelchairs for navigation assistance

mainly in indoor environments, however Ding et al.[10] de-

veloped a smart wheelchair equipped with wireless internet

access and global positioning system (GPS). Defects of the

previous methods are of large cost in addition to being

dependent to being not effective in closed places and other

places with internet access. In the network-centric applied

research team (N-CART), within the NEPWAK project,

Ferworn et al.[11] introduced techniques for modifying and

using power wheelchairs as mobile platforms, enabling

communication and remote control, and extended the

mobility range of Ferworn NEPWAK beyond a local area.

Whereas in [12], the authors described the development of

a navigation system to give a semi-autonomous operation

of wheelchairs where they make extensive use of freely

available open source software. However, Wattavarangkul

and Wakahara[13] present an indoor navigation system for

wheelchairs, using smartphones as a sensor for navigation

tools. The system in our hands is depending on a range

of sensors which are different in terms of manufacturer,

technology, mechanism of action and the action protocol.

There exist many complications and problems in the case

of mixing them[14]. For this reason, our task in this paper is

to find the best way that allows the use of different informa-

tion from various sensors and simultaneously make correct
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judgments. In the literature, different navigation systems

are reformulated as a nonlinear estimation problem where

the optimal solution is given by the EKF[15]. EKF has been

a popular approach for localization of a mobile robot[16].

However, the estimation quality performance of the EKF

depends on the correct a priori knowledge of process mea-

surement noise and covariance matrices Q and R, respec-

tively. Imprecise knowledge of these statistics can lead to

a significant degradation in performance. The appearance

of the family of deterministic methods shows that the un-

scented Kalman filter (UKF) can aim higher estimation pre-

cision than EKF. Fundamental difference between EKF and

UKF is on the manner in which the Gaussian random vari-

able (GRV) is shown for propagating through the system

dynamics. In the EKF, state distribution is approximated

analytically, which can introduce large errors in the true co-

variance of GRV, this can lead to suboptimal performance

and sometimes filter divergence. Nevertheless, in UKF the

reconciliation of state estimated distribution is made by

points construction with different weights based on deter-

ministic methods[17]. These points are able to capture the

true mean and covariance of the GRV. The problem con-

nected with UKF resides in computational cost and numer-

ical instability, also it is not always able to have these two

properties and algorithms may diverge. The divergence in

general may occur due to different reasons, including incor-

rect or incomplete model underlying the physical system[18]:

1) Loss of information to capture the true posterior den-

sity changes completely, for example, a nonlinear filter de-

signed under the Gaussian assumption may fail to capture

the key characteristics of a posterior density multimodal.

2) The high degree nonlinear system describing numerical

errors in equations at the state space model levels.

3) Numerical errors. Indeed, each of the aforementioned

filters has its own domain of applicability and it is doubtful

that a single filter would be considered effective for a wide

range of applications. The motivation of this study was to

introduce a more accurate nonlinear filter that could be ap-

plied to solve a wide range (from low to large) nonlinear

filtering problems. In this aspect, we find two architectures

of multi-sensor data fusion, able to use the information from

all sources and merge them to provide optimal information.

The purpose of this paper is to improve the performance

of this estimator (UKF) and find architectures able to com-

bine noisy measurements from all sources in order to obtain

the best estimate of the state, while reducing measurement

uncertainty. The first technique is a fusion architecture

which is a measurement fusion (MF), and the second one

is another architecture with different principles that is the

state vector fusion (SVF)[5,14]. The two proposed methods

of fusion architectures proved their effectiveness in this area

and can handle any kind of sensors. They require only a

small number of sensors with the lowest cost.

This paper is organized as follows: details of the sys-

tem and the fusion algorithms are respectively described in

Sections 2 and 3. The study is reinforced by evaluation of

each studied method in Section 4. Section 5 presents the

results of the simulation. The conclusion includes system

evaluation as well as the advantages and disadvantages of

the proposed algorithm.

