
International Journal of Automation and Computing 13(3), June 2016, 235-245

DOI: 10.1007/s11633-016-1005-3

Solving Markov Decision Processes with Downside

Risk Adjustment

Abhijit Gosavi1 Anish Parulekar2

1219 Engineering Management Building, Department of Engineering Management and Systems Engineering,

Missouri University of Science and Technology, Rolla MO 65409, USA
2Axis Bank, Mumbai, India

Abstract: Markov decision processes (MDPs) and their variants are widely studied in the theory of controls for stochastic discrete-

event systems driven by Markov chains. Much of the literature focusses on the risk-neutral criterion in which the expected rewards,

either average or discounted, are maximized. There exists some literature on MDPs that takes risks into account. Much of this

addresses the exponential utility (EU) function and mechanisms to penalize different forms of variance of the rewards. EU functions

have some numerical deficiencies, while variance measures variability both above and below the mean rewards; the variability above

mean rewards is usually beneficial and should not be penalized/avoided. As such, risk metrics that account for pre-specified targets

(thresholds) for rewards have been considered in the literature, where the goal is to penalize the risks of revenues falling below those

targets. Existing work on MDPs that takes targets into account seeks to minimize risks of this nature. Minimizing risks can lead

to poor solutions where the risk is zero or near zero, but the average rewards are also rather low. In this paper, hence, we study a

risk-averse criterion, in particular the so-called downside risk, which equals the probability of the revenues falling below a given target,

where, in contrast to minimizing such risks, we only reduce this risk at the cost of slightly lowered average rewards. A solution where

the risk is low and the average reward is quite high, although not at its maximum attainable value, is very attractive in practice. To

be more specific, in our formulation, the objective function is the expected value of the rewards minus a scalar times the downside

risk. In this setting, we analyze the infinite horizon MDP, the finite horizon MDP, and the infinite horizon semi-MDP (SMDP). We

develop dynamic programming and reinforcement learning algorithms for the finite and infinite horizon. The algorithms are tested in

numerical studies and show encouraging performance.

Keywords: Downside risk, Markov decision processes, reinforcement learning, dynamic programming, targets, thresholds.

1 Introduction

Markov decision processes (MDPs) have been studied

widely in the literature for classical objective functions,

such as discounted reward over an infinite/finite horizon,

average reward over an infinite horizon, and total reward

over a finite time horizon. MDPs can be solved via dy-

namic programming (DP) when the underlying transition

probability model is available. When the transition prob-

ability models are not available, either because the under-

lying transition dynamics are too complex or because the

state-action space is too large, MDPs can be solved within

simulators via a methodology called reinforcement learning

(RL)[1,2]. Recently, RL methods have been used in a va-

riety of problems ranging from predicting aircraft taxi-out

times[3] through supply chain management[4] to helicopter

control[5].

The classical objectives, unfortunately, are unable to cap-

ture risk considerations. In other words, classical objective

functions disregard the issue of reducing variability in the

returns (rewards/revenues), although variability is often un-

desirable. In this paper, we are interested in reducing vari-

ability below a given (known) target, or threshold, for the

Research Anticle
Manuscript received March 13, 2015; accepted December 18, 2015
Recommended by Guest Editor Dong-Ling Xu
c© Institute of Automation, Chinese Academy of Sciences and

Springer-Verlag Berlin Heidelberg 2016

revenues. The specific form of variability that we are inter-

ested in is called downside risk, i.e., the probability of the

revenues falling below the target specified, or equivalently,

the probability of the costs exceeding the target specified

(in case of costs, this is often called the expected short-

fall). Further, in this paper, we will use a risk-adjusted

(also called risk-penalized in the literature) objective func-

tion of the following format that is maximized:

E[X]− θRisk[X] (1)

where θ is a positive risk-averseness coefficient, X denotes

the rewards or returns, while E[·] and Risk[·] denote the ex-

pectation and risk operators respectively. The risk operator

could be variance, semi-variance, downside risk, etc. The

format used in (1) will be called the risk-adjusted format

because it equals the expected rewards minus a positive

scalar, θ, times the risk. Before delving into details of how

the above format can be employed within MDPs, we present

a simple motivating example from risk economics. Consider

the situation in which you have two choices:

1) Scenario 1: Make $800 with a probability of 0.9 and

$100 with a probability of 0.1.

