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Abstract: This work deals with robust inverse neural control strategy for a class of single-input single-output (SISO) discrete-time

nonlinear system affected by parametric uncertainties. According to the control scheme, in the first step, a direct neural model (DNM)

is used to learn the behavior of the system, then, an inverse neural model (INM) is synthesized using a specialized learning technique

and cascaded to the uncertain system as a controller. In previous works, the neural models are trained classically by backpropagation

(BP) algorithm. In this work, the sliding mode-backpropagation (SM-BP) algorithm, presenting some important properties such as

robustness and speedy learning, is investigated. Moreover, four combinations using classical BP and SM-BP are tested to determine

the best configuration for the robust control of uncertain nonlinear systems. Two simulation examples are treated to illustrate the

effectiveness of the proposed control strategy.
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1 Introduction

Robust control of discrete time uncertain nonlinear sys-

tems is a challenging task. Many studies have been pro-

posed towards finding a controller that guarantees stability,

robustness and satisfactory tracking performance. These

ones include H∞ control[1, 2], robust adaptive control[3, 4],

robust predictive control[5, 6] and sliding mode control[7, 8].

Moreover, neural networks have been proven useful and ef-

fective for the modeling and the control of a wide class of

uncertain nonlinear systems due to their universal approx-

imation capabilities. Thus, during the last decade, sev-

eral studies dealing with the neural modeling of nonlinear

system affected by uncertainties have been proposed[9−13].

Furthermore, robust control based on neural networks has

attracted an ever increasing interest[14−17]. For example,

in [18], a stable robust neural adaptive control scheme was

proposed to achieve performance for a class of unknown

single-input single-output (SISO) system with external dis-

turbances. Later, Wang et al.[19] designed a new adaptive

neuro-fuzzy sliding mode controller with tracking perfor-

mance for uncertain nonlinear systems to attenuate the ef-

fects of unmodeled dynamics, disturbances and approxima-

tion errors. Internal model control (IMC) is also considered

as a robust control technique. Indeed, Deng et al.[20] pre-

sented a novel neural internal model control for unknown

non-affine discrete-time multi-input multi-output (MIMO)
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processes under model mismatch and disturbances. Of the

many architectures associated with the neural based control

schemes, the principal used type is the feedforward neural

network (FNN)[21, 22] which is often trained by the popu-

lar backpropagation (BP) learning algorithm[23]. Several

improvements were introduced to speed up and robustify

this algorithm[24−27]. However, the performance of neural

networks structure trained by backpropagation algorithm is

not completely robust in the presence of strong external dis-

turbances and parametric variations. The high performance

of sliding mode control (SMC) in handling uncertainties and

imprecision has motivated its use in training FNN[28]. Sira-

Ramirez and Colina-Morles[29] proposed one of the earliest

studies that suggests the use of sliding mode for adaptive

learning in Adaline neural networks. This approach was

further extended in [30] by removing the requirement of a

priori knowledge of the upper bounds of bounded signals.

In addition, this approach was extended to a more general

class of multilayer networks with scalar output[31, 32].

The first sliding mode learning algorithm considered for

training FNN was proposed by Parma et al.[33] It differs

from the algorithms presented in [29−32], by the use of

separate sliding surfaces for each network layer. Parma et

al.[34] developed an approach that is slightly different from

the one suggested in [33] in order to speed up the conver-

gence of the standard backpropagation algorithm.

Motivated by the results presented in [34], a robust train-

ing method of a direct neural model (DNM) and an in-

verse neural model (INM) will be proposed in this paper

for the identification and the control of a class of single-

input single-output discrete-time nonlinear systems affected
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by parameter uncertainties.

Indeed, the use of the sliding mode-backpropagation

(SM-BP) algorithm in this work is not only to achieve high

speed learning but also to develop a robust neural control

strategy for the uncertain nonlinear system. According to

the control scheme, a DNM is firstly used to emulate the

behavior of the system, then an INM is synthesized and

cascaded to the uncertain system as a robust controller. In

the design step of the INM and the DNM networks, the spe-

cialized learning approach has been considered. The train-

ing of the DNM then the INM structures has been accom-

plished by four combinations of the two learning techniques

BP and SM-BP (BP-BP, SMBP-BP, BP-SMBP and SMBP-

SMBP). The rest of paper is organized as follows. Section 2

presents neural models training using BP and SM-BP. In

Section 3, different combinations of the presented learning

algorithms are tested to determine the best configuration

for the robust neural control of an uncertain nonlinear sys-

tem. In Section 4, simulation examples are provided to

show the proposed control strategy′s performance and com-

parisons between the two training algorithms are shown.

Finally, conclusions are given in Section 5.