2 System sensor design

The sensor system consists of a magnetic compass, an ac-

celerometer and two odometers (absolute encoders). These

odometers determine the position (x, y) and the heading

using the rotary encoders[19]. Mounted on the wheel, they

deliver information about elementary rotation, which by

integration gives a measure of the overall motion. The res-

olution of the measurement of the wheels speed is increased

in a ratio corresponding to that of the motion transmis-

sion system. Its accuracy depends on the sharpness of

the network features, the quality of the mechanical design

and the performance of the electronic signal processing (in-

terpolation, scanning)[20]. The encoder consisted of three

parts: mechanical axis, disc with its reader, and output

signals. The disc has n tracks divided into n equal seg-

ments alternating opaque and transparent. A pair of opti-

cal transceivers is assigned in each track. For each position

of the axis, the disc provides a code when the length n

is ( 1
2n )-th rounds. We have chosen a simple absolute en-

coder (211 = 2048 points) of 64 laps. The odometers are

based on simple equations that are verified when the wheel

revolutions can be translated precisely into linear displace-

ments relative to the earth[21]. In the case of wheel slip-

page or other more subtle causes, the wheel laps cannot

translate the linear movement proportionally. The result-

ing errors can be classified into two groups: systematic and

unsystematic. Systematic errors are those resulting from

the kinematic imperfections of the vehicle, such as unequal

wheel diameters or uncertainty about the exact wheel-base.

On the other hand, unsystematic errors are those result-

ing from the road interaction with wheels like the dents

or the cracks[20]. Many solutions have been proposed to

improve the systematic errors. Decoders must be put on

special wheels which are not subject to the vehicle load

effects, and can be matched to the drive wheels. Unsys-

tematic errors are corrected by the inclusion of other types

of sensors. The orientation of wheelchair is determined by

using a magnetic compass HMC1002, also called a magne-

tometer which indicates the direction of magnetic north[22].

Generally, magnetic declination is compensated, so that the

sensor delivers continuously an absolute measure of heading

related to the direction of true north. The module has two

axes X and Y , based on the Hall effect with the resolution

of 0.1◦ as in [23]. In order to achieve the degree of compass

accuracy, a magnetic sensor is needed to reliably solve the

angular variations of 0.1◦ using the following relationship

of orientation[24]:

θ = tan−1(
y

x
). (1)
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To take account of the tangent function validity over 180◦

and to not allow calculation involving division by 0, the

following equations can be used:

θ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

90◦, x = 0 and y < 0

270◦, x = 0 and y > 0
((

180 − tan−1(
y

x
)
)
×180

pi

)o

, x < 0

((
− tan−1(

y

x
)
)
×180

pi

)o

, x > 0 and y < 0

((
360 − tan−1(

y

x
)
)
×180

pi

)o

, x > 0 and y > 0. (2)

To measure the linear acceleration, an accelerometer is

used. The principle of most accelerometers is based on the

fundamental law of motion which is F = m× a, where F is

the force (N), m is the mass (kg) and a is the acceleration

(m/s2). Specifically, it consists of the equality between the

inertial mass of the seismic force sensor and a biasing force

applied to the mass. One thing in common for all accelerom-

eters is that the displacement of the seismic mass will be

measured by a position measurement interface circuit and

it is then converted to a type of signal[25−27] . In our study,

it is assumed that the measurement interface provides two

outputs x and y.

3 Algorithms for estimation and multi-

sensor data fusion

3.1 Kinematics model design

The proposed platform occupies the wheelchair with

three sensor types, compass, accelerometer, and absolute

encoders having the ability to perceive parameters helping

to determine the position. The raw data of these sensors

are combined using an unscented Kalman filter. The ob-

jective is then to determine the position of the wheelchair

during operations as accurately as possible[21].

We start with the kinematic model of the wheelchair.

On each rear wheel, an odometer is mounted. The mea-

surements are made by rotary encoders coupled to the

wheel axis. Fig. 1 shows the system coordinates as well

as the wheelchair notations where (Xr, Yr) are the global

coordinates and (Xf , Yf ) are the local coordinates of the

wheelchair frame. r denotes the radius of the wheel and l

the distance between the two wheels. During a sampling

period Δt [28, 29], left and right rotational speeds vg and vd

create elementary displacements Δdg and Δdd which are

driven respectively by left and right wheels as in (3):

{
Δdg = Δt × r × vg

Δdd = Δt × r × vd. (3)

These can be converted to linear incremental movement Δd

of the chair frame center and the orientation angle Δθ as

in (4):
⎧
⎪⎨

⎪⎩

Δd =
(Δdg + Δdd)

2

Δθ =
(Δdg − Δdd)

l
. (4)

According to [27, 28], the basic movements during time k

to k + 1 are given by the following equation:
⎧
⎪⎨

⎪⎩

xk+1 = xk + Δdk × cos(Φ)

yk+1 = yk + Δdk × sin(Φ)

θk+1 = θk + Δθk (5)

where Φ = (θk + Δθk
2

).