2) Scenario 2: Make $800 with a probability of 0.8 and

$450 with a probability of 0.2.

Note that both scenarios result in the same expected re-

turns of $730. A decision-maker who likes to take risks

236 International Journal of Automation and Computing 13(3), June 2016

will select Scenario 1 because the chances of obtaining the

highest reward are higher with it. However, a risk-averse

person is likely to choose Scenario 2 because it “seems”

less risky. For instance, with Scenario 2, in the worst case,

one makes $450, which is higher than $100 that one makes

with Scenario 1 in the worst case. So how does one distin-

guish between the two if one is risk-averse? In the setting

of artificial intelligence that we study in this paper, it is

necessary to come up with an approach that will crunch

numbers and automatically select the risk-averse solution

for the agent. One approach to computing risk is to set a

reasonable target, and then compute the downside risk, i.e.,

the probability of revenues falling below that target. Let us

assume that the target is set to $100, the lowest amount

achievable from either scenarios. Then, the downside risk

for Scenario 1 is 0.1 and that for 2 is 0. Hence, using the

objective function format in (1) will lead to a higher score

for Scenario 2, and the decision-maker will hence choose

Scenario 2. In this paper, we will consider an objective

function of this nature for solving MDPs. The motivation

is to derive solutions that have slightly lowered average rev-

enues but significantly lower risks.

A body of literature exists on curtailing risks in the re-

wards (or costs) in MDPs of which we now present a brief

review. A major chunk of this is devoted to using the expo-

nential utility (EU) function[6−8], which, when used in the

MDP context, leads to the so-called risk-sensitive objective

function. On the other hand, Filar et al.[9]. develop the

variance-adjusted (VA) framework. See also [10] for what is

possibly the first definition of variance within MDPs. How-

ever, we do not find any Bellman equation in these works.

A so-called policy-gradient algorithm based on a VA-based

Bellman equation can be found in Sato and Kobayashi[11].

The algorithm in Gosavi[12] uses one-step variance as a risk

measure for the infinite horizon and proposes a policy iter-

ation algorithm for dynamic programming, while the algo-

rithms in [13, 14] are for long-run variance.

Outside the EU function and variance, other metrics have

been studied in conjunction with MDPs. Mihatsch and

Neuneier[15] introduce a scaling parameter that transforms

the reward function in MDPs. Geibel[16] introduces the no-

tion of “risky states” that should be avoided, while Heger[17]

studies what is called worst-case risk. A subset of risk-

related notions have also stoked an interest in management

problems[18, 19].

In this paper, our goal is to consider a threshold/target

for revenues/rewards/returns and ensure that the probabil-

ity of the revenues falling below the threshold is reduced

(this is the same as reducing the probability of costs ris-

ing above a given threshold). There is some literature on

MDPs that considers targets: First, there is work aimed at

minimizing the probability that the total discounted reward

falls below a target[20−22] , as opposed to considering a risk-

adjusted objective function in an un-discounted setting that

we consider here. Second, a so-called semi-variance from a

target has also been used as a risk measure within a risk-

adjusted objective function[23]; semi-variance measures the

square of the absolute deviation below the target.