2 Neural modelling

Consider the following single-input single-output uncer-

tain nonlinear system expressed by

y(k + 1) = F [y(k), · · · , y(k − n + 1), u(k),

u(k − 1), · · · , u(k −m + 1), p] (1)

where y(k) and u(k) denote respectively the output and the

input of the system, n is the order of y(k), m is the order of

u(k), F is an unknown nonlinear function to be estimated

by a neural network and p is an uncertain parameters vec-

tor. A DNM is used to learn the behavior of system (1).

2.1 Direct neural model

The DNM builds a nonlinear function that estimates the

output of the system through old data of its inputs and

outputs. Two approaches often discussed in the literature

are the series parallel model and the parallel one[13]. In this

work, we are interested in series parallel model.

2.2 Inverse neural model

The inverse neural model can be generally presented in

the following form:

u(k) = F−1[y(k + 1), · · · , y(k − n + 1), u(k), · · · ,

u(k −m + 1), p]. (2)

To develop the INM, a neural network is trained to ap-

proximate the inverse behavior of the system.

2.3 Neural models training

The learning processes of the DNM and the INM is ac-

complished, firstly through the BP algorithm and secondly

by the SM-BP one.

2.3.1 DNM training

The block diagram of the DNM training process is shown

in Fig. 1. The output of the DNM for system (1) can be

expressed as

ym(k + 1) = F̂ [y(k), · · · , y(k − n + 1), u(k − 1), · · · ,

u(k −m + 1), p] (3)

where ym and F̂ denote respectively the output of the DNM

and the estimate of F .

Fig. 1 DNM training

The weights of the DNM are adjusted to minimize the

cost function expressed as

J =
1

2
[em]2 (4)

where em = y(k + 1)− ym(k + 1) is the error between the

output of the system y(k + 1) and the one of the DNM

ym(k + 1).

BP algorithm for training the DNM

For the output layer, the following weight adjustment

rule is defined as

W m
jh(k + 1) = W m

jh(k) + ε.em(k + 1).fm′ [V m
j (k)].Y m

Hh(k)

j = 1, h = 1, · · · , Nm
c . (5)

The index m refers to DNM′s parameters, W m
jh represents

the weight between the output node j and the hidden node

h, fm′ denotes the derivative of the output activation func-

tion, V m
j is the global input of the output node j, Y m

Hh is

the output of the hidden node h, ε is the learning rate and

Nm
c represents the number of neurons in the hidden layer.

For the hidden layer, the weight adjustment is described

as

Zm
hi(k + 1) = Zm

hi(k) + ε.em(k + 1).fm′ [V m
j (k)].

W m
jh(k).fm′

H [Rm
h (k)].T m

i (k)

with i = 1, · · · , (n + m + 1) (6)

where Zm
hi represents the weight between the hidden node

h and the input node i, fm′
H denotes the derivative of the

hidden activation function, Rm
h is the global input of the

hidden node h and T m
i is the input of the input node i.
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SM-BP algorithm for training the DNM

The SM-BP equations as defined by Parma et al.[33, 34]

are presented by the following equations. In these equa-

tions, the sliding surfaces Sm
j (k) and Sm

Hh(k), based on slid-

ing mode theory (SMT), are designed to force the weight

trajectories into the sliding manifold.

For the node j from the output layer, the sliding surface

is defined as[35]

Sm
j (k) = Xm

2j(k) + C0.X
m
1j(k) (7)

where j is the output node, C0 > 0 and

Xm
1j(k) = [y(k)− ym(k)].fm′ [V m

j (k)] (8)

Xm
2j(k) = Xm

1j(k)−Xm
1j(k − 1). (9)

For the node h from the hidden layer, the following sliding

surface is defined as

Sm
Hh(k) = Xm

2Hh(k) + C0H .Xm
1Hh(k) (10)

where h is the hidden node, C0H > 0 and

Xm
1Hh(k) = Xm

1j(k).W m
jh(k).fm′

H [Rm
h (k)] (11)

Xm
2Hh(k) = Xm

1Hh(k)−Xm
1Hh(k − 1). (12)

Thus, the weights update equations based on SM-BP are

given as

∆W m
jh(k) = αm.sgn[Sm

j (k)].|Xm
1j(k)|.Y m

Hh(k) (13)

∆Zm
hi(k) = βm.sgn[Sm

Hh(k)].|Xm
1Hh(k)|.T m

i (k) (14)

where αm > 0, βm > 0, and defined as follows:

The limits for gain αααmmm and βββmmm

The upper limits of αm and βm can be obtained from the

sliding mode condition. For a given surface S, delimited

by the training data and the network topology, the upper

limits for the gains αm and βm can be easily obtained[36].