Fig. 1. Configuration and measurement model. System is

equipped with both encoders, compass and accelerometer

Practically, (5) is not really accurate because inevitable

errors occur in the system. These errors can be both sys-

tematic such as the imperfect model and unsystematic such

as wheel slippage. They have accumulated characteristics

that affect the system stability if adequate compensation

is not considered. In our system, the compensation is per-

formed by merging measures of a compass, an accelerometer

and absolute encoders. This is accomplished by using the

UKF. Equation (6) is described by a nonlinear function f ,

coordinate of a wheelchair and a process of Gaussian noise

w. The state of the system can be observed by some abso-

lute measures that can be described by a nonlinear function

h, coordinate of a wheelchair and an independent Gaussian

noise process v. The system is described as
{

Xk+1 = f(Xk, uk, wk)

Zk = h(Xk, vk) (6)

where Xk is the state vector at time k and Zk is the obser-

vation vector at time k.

The random variables wk and vk represent the process

and measurement noise respectively. They are assumed to

be independent from each other, white, and with normal

probability distributions:

wk ∼ N(0, Qk), vk ∼ N(0, Rk), E(wiv
T
j ) = 0.
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In the case of the nonlinear model, the optimal estima-

tion solution is the EKF. This method of filtering gives

good results when the models of evolution of the status and

measurement are close to the linear case (first order ap-

proximation). However, the optimality of the filter and the

convergence are not guaranteed. It can be linearized only

in the case of existence of the Jacobian matrix that can be

difficult to calculate and may generate errors in the algo-

rithm. In this work, the deterministic methods that share

the same principles are studied. These filters are based on a

deterministic sampling approach for the Bayesian solution

numerically, using the unscented transformation for obtain-

ing the unscented Kalman filter (UKF)[30].

3.2 Unscented transformation (UT)

Unscented transformation (UT) is a method for calcu-

lating the statistics of a random variable which undergoes

a nonlinear transformation. The UT builds on the prin-

ciple that it is easier to approximate a probability distri-

bution of an arbitrary nonlinear function. The UT uses a

small number of chosen test points, which are called Sigma

points. Each sigma point is propagated through the non-

linear function, and then the mean and covariance are com-

puted through the use of a weighted statistical linear regres-

sion process[31]. These points are then propagated through

the nonlinear function whose mean and covariance of the

estimation are then recovered. The result is a filter that

captures most accurate mean and the true covariance[32].

3.3 Unscented Kalman filter (UKF)

For the n-dimensional random variable with known mean

and covariance Px, a given known nonlinear transformation

y = hNL(X), the mean and covariance of y, denoted as y

and Py can be estimated from 2L + 1 sigma point vectors

as follows[33] :
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X0 = X̄, i = 0

Xi = X̄ +
[√

(L + λ) Px

]

i
, i = 1 · · ·L

Xi = X̄ −
[√

(L + λ)Px

]

i−nx

, i = L + 1 · · · 2L (7)

where
[√

(nx + λ)Px

]

i
is the i-th column of the matrix

square root of (L + λ) Px, i is an index of sigma points, L

is the dimension number of the augmented state vector, λ

is computed by λ = α2 (L + k) − L, with α and k are scal-

ing parameters that determine how far the sigma points are

spread from the mean X̄. In this paper, α = 10−3, k = 0

and B = 2. The weight is defined as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

W0(X) =
λ

nx + λ
, i = 0

W0(P ) =
λ

nx + λ
+

(
1 − α2 + β

)
, i = 0

Wi(X) = Wi(P ) =
1

2(nx + λ)
, i = 1 · · · 2L. (8)

UKF algorithm proceeds according to the following succes-

sive stages[17]: We assume that the observations denoted as

yk, state noise and observation are Q and R. The initial

state and initial covariance are X0 and P0.

1) Initialisation

X0|0 = X0, P0|0 = P0. Compute the weight Wi, refer

to (8).

2) Estimation

For k = 1 to infinity

a) Prediction

i) Calculate Xi deterministic samples according to

(7):

(X0, X1, · · · , XL, · · · , X2L).

ii) Evaluation of samples propagates
(
X̂0,k|k−1, · · · , X̂nx,k|k−1 , · · · , X̂2nx,k|k−1

)
such

that

X̂i,k|k−1 = f
(
Xi,k−1|k−1, uk−1

)
. (9)

iii) The predicted state and the predicted covariance

are computed as

Xk|k−1 =
2L∑

i=0

wi(x)X̂i,k|k−1 (10)