There are numerical advantages to using downside risk

over other risk metrics. The EU function has a number of

drawbacks that have been discussed in [24]. In particular,

the most important disadvantage of the EU function is that

the associated RL algorithm can break down numerically in

problems where there is large variability in rewards in dif-

ferent states. Variance, as stated above, is another popular

risk metric, but unfortunately, it computes variability both

above and below the mean. Usually, variability above the

mean rewards is useful, and should not be penalized, which

is precisely what a so-called variance-penalized objective

leads to. Hence, using a specific target for the rewards, as

done within downside risk, is more appropriate for measur-

ing risk than the average reward. Finally, as stated above,

semi-variance-adjusted average rewards, which do account

for targets, have been considered in [23], but it needs to be

noted that the numerical value of the target-semi-variance

can at times become very large – causing computational

issues in RL algorithms. The downside risk, on the other

hand, is a probability, and hence its value never becomes

too large – thereby offering a numerical advantage over tar-

get semi-variance.

Contributions of this paper. This paper seeks to

present, to the best of our knowledge, for the first time,

the downside risk criterion in a risk-adjusted format for the

MDP, semi-MDP (SMDP), and the finite horizon MDP. The

paper also provides the underlying theory and algorithms,

via DP and RL, for solving these problems. Finally, numer-

ical results are presented to reinforce the usefulness of the

framework proposed. The framework holds key advantages

over other risk metrics, which were discussed above.

The rest of this paper is organized as follows. We first

consider the infinite time horizon in Section 2 within which

we cover the MDP and the SMDP. Section 3 provides the

theory for the finite time horizon problem. Numerical re-

sults are provided in Section 4, while conclusions drawn

from this research are presented in the final section.

2 Infinite time horizon

We first consider the case of the infinite time horizon

for the SMDP, whose algorithms often have straightforward

extensions to MDPs, since the latter are a special case of

the former. See [25, 26] for the necessary background on

the theory underlying MDPs/SMDPs. We will first present

some preliminaries, then the underlying theory, relevant to

downside risk, for MDPs and finally the same for SMDPs

and the finite horizon.

2.1 Preliminaries

We will be using the following notation. S will denote

the set of states in the MDP/SMDP, while A(i) will de-

note the set of actions in state i. Let r(i, a, j) denote the

reward earned in going from state i to state j under ac-

tion a. Also, let p(i, a, j) and t(i, a, j) denote the proba-

bility and time respectively — associated with the same

A. Gosavi and A. Paralekar / Solving Markov Decision Processes with Downside Risk Adjustment 237

transition. We will use μ to denote a policy for which

μ(i) will denote the (deterministic) action to be chosen in

state i. Also, Pμ and Rμ will denote the transition prob-

ability and transition reward matrices, respectively, associ-

ated with policy μ. Also, note that we will use the follow-

ing notation for the expected immediate reward and time:

r̄(i, a) =
∑

j∈S p(i, a, j)r(i, a, j) will denote the expected

immediate reward in state i when action a is chosen in it,

while t̄(i, a) =
∑

j∈S p(i, a, j)t(i, a, j) will denote the ex-

pected immediate transition time out of state i when action

a is chosen in it. Further, we will use τ to denote the target,

which will be in terms of dollars for MDPs and dollars per

unit time for SMDPs. We now make an important assump-

tion about the nature of MDPs/SMDPs that we will study

here.

Assumption 1. The Markov chain underlying every

policy μ in the infinite horizon MDP/SMDP is regular, i.e.,

the transition probability matrix can be raised to a suffi-

ciently large finite-valued power such that each element in

the matrix is non-zero.

We now define the average reward and the downside risk.

Definition 1. For a given deterministic, stationary pol-

icy μ, the average reward in an infinite horizon SMDP is

defined as

ρμ =

∑

i∈S

Πμ(i)
∑

j∈S

p(i, μ(i), j)r(i, μ(i), j)

∑

i∈S

Πμ(i)
∑

j∈S

p(i, μ(i), j)t(i, μ(i), j)
(2)

where Πμ(i) denotes the steady-state probability (invariant

probability) for state i ∈ S of the Markov chain underlying

policy μ.

Definition 2. For a given deterministic, stationary pol-

icy μ, the downside risk in an SMDP is defined as

DRμ =
∑

i∈S

Πμ(i)
∑

j∈S

p(i, μ(i), j)I(r(i, μ(i), j) < τt(i, μ(i), j)) (3)

where I(·) denotes the indicator function (which equals 1 if

the condition inside the brackets is true and 0 otherwise).