According to Utkin[35], the condition for existence of sliding

mode and system stability is defined by

S
ds

dt
< 0. (15)

For discrete time case, Sarpturk et al.[37] defined (16),

instead of (15) as the necessary and sufficient condition to

guarantee the sliding manifold.

|S(k)| < |S(k − 1)|. (16)

For the output layer, the substitution of (8) and (9) in

(7), results in the equation as

Sm
j (k) = fm′ [V m

j (k)].[C0(y(k)− ym(k))+

(∆y(k)−∆ym(k))] + ∆fm′ [V m
j (k)].

[y(k − 1)− ym(k − 1)]. (17)

For the general case, ∆f(k) = f(k)− f(k − 1).

Considering (13) and using the approximation ∂ym
∂W m

jh
=

∆ym
∆W m

jh
, (18) could be obtained as

∆ym(k) = fm′ [V m
j (k)].αm.sgn[Sm

j (k)].

|Xm
1j(k)|.[Y m

Hh(k)]2. (18)

Substituting (18) into (17) yields

Sm
j (k) = −αm.sgn[Sm

j (k)].Bj(k) + Aj(k) (19)

where Bj(k) and Aj(k) are defined by

Bj(k) = [fm′(V m
j (k)).Y m

Hh(k)]2.|Xm
1j(k)| (20)

Aj(k) = fm′ [V m
j (k)].[C0(y(k)− ym(k))+

∆y(k)] + ∆fm′ [V m
j (k)].[y(k − 1)−

ym(k − 1)]. (21)

The application of the condition expressed by (16) for the

sliding surface (19) gives the limits of αm defined by[34, 38]

0 < αm < min
{ |Aj(k)|

Bj(k)
,
|Aj(k − 1)| − |Aj(k)|
Bj(k − 1)−Bj(k)

}
. (22)

For the hidden layer, the substitution of (11) into (12)

leads to (23).

Xm
2Hh(k) = fm′

H [Rm
h (k)].[(∆y(k)−∆ym(k)).

fm′(V m
j (k)).W m

jh(k) + (y(k − 1)−
ym(k − 1)).(∆fm′(V m

j (k)).W m
jh(k)+

fm′(V m
j (k)).∆W m

jh(k)−∆fm′(V m
j (k)).

∆W m
jh(k))] + ∆fm′

H [Rm
h (k)].[(y(k − 1)−

ym(k − 1)).fm′(V m
j (k − 1)).W m

jh(k − 1)]. (23)

Considering (14) and using the approximation ∂ym
∂Zm

hi
=

∆ym
∆Zm

hi
, (24) could be obtained as

∆ym(k) = fm′ [V m
j (k)].W m

jh(k).fm′
H [Rm

h (k)].βm.

sgn[Sm
Hh(k)].|Xm

1Hh(k)|.[T m
i (k)]2. (24)

Substituting (11), (23) and (24) into (10) leads to (25) as

Sm
Hh(k) = −βm.sgn[Sm

Hh(k)].DHh(k) + NHh(k) (25)

where DHh(k) and NHh(k) are defined by

Dm
Hh(k) = [fm′(V m

j (k)).W m
jh(k).fm′

H (Rm
h (k))

T m
i (k)]2.|Xm

1Hh(k)| (26)

Nm
Hh(k) = fm′

H [(Rm
h (k))].[∆y(k).fm′(V m

j (k)).

W m
jh(k) + C0H .Xm

1j(k).W m
jh(k) + (y(k − 1)−

ym(k − 1)).(∆fm′(V m
j (k)).W m

jh(k)+

fm′(V m
j (k)).∆W m

jh(k)−∆fm′(V m
j (k)).

∆W m
jh(k))] + ∆fm′

H [(Rm
h (k))].[(y(k − 1)−

ym(k − 1))fm′(V m
j (k − 1)).W m

jh(k − 1)]. (27)
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The application of the condition expressed by (16) for the

sliding surface (25) gives the limits of βm expressed as[34, 38]

0 < βm < min
{ |NHh(k)|

DHh(k)
,
|NHh(k − 1)| − |NHh(k)|
DHh(k − 1)−DHh(k)

}
.

(28)

The limit values of αm and βm given by (22) and (28)

guarantee the existence and the convergence of sliding sur-

faces described by (7) and (10). The weight updating rules

defined by (13) and (14) can be used to train the DNM

taking into consideration these limits for the gains. Any

values within the two ranges are acceptable to guarantee

the convergence of sliding surfaces and, consequently, the

convergence of the training algorithm[34].

2.3.2 INM training

In the literature, the most common proposed process for

training inverse neural models are the generalized method

and the specialized one[39] shown in Figs. 2 and 3, respec-

tively.