Pk|k−1 ≈
2L∑

i=0

wi(p)(X̂i,k|k−1 − Xk|k−1)×

(X̂i,k|k−1 − Xk|k−1)
T + Qk (11)

where

Qk =

⎡

⎢
⎣

σ2
x 0 0

0 σ2
y 0

0 0 σ2
θ

⎤

⎥
⎦ . (12)

b) Correction

i) Correct and propagate evaluation samples

(Ŷ0,k|k−1, · · · , ŶL,k|k−1, · · · , Ŷ2L,k|k−1) (13)

knowing that

Ŷi,k|k−1 = h
(
X̂i,k|k−1, uk

)
. (14)

ii) Estimate the predicted observation ŷk|k−1, the

predicted covariance error Pyy,k|k−1 and the cross

covariance Pxy,k|k−1

ŷk|k−1 =
2L∑

i=0

wi(x)Ŷi,k|k−1 (15)

Pyy,k|k−1 =
2L∑

i=0

wi(p)(Ŷi,k|k−1 − ŷk|k−1) ×
(
Ŷi,k|k−1 − ŷk|k−1

)T

+ R

(16)

Pxy,k|k−1 =
2L∑

i=0

wi(p)(X̂i,k|k−1 − Xk|k−1)×
(
Ŷi,k|k−1 − ŷk|k−1

)T

.

(17)
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iii) Compute the Kalman gain Gk:

Gk =
Pxy,k|k−1

Pyy,k|k−1
. (18)

iv) Correct the state and the covariance matrix er-

ror:

Xk|k = Xk|k−1 + Gk

(
yk − ŷk|k−1

)
(19)

Pk|k = Pk|k−1 − GkPyy,k|k−1G
T
k . (20)

End for.

3.4 Multi-sensor data fusion

To improve the measurement performance, we have pro-

posed two architectures to merge the sensors measures state

vector fusion (SVF) and measurement fusion (MF). In both

architectures, we used compass measures merged with the

accelerometer measurements in a single measurement vec-

tor, Y
(b)

k = [xayaθb]
T.

The covariance matrix of this vector is defined as follows:

R(b) =

⎡

⎢
⎣

σ2
a,x 0 0

0 σ2
a,y 0

0 0 σ2
b,θ

⎤

⎥
⎦ (21)

where Y
(c)

k = [xc yc θb]
T vector corresponds to the odome-

ter measurements merged with the compass measurements.

The covariance matrix of this vector is defined as

R(c) =

⎡

⎢
⎣

σ2
c,x 0 0

0 σ2
c,y 0

0 0 σ2
b,θ

⎤

⎥
⎦ . (22)

3.4.1 SVF architecture (state vector fusion)

The operation principle of SVF is based on the position

calculation from the measurement of each sensor separately

and the resulting state vectors are merged to obtain a final

state vector. The covariance matrices are combined to give

the final state matrix (Fig. 2).

Fig. 2 Diagram of SVF architecture

For measurements of Y
(c)

k :

1) Prediction stage:

X̂
(c)

i,k|k−1 = f
(
X

(c)

i,k−1|k−1, uk−1

)
(23)

X
(c)
k|k−1 =

2L∑

i=0

wi(x)X̂
(c)
i,k|k−1 (24)

P
(c)

k|k−1
=

2L∑

i=0

wi(p)(X̂
(c)

i,k|k−1
− X

(c)

k|k−1
)×

(X̂
(c)
i,k|k−1 − X

(c)
k|k−1)

T + Qk. (25)

2) Correction stage:

Ŷ(c)
i,k|k−1 = h

(
X̂

(c)
i,k|k−1, uk

)
(26)

ŷ
(c)

k|k−1
=

2L∑

i=0

wi(x)Ŷ
(c)

i,k|k−1
(27)

P
(c)
yy,k|k−1 =

2L∑

i=0

wi(p)(Ŷ
(c)

i,k|k−1 − ŷ
(c)
k|k−1−)×

(
Ŷ

(c)
i,k|k−1 − ŷ

(c)
k|k−1

)T

+ R(c) (28)

P
(c)

xy,k|k−1 =

2L∑

i=0

wi(p)(X̂i,k|k−1 − Xk|k−1)×
(
Ŷ

(c)
i,k|k−1 − ŷ

(c)
k|k−1

)T

(29)

G
(c)
k =

P
(c)

xy,k|k−1

P
(c)
yy,k|k−1

(30)

X
(c)
k|k = X

(c)
k|k−1 + G

(c)
k (Y

(c)
k − ŷ

(c)
k|k−1) (31)

P
(c)
k|k = P

(c)
k|k−1 − G

(c)
k P

(c)
yy,k|k−1G

(c)T
k . (32)

For measurements of Y
(b)

k :

1) Prediction stage: Equations (23)−(25).