We can obtain the counterparts of MDPs for both of the

above definitions by identically setting the time t(·, ·, ·) ≡ 1

in each.

We can now define our objective function for a given

policy μ using the format in (1) as follows:

φμ ≡ ρμ − θDRμ (4)

where in the above ρμ denotes the average reward of the

policy and DRμ denotes the downside risk of using pol-

icy μ. The above expression in (4) will be referred to as

the downside-risk-adjusted (DRA) score. It is important

to note here that the positive scalar θ is proportional to

the risk-averseness of the decision-maker; the greater the

degree of risk-averseness, the higher should be this value.

In other words, a decision-maker who has no averseness to

the downside risk should use a value of 0 for θ, while the

decision-maker with a high degree of risk-averseness should

use a larger value. In general, however, very large values of

θ can cause the above DRA score to be too biased to the

downside risk. Thus, this is a parameter that must be set

at a suitable value after taking into account the tolerance

level of the decision-maker towards downside risk. It also

needs to be highlighted that a high value of θ will produce

low downside risk, but this will occur at the cost of reducing

the average reward, ρμ. Therefore in practice, the actual

value of θ has to be determined depending on not only the

risk tolerance level of the decision-maker but also on the

experimental set up and how it influences the average re-

ward and the risk. We discuss examples in the context of

numerical results later in the paper.

We now present the theory for SMDPs.

Bellman equations: To develop policy and value iter-

ations of DP for the objective function at hand, we present

the Bellman equations for the SMDP from which these algo-

rithms will follow. We will now define the following function

that will be used occasionally in the remainder of the paper

to make our presentation compact:

wτ (i, a, j) = r(i, a, j) − θI(r(i, a, j) < τt(i, a, j)) (5)

for all i ∈ S, j ∈ S, and a ∈ A(i). Further, we define

w̄τ (i, a) =
∑

j∈S p(i, a, j)wτ (i, a, j) for all i, j in S and every

a ∈ A(i). When this function is used in the context of

MDPs, t(i, a, j) = 1 for all i ∈ S, j ∈ S, and a ∈ A(i).

Theorem 1. 1) (Bellman equation for a given policy) If

a scalar φ ∈ R and an |S|-dimensional finite vector �h satisfy

for all i ∈ S:

φt̄(i, μ(i)) + h(i) =
∑

j∈S

p(i, μ(i), j)×

[wτ (i, μ(i), j) + h(j)]

then φ is the DRA score associated with the policy μ.

2) (Bellman optimality equation) Assume that a scalar φ∗

and an |S|-dimensional finite vector J(i) satisfy for all i ∈ S

J(i) =

max
a∈A(i)

[
∑

j∈S

p(i, a, j)[wτ (i, a, j) − φ∗t(i, a, j) + J(j)]

]

.

(6)

Any policy that attains the max in the right-hand side of

the above will be an optimal policy, i.e., it will generate the

maximum value for the DRA score.

These results are extensions of the classical results for

the risk-neutral case[26] , and hence we skip the proofs. The

proofs can be easily obtained by replacing r(·, ·, ·) in the

proof for the classical risk-neutral case by the function

w(·, ·, ·).
2.2 Dynamic programming

For the infinite time horizon, we present the so-called

policy iteration algorithm which works for SMDPs as well

as MDPs.

Step 1. Set k, the number of iterations, to 1. Select any

arbitrary policy and denote it by μ̂k, while μ̂∗ will denote

the optimal policy.

238 International Journal of Automation and Computing 13(3), June 2016

Step 2. (Policy evaluation) Solve the following linear

system of equations:

hk(i) =

|S|∑

j=1

p(i, μk(i), j)×
[
wτ (i, μk(i), j)− φkt(i, μk(i), j) + hk(j)

]
.

In the above, the unknowns are the hk terms as well as

φk. Any one of hk terms should be set to 0 in order to

obtain a solution.