Generalized training process

In the generalized training, the INM is trained offline to

minimize the following criterion:

J =
1

2
[u(k)− ue(k)]2. (29)

Such structure has two major drawbacks. The first one

relates to the approximation procedure which does not take

into account the desired control signals, while for the sec-

ond one, an incorrect inverse model will be obtained if the

system parameters are variable[40].

Fig. 2 Generalized method for INM training

To overcome such weaknesses, the specialized training

approach is adopted in this work.

Specialized training process

To train the INM, the specialized training structure[39] is

considered. Indeed, based on the DNM, which gives good

representation of the system after satisfactory training, the

INM is trained as shown in Fig. 3.

The cost function to be minimized in the training step is

given by

Jc =
1

2
[ec]2 (30)

where ec = yd(k + 1) − y(k + 1) is the error between the

output of the DNM y(k + 1) and the desired one yd(k + 1).

Fig. 3 Specialized method for INM training

BP algorithm for the training of the INM

For the output layer, the weight adjustment is computed

as follows:

W c
jh(k + 1) = W c

jh(k)− ε.
∂Jc(k + 1)

∂y(k + 1)
.
∂y(k + 1)

∂W c
jh(k)

(31)

where W c
jh is the weight between the output node j and the

hidden node h of the INM.

∂Jc(k + 1)

∂y(k + 1)
= −[yd(k + 1)− y(k + 1)] (32)

∂y(k + 1)

∂W c
jh(k)

=
∂y(k + 1)

∂u(k)
.

∂u(k)

∂W c
jh(k)

(33)

∂y(k + 1)

∂u(k)
= γm

h (k) =

Nm
c −1∑

h = 1

fm′ [V m
j (k)].

W m
jh(k).fm′

Hh[Rm
h (k)].Zm

h1(k) (34)

∂u(k)

∂W c
jh(k)

= fc′ [V c
j (k)].Y c

Hh(k). (35)

The index c refers to INM′s parameters, fc′ denotes the

derivative of the output activation function, V c
j is the global

input of the output node j, Y c
Hh represents the output of

the hidden node h and Nm
c is the number of the DNM′s

hidden neurons.

For the hidden layer, the weight adjustment is defined as

Zc
hi(k + 1) = Zc

hi(k)− ε.
∂Jc(k + 1)

∂y(k + 1)
.
∂y(k + 1)

∂Zc
hi(k)

(36)

where Zc
hi is the INM′s weight between the hidden node h

and the input node i.

∂y(k + 1)

∂Zc
hi(k)

=
∂y(k + 1)

∂u(k)
.

∂u(k)

∂Zc
hi(k)

(37)

∂u(k)

∂Zc
hi(k)

= fc′ [V c
j (k)].W c

jh(k).fc′
H [Rc′

H(k)].T c
i (k) (38)

where fc′
H is the derivative of the hidden activation function,

Rc
H denotes the global input of the hidden node h and T c

i

represents the input of the input node i of the INM.

SM-BP algorithm for the training of the INM

Based on the SM-BP algorithm, updating rules for ad-

justing the INM′s weights are expressed by the following

equations:
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Let the sliding surface for the node j from the output

layer be defined by

Sc
j (k) = Xc

2j(k) + C1.X
c
1j(k) (39)

where j is the output node, C1 > 0.

Xc
1j(k) = [yd(k + 1)− y(k + 1)].γm

h (k).fc′ [V c
j (k)] (40)

where the term γm
h (k) has been defined by (34).

Xc
2j(k) = Xc

1j(k)−Xc
1j(k − 1). (41)

For the node h from the hidden layer, the sliding surface

is expressed as follows:

Sc
Hh(k) = Xc

2Hh(k) + C1H .Xc
1Hh(k) (42)

where h is the hidden node, C1H > 0.

Xc
1Hh(k) = Xc

1j(k).W c
jh(k).fc′

H [Rc
h(k)] (43)

Xc
2Hh(k) = Xc

1Hh(k)−Xc
1Hh(k − 1). (44)

Thus, the weights update equations of the INM based on

the SM-BP algorithm are given as

∆W c
jh(k) = αc.sgn[Sc

j (k)].|Xc
1j(k)|.Y c

Hh(k) (45)

∆Zc
hi(k) = βc.sgn[Sc

Hh(k)].|Xc
1Hh(k)|.T c

i (k). (46)

The limits for gain αααc and βββc

For the output layer, substituting (40) and (41) into (39)

leads to (47).

Sc
j (k) = fc′ [V c

j (k)].γm
h (k).[C1.(y

d(k + 1)−
y(k + 1)) + (∆yd(k + 1)−∆y(k + 1))]+

[yd(k)− y(k)].[fc′(V c
j (k)).∆γm

h (k)+

∆fc′(V c
j (k)).γm

h (k)−∆fc′(V c
j (k)).