2) Correction stage: Equations (26)−(23).

SVF:

Xf,k|k =X
(c)

k|k + P
(c)

k|k ×
[
P

(c)

k|k + P
(b)

k|k
]−1

×
(
X

(b)
k|k − X

(c)
k|k

)
(33)

Pf,k|k = P
(c)

k|k + P
(b)

k|k ×
(
P

(c)

k|k + P
(b)

k|k
)−1

× P
(c)T

k|k . (34)

3.4.2 MF architecture (measurement fusion)

In this architecture (Fig. 3), all sources of measurements

are merged into a measurement vector. On the other hand,

the covariance matrices of these sources are also merged to

produce the same results.

1) Prediction stage:

X̂i,k|k−1 = f
(
Xi,k−1|k−1, uk−1

)
(35)

Xk|k−1 =
2L∑

i=0

wi(x)X̂i,k|k−1 (36)

Pk|k−1 =
2L∑

i=0

wi(p)(X̂i,k|k−1 − Xk|k−1)

(X̂i,k|k−1 − Xk|k−1)
T + Wk × Qk−1 × W T

k . (37)
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Fig. 3 Diagram of MF architecture

2) MF:

Yf = Y (c) + Y (c) ×
[
R(c) + R(b)

]
−1 ×

(
Y (b) − Y (c)

)
(38)

Rf = R(c) − R(c) ×
[
R(c) + R(b)

]
−1 × R(c). (39)

3) Correction stage:

Ŷi,k|k−1 = h
(
X̂i,k|k−1, uk

)
(40)

ŷk|k−1 =

2L∑

i=0

wi(x)Ŷi,k|k−1 (41)

Pyy,k|k−1 =
2L∑

i=0

wi(p)(Ŷi,k|k−1 − ŷk|k−1)×
(
Ŷi,k|k−1 − ŷk|k−1

)T

+ Rf (42)

Pxy,k|k−1 =
2L∑

i=0

wi(p)(X̂i,k|k−1 − Xk|k−1)×
(
Ŷi,k|k−1 − ŷk|k−1

)T

(43)

Gk =
Pxy,k|k−1

Pyy,k|k−1

(44)

Xk|k = Xk|k−1 + Gk

(
Yf − ŷk|k−1

)
(45)

Pk|k = Pk|k−1 − GkPyy,k|k−1G
T
k . (46)

4 Performance evaluation of the two al-

gorithms

Both fusion architectures are evaluated by computing the

following performance metrics:

1) Absolute error (AE) in x positions is

AEx = |xi − x̂i| , i = 1, 2, · · · , N (47)

similarly for y positions and θ orientation.

Where xi, yi, θi are the true positions and x̂i, ŷi, θ̂i are

the estimated xi, yi positions and θi orientations.

2) Mean absolute error in x positions is

MAEx =
1

N

N∑

i=1

|xi − x̂i| (48)

similarly for y positions and θ orientation.

3) The percentage fit error (PFE) in x positions is

PFEx = 100 × norm (x − x̂)

norm (x)
(49)

similarly for y positions and θ orientation.

4) Root mean square error in x and y position is

RMSPE =

√
√
√
√ 1

N

N∑

i=1

(x − x̂)2 + (y − ŷ)2

2
. (50)

5) Root sum square error in x and y positions:

RSSPE =
√

(x − x̂)2 + (y − ŷ)2. (51)

6) State error (SE) is

SEx = (x − x̂)

with theoretical bounds of

±2

√

P̂x

SEy = (y − ŷ)

with theoretical bounds of

±2

√

P̂y

SEθ = (θ − θ̂)

with theoretical bounds of

±2

√

P̂θ.

7) Compute innovation sequence IS = Zk − Z̃k|k−1 while

the measurements are available in Cartesian coordinates:

ISx with theoretical bounds of ±2
√

Ŝx

ISy with theoretical bounds of ±2

√

Ŝy.

5 Simulation and results

In this section, an experiment was simulated to calculate

the position under two different scenarios: with the MF

algorithm and the SVF algorithm.

The simulation uses the following parameters:

1) Sampling period Δt= 0.1 s.

2) Initial state vector: X0 =
[

0 0 0
]T

.