Step 3. (Policy improvement) Choose a new policy

μ̂k+1 so that for all i ∈ S

μk+1(i) ∈

arg maxa∈A(i)

⎡

⎣
|S|∑

j=1

p(i, a, j)(wτ (i, a, j)−φkt(i, a, j)+hk(j)

⎤

⎦.

The action selection should be performed in a manner

such that when possible, one should set μ̂k+1 = μ̂k; this is

done to avoid cycling.

Step 4. If the new policy is identical to the old one, i.e.,

if μk+1(i) = μk(i) for each i ∈ S, then set μ∗(i) = μk(i)

for every i ∈ S and stop. Otherwise, increase k by 1, and

return to Step 2.

The convergence of the algorithm follows directly from

that of the classical risk-neutral algorithm, via replacement

of r(·, ·, ·) by w(·, ·, ·), and hence is not presented in detail.

A relative value iteration algorithm using the DRA function

follows directly from the Bellman equations proposed above

for the MDP. Its convergence will also follow along lines of

the same for the classical risk-neutral case[25]; details of

the algorithm are provided in Appendix A1 for the sake of

completeness.

2.3 Reinforcement learning

In this section, we develop an RL algorithm for infinite

horizon SMDPs. In RL, the goal is to solve the prob-

lem either in a simulator or in the actual system via trial

and error, typically under the assumption that the transi-

tion probabilities needed in DP are not available. In other

words, the algorithm must update its values after each tran-

sition in the system (or simulator). RL algorithms, hence,

have the potential to solve complex problems whose transi-

tion probabilities are hard to find.

We develop an algorithm along the lines of [27, 23], where

the objective function is estimated simultaneously with the

updating of the value function. Our proposed algorithm

will work for MDPs by setting t(·, ·, ·) ≡ 1 everywhere. In-

stead of solving the Bellman equation defined in (6), our

algorithm will seek to solve the following equation: For all

i ∈ S and any scalar η ∈ (0, 1):

J(i) =

max
a∈A(i)

[
∑

j∈S

p(i, a, j)[wτ (i, a, j) − φt(i, a, j) + ηJ(j)]

]

.

(7)

In the above, η is an artificially introduced positive

scalar, which is close to 1, e.g., θ = 0.99. The motivation

for introducing it is that while it helps the underlying Bell-

man equation (i.e., (7)) to approximate the actual Bellman

equation, it also leads to a unique solution for the underly-

ing Bellman equation and generates a convergent algorithm.

In the literature, such a scalar has been also used in pol-

icy gradient algorithms to force a unique solution[28]. It is

essentially a tuning parameter whose value must be cho-

sen carefully. We discuss this in more detail below in the

discussion that follows the RL algorithm.

We now make the following assumption under which solv-

ing the above equation will yield the same solution as solv-

ing the actual Bellman equation. We will comment on the

verifiability of this assumption later in the section where we

present numerical results.

Assumption 2. There exists a value for η̄ in the interval

(0, 1) such that for all η ∈ (η̄, 1), the unique solution, J , of

(7) with φ set to equal φ∗ produces a policy d defined as

follows for all i ∈ S

d(i)∈ arg maxa∈S

[

w̄τ (i, a)− φ∗t̄(i, a) + η
∑

j

p(i, a, j)J(j)

]

whose DRA score equals φ∗.
Note that under the assumption above, when η lies in

(0, η̄), the unique solution of (7) with φ = φ∗ will be the

same as the solution of the Bellman optimality equation.

We now define a so-called Q-factor that is used in algo-

rithms of the Q-Learning type. For all (i, a):

Q(i, a) =
∑

j∈S

p(i, a, j) [wτ (i, a, j)− φt(i, a, j) + ηJ(j)] (8)

where J(·) denotes the unique solution of (7). Equations (7)

and (8) imply that for every i ∈ S, J(i) = maxa∈A(i) Q(i, a),

which from (8) implies that

Q(i, a) =

∑

j∈S

p(i, a, j)

[

wτ (i, a, j)− φt(i, a, j) + η max
b∈A(j)

Q(j, b)

]

.