∆γm
h (k)]. (47)

Considering (45) and using the approximation ∂y
∂W c

jh
=

∆y
∆W c

jh
, (48) is obtained as

∆y(k + 1) = γm
h (k).fc′ [V c

j (k)].αc.sgn[Sc
j (k)].

|Xc
1j(k)|.[Y c

Hh(k)]2. (48)

Substituting (48) into (47) yields

Sc
j (k)) = −αc.sgn[Sc

j (k)].Fj(k) + Ej(k) (49)

where Fj(k) and Ej(k) are defined by

Fj(k) = [fc′ [V c
j (k)].γm

h (k).Y c
Hh(k)]2.|Xc

1j(k)| (50)

Ej(k) = fc′ [V c
j (k)].γm

h (k).[C1.(y
d(k + 1)−

y(k + 1)) + ∆yd(k + 1)] + [yd(k)− y(k)].

[fc′(V c
j (k)).∆γm

h (k) + ∆fc′(V c
j (k)).

γm
h (k)−∆fc′(V c

j (k)).∆γm
h (k)]. (51)

The application of the condition (16) for the sliding sur-

face given by (49) gives the limit values of αc as

0 < αc < min
{ |Ej(k)|

Fj(k)
,
|Ej(k − 1)| − |Ej(k)|

Fj(k − 1)− Fj(k)

}
. (52)

For the hidden layer, the substitution of (43) into (44)

yields

Xc
2Hh(k) = fc′

H [Rc
h(k)].[(∆yd(k + 1)−∆y(k + 1)).

fc′(V c
j (k)).γm

h (k).W c
jh(k) + (yd(k)− y(k)).

(fc′(V c
j (k)).∆γm

h (k).W c
jh(k) + ∆fc′(V c

j (k)).

γm
h (k).W c

jh(k)−∆fc′(V c
j (k)).∆γm

h (k).

W c
jh(k) + fc′(V c

j (k)).γm
h (k).∆W c

jh(k)−
∆fc′(V c

j (k)).γm
h (k).∆W c

jh(k)−
fc′(V c

j (k)).∆γm
h (k).∆W c

jh(k)+

∆fc′(V c
j (k)).∆γm

h (k).∆W c
jh(k)]+

∆fc′
H [Rc

h(k)].[yd(k)− y(k)].γm
h (k − 1).

fc′(V c
j (k − 1)).W c

jh(k − 1). (53)

Considering (46) and using the approximation ∂y
∂Zc

hi
=

∆y
∆Zc

hi
, (54) is obtained as

∆y(k + 1) = δm
h (k).fc′ [V c

j (k)]W c
jh(k).fc′

H [Rc
h(k)].

βc.sgn[Sc
Hh(k)].|Xc

1Hh(k)|.[T c
i (k)]2. (54)

Substituting (53) and (54) into (42) leads to

[Sc
Hh(k)] = −βc.sgn[Sc

Hh(k)].PHh(k) + MHh(k) (55)

where PHh(k) and MHh(k) are given by

PHh(k) = [γm
h (k).fc′(V c

j (k)).W c
jh(k).fc′

H (Rc
h(k)).

T c
i (k)]2.|Xc

1Hh(k)| (56)

MHh(k) = fc′
H [Rc

h(k)].[C1H .Xc
1j(k).W c

jh(k)+

∆yd(k + 1).fc′(V c
j (k)).γm

h (k).W c
jh(k)+

(yd(k)− y(k)).(fc′(V c
j (k)).∆γm

h (k).W c
jh(k)+

∆fc′(V c
j (k)).γm

h (k).W c
jh(k)−∆fc′(V c

j (k)).

∆γm
h (k).W c

jh(k) + fc′(V c
j (k)).γm

h (k).

∆W c
jh(k)−∆fc′(V c

j (k)).γm
h (k).∆W c

jh(k)−
fc′(V c

j (k)).∆γm
h (k).∆W c

jh(k)+

∆fc′(V c
j (k)).∆γm

h (k).∆W c
jh(k)]+

∆fc′
H [Rc

h(k)].[yd(k)− y(k)].γm
h (k − 1).

fc′(V c
j (k − 1)).W c

jh(k − 1). (57)

The application of the condition (16) for the sliding sur-

face expressed by (55) gives the limit values of βc

0 < βc < min
{∣∣∣MHh(k)

PHh(k)

∣∣∣, |MHh(k − 1)| − |MHh(k)|
PHh(k − 1)− PHh(k)

}
.