3) The initial covariance matrix is defined by

P0 =

⎡

⎢
⎣

0.01 0 0

0 0.01 0

0 0 0.3

⎤

⎥
⎦ . (52)
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Table 1 Percentage fit errors in position

ALG PFEx PFEy PFEθ RMSPE (m)

SVF 29.807 8 104.849 7 52.928 5 0.008 6

MF 24.094 8 53.1886 56.024 7 0.005 6

ENC 68.654 1 8 964.104 0 332.756 5 0.663 7

ACC 32.990 0 56.563 6 61.320 4 0.006 1

4) The covariance matrices of measurements noise:

Rb =

⎡

⎢
⎣

10−8 0 0

0 10−8 0

0 0 85 × 10−9

⎤

⎥
⎦ (53)

Rc =

⎡

⎢
⎣

10−8 0 0

0 10−8 0

0 0 8 × 10−4

⎤

⎥
⎦ . (54)

5) The noise system covariance matrix is

Qk =

⎡

⎢
⎣

0.012 0 0

0 0.012 0

0 0 0.12

⎤

⎥
⎦ . (55)

Both data fusion architectures are evaluated by using a

sequential simulation algorithm of the unscented Kalman

filter. The mean absolute error in position is shown in

Table 2 and Figs. 4−7.

Fig. 4 Mean absolute errors in x

Fig. 5 Mean absolute errors in y

Fig. 6 Mean absolute errors in θ

Fig. 7 Zoomed view of Fig. 6

Percentage of fit error (PFE) and the root mean square

error in position (RMSPE) are presented in Table 1. The

variations in the mean square error and the execution time

for each algorithm are shown in Table 3 and Fig. 8.

Fig. 8 Execution time for each algorithm
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Table 2 Mean absolute error in position

ALG MAEx (m) MAEy (m) MAEθ (degree)

SVF 0.002 2 0.012 9 0.004 6

MF 0.001 9 0.006 3 0.004 9

ENC 0.006 1 1.121 3 0.034 1

ACC 0.002 7 0.006 7 0.005 4

Table 3 Mean root sum variance in position

and execution time

Algorithm MRSvarP(m) Time (s)

SVF 0.008 6 1.958 7

MF 0.009 0 2.650 5

ENC 0.543 0 0.759 9

ACC 0.008 7 0.770 3

The state error with its theoretical limits shows the fil-

ter robustness. Figs. 9 and 10 show that the MF algorithm

is more robust than the SVF one and therefore presents a

relatively high performance.

Fig. 9 State error in positions with theoretical bounds for MF

algorithm

Fig. 10 State error in positions with theoretical bounds for SVF

algorithm

Bold values indicate the best results. The root sum

square error in position is shown in Fig. 11. From the tables

and figures, we can see that the location with the odometer

or accelerometer shows performance degradation compared

to fusion architectures. MF shows the lowest uncertainty

followed by SVF. The uncertainty in the state estimate is

high if the odometer is followed by the accelerometer. This

shows the need for fusion. For the execution time, localiza-

tion with odometer takes less time with degraded perfor-

mance.

On the other hand, we investigated the consistency of the

MF and SVF algorithms using sequences of innovation with

theoretical limits, as shown in Figs. 12 and 13. The simula-

tion results show that the two algorithms are consistent.

Finally, we studied the autocorrelation (AC) of the inno-

vation sequence to show that the two algorithms extracted

all the information represented by the signal. The simula-

tion result shows in Figs. 14 and 15 that both algorithms

are satisfactory.

Fig. 11 Root sum square error in position

Fig. 12 Innovation sequence with theoretical bounds for MF al-

gorithm
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Fig. 13 Innovation sequence with theoretical bounds for SVF

algorithm

Fig. 14 Autocorrelation of innovation sequence along with the-

oretical bounds for MF algorithm

Fig. 15 Autocorrelation of innovation sequence along with the-

oretical bounds for SVF algorithm

6 Conclusions

In order to increase the UKF algorithm performance for

the position estimation, we showed the importance and the

need for data fusion. Two fusion algorithms (SVF and MF)

were addressed and detailed mathematical expressions are

given which could be useful for the implementation. The

simulation results show that the MF algorithm provides

state estimates with relatively less uncertainty followed by

the SVF algorithm. For future development, the estimation

problem of wheelchair position could also be investigated by

using the cubature Kalman filter (CKF)[34]. In addition,

the Bayesian nonlinear filtering using quadrature and cu-

bature rules[35], will also solve this problem. We hope that

this work will be an effective solution for reducing naviga-

tion problems for wheelchair users.
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