(9)

This motivates the following RL algorithm (along the

lines of the semi-variance algorithm[23]):

Qk+1(i, a)← (1− αk)Qk(i, a)+

αk

[

wτ (i, a, j)− φkt(i, a, j) + η max
b∈A(j)

Qk(j, b)

]

where φk is updated simultaneously to its optimal value.

Algorithm steps. In the algorithm below, we will use

what is called an ε-greedy selection in the literature[1]. In an

ε-greedy strategy, actions are selected in a manner such that

all actions have the same probability of getting selected in

the first iteration, but the probability of selecting the non-

greedy action is gradually reduced with every iteration.

Initialization. Set k, the number of iterations, to 0. Set

for all (i, a), where i ∈ S and a ∈ A(i), Qk(i, a)← 0. Set φk,

the estimate of the DRA score in k-th iteration to 0. Also,

A. Gosavi and A. Paralekar / Solving Markov Decision Processes with Downside Risk Adjustment 239

set the scalars, TW k, which measures the total accumulated

value of the risk-adjusted immediate reward (wτ (·, ·, ·)) un-

der greedy actions, to 0 and TT k, which measures the total

time spent in greedy actions, to a small positive value, e.g.,

0.01. Set η to a value close to 1, e.g., 0.99. Let αk and βk be

step-sizes that are decayed according to standard RL rules.

Set kmax, the number of iterations for which the algorithm

is run, to a large enough integer. Initiate system simulation

at any arbitrary state.

Repeat the following steps in a sequence until k = kmax:

1) Let the current state be i. An action u will be con-

sidered greedy if u = arg maxb∈A(i)Q
k(i, b). Select action a

using an ε-greedy strategy. In case there is a tie in finding

the greedy action, the tie is broken randomly.

2) Simulate action a. Let the next state be j. Update

Q(i, a) as follows:

Qk+1(i, a)← (1− αk)Qk(i, a)+

αk[wτ (i, a, j)− φkt(i, a, j) + η max
b∈A(j)

Qk(j, b)].

3) If a is greedy, update φ, TW and TT using the follow-

ing:

φk+1 ← (1− βk)φk + βk TW k

TT k

TW k+1 ← TW k + wτ (i, a, j)

TT k+1 ← TT k + t(i, a, j).

4) Increment k by 1. If k < kmax, set i← j.

Termination: For each i ∈ S, select d(i) ∈
arg maxb∈A(i)Q

k(i, b). The policy returned is d. Stop.

In the above, the step sizes, αk and βk, are decayed ac-

cording to a rule such as A
(B+k)

, where A and B are suitable

positive scalars. In general, every step size in RL will be

assumed to satisfy the following condition.

Assumption 3.

∞∑

k=1

αk =∞
∞∑

k=1

(αk)2 <∞.

Setting the value for η: The value of η must be set as

close to 1 as is possible. Our experiments suggested that a

value of 0.99 is often sufficient in practice to obtain the op-

timal solution. However, on large-scale problems, where the

optimal is unknown and one typically benchmarks against

heuristics, one may have to use trial and error to gener-

ate behavior superior to that of the heuristics. As a rule

of thumb, one can start from θ = 0.99 and use increasing

values until the desired behavior is obtained. Of course, as

stated above, the value should always be less than 1.

The proof of convergence of this algorithm is a straight-

forward extension of an existing result; hence, we provide

the result in Appendix A2.

3 Finite time horizon

We now present an analysis of the finite horizon case. In

the finite horizon problem, our goal will be to maximize the

expected sum of the risk-adjusted rewards earned over the

finite time horizon. It turns out that under certain assump-

tions, the finite horizon problem can be studied as a special

case of the stochastic shortest-path problem (SSP)[2]. In

this section, we first present some preliminaries regarding

the finite horizon MDP, then a forward DP algorithm, and

finally an RL algorithm.