(58)
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The limit values of αc and βc given by (52) and (58) guar-

antee the existence and the convergence of sliding surfaces

described in (39) and (42). The update equations (45) and

(46) can be used to train the INM taking into consideration

these limits for the gains.

3 Neural control strategy

The direct inverse control (DIC)[39], as shown in Fig. 4,

is the adopted strategy to control the uncertain nonlinear

system. Indeed, the INM must be trained before using it

as a controller for the system.

Fig. 4 Direct inverse control structure

3.1 INM synthesis

According to the control scheme, the DNM of the system

is trained in a first step, then based on this later the INM

is trained. Different combinations of the above presented

learning algorithms are tested to determine the best one

for the control of uncertain nonlinear systems.

Table 1 Different combinations of the INM synthesis

DNM training INM training

algorithm algorithm

1st combination BP BP

2nd combination SM-BP BP

3rd combination BP SM-BP

4th combination SM-BP SM-BP

3.2 Control steps

After satisfactory training, the synthesized INM is ap-

plied as a controller for the uncertain nonlinear system.

This controller must guarantee that the output of the sys-

tem follows the desired one despite the existence of the para-

metric variations.

4 Simulation results

In this section, simulation results are presented and dis-

cussed in order to illustrate the performance and the ro-

bustness of the SM-BP algorithm for the modelling and

the control and to compare it with conventional BP algo-

rithm. Two examples are considered. The first example is a

numerical one described by a recurrent nonlinear equation

inspired from [21] and the second example is surge tank

model taken from [41] and [42].

4.1 First example

Consider the nonlinear uncertain system given by (59)

which is a modified version of the one presented in [21]:

y(k + 1) =
a(k).y(k)

1 + b(k).y2(k)
+ c(k).u3(k). (59)

The variations of the parameters a, b and c are given by

the following equations:




a(k) = 1− 0.75 sin
(2πk

140

)

b(k) = 1− 0.5 sin
(2πk

140

)

c(k) = 1− 0.05 sin
(2πk

140

)
. (60)

The variables u(k) and y(k) indicate respectively the in-

put and the output of the system at the instant k. Fig. 5

illustrates the variations of the variables a, b and c.

Fig. 5 Variations of variables a, b and c for the training set

4.1.1 Neural models synthesis

According to the control structure, the development of

the DNM and the INM of the system is the preliminary

step. These models will be used to determine the controller

for the uncertain nonlinear system. The training of the

neural models is assured first through the BP algorithm

and secondly by SM-BP algorithm. FNN is the adopted

architecture for neural modelling.

DNM synthesis

The development of the DNM consists in training a FNN

to reproduce the dynamics of the uncertain system. The

input vector of the DNM is composed by y(k) and u(k),

ym(k + 1) is the output. The input is a signal with an am-

plitude distributed over the interval [0, 2]. In order to ensure

compromise between the quality of modeling and the time

of convergence, the choice of the DNM′s parameters has

been done after several simulations. In fact, the number of

neurons in the hidden layer is Nm
c = 5. The database is

divided into two parts, one serves to training Ntr = 140

and the other to testing Nts = 70. The activation func-

tion of the hidden and the output layer is the sigmoid one.

Since both algorithms BP and SM-BP consider in this work

fixed learning rate, several simulation results were carried

out in order to find the best values for the two algorithms.

Table 2 shows the training parameters used in this simu-

lation. The deduction of the boundaries of αm and βm is
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not shown here, nevertheless, the values chosen are within

these boundaries.

Table 2 DNM training parameters (first example)

Algorithms BP SM-BP

αm = 6

Parameters ε = 0.4 βm = 2

C = CH = 1

Fig. 6 shows the evolution of the mean squared error

model MSE1 for the two algorithms.

MSE1 =
1

2

Ntr∑

k = 1

[y(k + 1)− ym(k + 1)]2. (61)

Fig. 6 Evolution of DNM training criterion for the SM-BP ver-

sus BP (first example)

It is to be noted that SM-BP algorithm presents better

convergence than the BP one.

INM synthesis

After satisfactory training of the DNM, it is used to train

the INM. The different combinations of the above presented

learning algorithms given by Table 1 have been tested to de-

termine the best one for the control of the uncertain system.

The input vector of the INM is composed by the desired

output yd(k + 1) and the output of the neural model y(k),

the hidden layer contains five hidden neurons Nc = 5 and

u(k) is the output. The data used for the training and the

testing consist of Ntr = 140 and Nts = 70 elements re-

spectively. The activation function of the hidden layer and

the output layer is sigmoid one. INM training parameters

are given by Table 3.
Table 3 INM training parameters for different combinations of

the INM synthesis (first example)

1st 2nd 3rd 4th

combination combination combination combination

αc = 3.5 αc = 3

ε = 0.5 ε = 0.5 βc = 6 βc = 9.8

C1 = C1H = 1 C1 = C1H = 1

The evolution of the mean squared error MSE2 for the

different combinations is shown by Fig. 7 where

MSE2 =
1

2

Ntr∑

k = 1

[yd(k + 1)− ym(k + 1)]2. (62)

It is noted from Fig. 7 that the third and the fourth com-

binations present the best convergence properties.

Fig. 7 Evolution of INM training criterion of the different com-

binations (first example)

4.1.2 Control results

After satisfactory training, the synthesized INM is placed

in cascade with the plant to be controlled, thus it is used as

a neural controller of the uncertain nonlinear system. The

evolution of the system output for the parametric varia-

tions given by (60) and the desired output are illustrated

by Fig. 8. It is clear from Fig. 8 that the neural controller

synthesized by the 4th combination presents the best per-

formance despite the existence of the parametric variations.

Fig. 8 Evolution of the system output controlled by the different

neural controllers and the desired output (parametric variations

of training set)

Fig. 9 shows the different control signals. In order to test
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the robustness of the synthesized neural controllers, other

variations of the parameters a, b and c have been considered

as given by Fig. 10. The evolution of the system output and

the desired one are shown in Fig. 11.

Fig. 9 Evolution of the control signals (parametric variations of

training set)

Fig. 10 Variation of variables a, b and c for the validation set

Fig. 12 presents the control signals provided by the INMs

trained by the different combinations.

To show the performance of the different neural con-

trollers, we propose to calculate the error between the de-

sired output and the system one as

E =
1

70

70∑

k = 1

[yd(k)− y(k)]2 (63)

where E and E1 are respectively the errors between the de-

sired output and the system one for the parametric variation

given by Figs. 5 and 10. According to the obtained simula-

tion results, we note that the SM-BP has really improved

the standard BP. Thus, it is clear that the control process

in case of training through the SM-BP is better than that

of the BP. Indeed, referring to Table 4, the performance of

the system controlled with the neural controller synthesized

through the fourth combination (training process based on

SM-BP for the DNM and the INM) is the best one.

Fig. 11 Evolution of the system output controlled by the differ-

ent neural controllers and the desired output (parametric varia-

tions of validation set)

Fig. 12 Evolution of the control signals (parametric variations

of validation set)
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Table 4 Comparative results

Neural controller E E1

1 0.137 7 0.116 7

2 0.123 4 0.094 3

3 0.026 3 0.022 5

4 0.010 5 0.008 6

4.2 Second example

A level control problem for a surge tank[41, 42] is presented

in this section as shown in Fig. 13. The differential equation

representing the dynamic of the surge tank can be given by

dh

dt
=
−d

√
2gh(t)

A(h(t))
+

c

A(h(t))
qe(t) (64)

Fig. 13 Surge tank

where qe(t) is the input flow (control input), h(t) is the

liquid level (the output of the system), A(h(t)) is the cross-

sectional area of the tank, g = 9.8m/s2 is the gravitational

acceleration, c̄ ∈ [0.9, 1] is the “clogging factor” for a filter in

the pump actuator: if c̄ = 1, the filter is clean so there is no

clogging and d̄ > 0 is the parameter related to the diameter

of the output pipe. Let hd(t) be the desired liquid level in

the tank and it is assumed that h(0) = 1. Furthermore, the

area of the tank is given as A(h(t)) = āh2(t) + b̄, assume

also that ā and b̄ are unknown but that ā ∈ [a1, a2], b̄ ∈
[b1, b2]. a1 > 0, b1 > 0, where a1 = 0.4 × 10−3, a2 =

3.6× 10−3, b1 = 0.15 and b2 =0.25 are are all fixed. Using

Euler approximation, the discrete-time uncertain nonlinear

system is

h(k + 1) = h(k) + T
−d(k)

√
2gh(k)

ā(k)h2(k) + b̄(k)
+

c̄(k)

ā(k)h2(k) + b̄(k)
qe(k). (65)

T = 0.1 s denotes the sampling period[41]. Assume that

the variations of the variables ā, b̄, c̄ and d̄ are given by the

equations as





ā(k) = 0.002− 0.001 6 sin
(2πk

550

)

b̄(k) = 0.2 + 0.05 sin
(2πk

550

)

c̄(k) ∈ [0.9 , 1]

d̄(k) ∈ [0.8 , 1]. (66)

4.2.1 Neural models synthesis

DNM synthesis

The DNM of the above presented system has two inputs

qe(k) and h(k), one hidden layer with four hidden neurons

Nm
c = 4 and a single output hm(k + 1). The input flow

rate is constrained within the limits of 4−14 m3/s. The liq-

uid level as the input flow is also constrained within the

limits of 0.8−10 m. The training samples and the testing

ones contained Ntr = 550 and Nts = 300 elements respec-

tively. Table 5 shows the training parameters used in this

simulation.