3.1 Preliminaries

We begin with some assumptions that we make about the

finite horizon MDP, and then present some notation that

we will need, before defining the objective function.

Assumption 4. Every policy possible in the problem

is proper, i.e., under every policy the system inevitably

reaches a terminal state, which is unique, with a positive

probability after a finite number of transitions.

Assumption 5. The starting state of the system is

known and fixed.

Assumption 6. The terminal (ending) state of the sys-

tem is unique and absorbing, and it generates no rewards.

In the finite horizon problem, the state of the infinite

horizon MDP is replaced by a state-stage pair. Thus, (i, s)

will denote the pair of state i and stage s. If μ denotes a pol-

icy, μ(i, s) will denote the action selected in the state-stage

pair (i, s). Also, r(i, s, a, j, s+1) will denote the immediate

reward earned in going from state-stage pair (i, s) to state-

stage pair (j, s + 1); similarly, p(i, s, a, j, s + 1) will denote

the transition probability under the same transition. Our

risk-adjusted immediate reward can then be defined as

w(i, s, a, j, s + 1) = r(i, s, a, j, s + 1)− θ×
I(r(i, s, a, j, s + 1) < τ) (10)

where I(·) is the indicator function as defined above. This

allows us to define the expected value of the risk-adjusted

immediate reward as follows:

w̄(i, s, a) =
∑

j∈S

p(i, s, a, j, s + 1)w(i, s, a, j, s + 1). (11)

Using the above definitions, and noting that N will denote

the finite number of stages in this setting, we now define

the following function.

Definition 3. The long-run expected value of the total

risk-adjusted reward earned by a policy μ starting at state

i in stage 1 over N stages is

φμ(i, 1) ≡ Eμ

[
N∑

s=1

w̄(xs, s, μ(xs, s))|x1 = i

]

where xs denotes the state occupied by the system in the

s-th stage.

The starting state in the finite horizon MDP will be

unique via Assumption 4. And our objective function will

be φμ(1, 1) where the initial state will be numbered 1. We

note that J(i, s) will be used to denote the element of the

value function for state i in stage s of the finite horizon

MDP. The associated Bellman optimality equation, which

follows from the same for the risk-neutral case (see [25]) is

provided below.

240 International Journal of Automation and Computing 13(3), June 2016

Theorem 2. Under Assumptions 4−6 for a finite hori-

zon MDP, there exists a unique solution for the following

equation: For every i ∈ S and s = 1, 2, · · · , N ,

J∗(i, s) = max
a∈A(i,s)

[∑

j∈S

p(i, s, a, j, s + 1)×

[w(i, s, a, j, s + 1) + J∗(j, s + 1)]
]
. (12)

3.2 DP algorithm

We are now ready to present the DP algorithm, based on

value iteration, that solves the Bellman equation presented

above, and follows from it.

Step 1. Select an ε > 0. Set k = 0. Set arbitrary values,

e.g., 0, to J0(i, t) for all i ∈ S and t = 1, 2, · · · , N + 1. Set

s = 1. Let i∗ be the starting state.

Step 2. Perform the following update for all i ∈ S,

except when s = 1 in which case perform it only for i∗.

Jk+1(i, s) = max
a∈A(i,s)

[∑

j∈S

p(i, s, a, j, s + 1)×
[
w(i, s, a, j, s + 1) + Jk(j, s + 1)

]]
.

Step 3. Increment s by 1. If s = N + 1 go to Step 4.

Else, return to Step 2.

Step 4. Check if || �Jk+1− �Jk||∞ < ε. If true, go to Step 5.

If this is not true, set s = 1, increase k by 1, and return to

Step 2.

Step 5. The optimal action in each state-stage pair,

(i, s), is determined as follows:

arg maxa∈A(i,s)

[∑

j∈S

p(i, s, a, j, s + 1)×

[
w(i, s, a, j, s + 1) + Jk(j, s + 1)

]]
.