Table 5 DNM training parameters (second example)

Algorithms BP SM-BP

αm = 3

Parameters ε = 0.5 βm = 2.9

C = CH = 1

Fig. 14 Variation of the variables ā, b̄, c̄ and d̄ for the training

set

Fig. 15 shows the evolution of the mean squared error

model MSE1 for the two algorithms.

It is to be noted that SM-BP presents better convergence

than the BP.
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Fig. 15 Evolution of DNM training criterion for the SM-BP ver-

sus BP (second example)

INM synthesis

Assume that we know the desired trajectory a priori,

and suppose that hd(k + 1) ∈ [1, 9]. Indeed, based on the

DNM which gives acceptable performance after the training

phase, the INM is trained. The different combinations of

the above presented learning algorithms given by Table 1

have been tested to determine the best one that is able to

force the output of the system following the desired liquid

level under the parametric variations. The input vector of

the INM is composed of the desired output hd(k+1) and the

output of the neural model h(k), the hidden layer contains

four hidden neurons Nc = 4 and qe(k) is the output. The

training samples and the testing ones contain Ntr = 450

and Nts = 300 elements respectively. INM training param-

eters are given by Table 6.
Table 6 INM training parameters for different combinations of

the INM synthesis (second example)

1st 2nd 3rd 4th

combination combination combination combination

αc = 4 αc = 6.6

ε = 0.12 ε = 0.13 βc = 37 βc = 39.8

C1 = C1H = 1 C1 = C1H = 1

The evolution of the mean squared error MSE2 for the

different combinations is illustrated by Fig. 16.

Fig. 16 Evolution of INM training criterion of the different com-

binations (second example)

It is noted from Fig. 16 that the third and the fourth

combinations present the best convergence properties.

4.2.2 Control results

After satisfactory training, the trained INM is used as a

neural controller for the uncertain nonlinear system. The

evolution of the tank liquid level for the different parametric

variations given by (66) and the desired liquid level are

illustrated by Fig. 17.

Fig. 17 Evolution of the tank liquid level controlled by differ-

ent neural controllers and the desired liquid level (parametric

variations of training set)

The input flow generated by different neural controllers

is described by Fig. 18.

In order to test the robustness of the trained neural con-

trollers, other variations of the parameters ā, b̄, c̄ and d̄ have

been considered as given by Fig. 19. The obtained results

are shown in Fig. 20.

Fig. 21 illustrates the evolution of the input flow of the

surge tank provided by the INM trained by the different

combinations. It is clear from the obtained results shown

in Figs. 20 and 21 that the neural controller trained through

the first and the second combinations (based on BP train-

ing algorithm) present an oscillatory behavior under the

parametric variations of ā, b̄, c̄ and d̄ given by Fig. 19.

To show the performance of the different neural con-

trollers, we propose to calculate the error between the tank

liquid level and the desired one as

E′ =
1

300

300∑

k = 1

[hd(k)− h(k)]2 (67)

where E′ and E′
1 are respectively the errors between the

tank liquid level and the desired one for the parametric

variation given by Figs. 14 and 19.

It can be seen from the simulation results of the second

example that the control process in case of training through
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the SM-BP provides better performance than that of the

BP. Indeed, the neural controller synthesized through the

fourth combination shows that is able to guarantee satisfac-

tory tracking performance (the overshot is attenuated) and

robustness in spite of the existence of parametric variations.

Table 7 Comparative results

Neural controller E′ E′1
1 0.014 8 0.029 4

2 0.013 5 0.024

3 0.008 0.01

4 0.007 2 0.007 4

Fig. 18 Evolution of the input flow of the surge tank (paramet-

ric variations of training set)

Fig. 19 Variation of the variables ā, b̄, c̄ and d̄ for the validation

set

5 Conclusions

In this paper, a robust neural control of uncertain nonlin-

ear systems was presented. The base idea of this work was

the synthesis of a robust neural controller based on training

algorithm that combines standard BP and sliding mode the-

ory. The applicability and the performance of the proposed

control strategy were tested using two simulation examples.

The above results showed the robustness of the developed

neural controller under the parametric variations. As future

work, the adaptation of the gains α and β will be consid-

ered and other neural control strategies will be studied to

improve the control performance.

Fig. 20 Evolution of the tank liquid level controlled by differ-

ent neural controllers and the desired liquid level (parametric

variations of validation set)

Fig. 21 Evolution of the input flow of the surge tank (paramet-

ric variations of validation set)
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