Assumption 6 requires that the terminal state in stage

(N + 1) be reward-free. This is ensured by the fact that

J(i, N + 1) is never updated for any i, and thus always

remains at zero. The proof of convergence of the algorithm

is provided in Appendix A3.

3.3 RL algorithm

The result for the value function used in DP, i.e.,

Theorem 2, can be extended to Q-values. To that end,

we first define the Q-factor in terms of J∗(·, ·), which was

defined above via Theorem 2, as follows: For every i ∈ S,

s = 1, 2, · · · , N , and a ∈ A(i, s)

Q∗(i, a, s) =
∑

j∈S

p(i, s, a, j, s + 1)×

[w(i, s, a, j, s + 1) + J∗(j, s + 1)]

which implies that for every i ∈ S and s = 1, 2, · · · , N

J∗(i, s) = max
b∈A(j,s)

Q∗(j, b, s).

Then, using the above, Theorem 2 can be written in terms

of the Q-values as follows:

Theorem 3. Under Assumptions 4–6 for a finite hori-

zon MDP, there exists a unique solution for the following

equation: For every i ∈ S, s = 1, 2, · · · , N , and a ∈ A(i, s)

Q∗(i, a, s) =
∑

j∈S

p(i, s, a, j, s + 1)

[

w(i, s, a, j, s + 1)+

max
b∈A(j,s+1)

Q∗(j, b, s + 1)

]

. (13)

The above suggests an RL algorithm that can be used

for the finite horizon problem when Assumptions 4–6 hold.

We now present details of the algorithm.

Initialization. For all (i, u), where i ∈ S, s =

1, 2, · · · , N + 1, and u ∈ A(i, s), set Q(i, s, u) = 0. Set

k, the number of state changes, to 0. Set kmax, which de-

notes the number of iterations for which the algorithm is

run, to a sufficiently large number. Start system simulation

at the starting state, i∗, and set s = 1.

Loop until k = kmax:

Step 1. Let the current state be denoted by i and the

current stage be denoted by s. Select action a with a prob-

ability of 1/|A(i, s)|.
Step 2. Simulate action a. Let the next state be j in

stage (s+1). Let r(i, s, a, j, s+1) be the immediate reward

earned in the transition under the influence of action a.

Step 3. Update Q(i, s, a) as follows:

Qk+1(i, s, a)← (1− αk)Qk(i, s, a) + αk×
[

wτ (i, s, a, j, s + 1) + max
b∈A(j,s+1)

Qk(j, s + 1, b)

]

. (14)

Step 4. Increase k by 1. Set s ← s + 1. If s = N + 1,

set i = i∗, s = 1, and return to Step 2. Else if s �= N + 1,

set i← j and return to Step 2.

Termination. For each i ∈ S and s = 1, 2, · · · , N , se-

lect d(i, s) ∈ arg maxb∈A(i,s)Q(i, s, b). The policy (solution)

generated by the algorithm is d.

Stop. We must note that the algorithm will loop be-

tween Steps 1 and 4 and will exit when k = kmax regardless

of the value of s. Further, like in the case of the DP algo-

rithm, as per Assumption 6, we must enforce the terminal

state in stage (N + 1) to be reward-free. This is ensured

by the fact that Q(i,N + 1, a) is never updated for any

(i, a) pair and thus always remains at zero. Once again, the

convergence of the algorithm follows in a straightforward

manner from the same for Q-learning for the SSP, and is

hence relegated to the Appendix A4.

4 Numerical results

In this section, we illustrate the use of our algorithms on

instances of downside-risk-adjusted problems. We present

results on three problem classes: First, we describe the use

of the policy iteration algorithm on a preventive mainte-

nance MDP where the transition probabilities are available.

Thereafter, we present an analysis of the RL algorithm on

an SMDP where the transition probabilities are not easy to

A. Gosavi and A. Paralekar / Solving Markov Decision Processes with Downside Risk Adjustment 241

estimate. We conclude with a numerical analysis with a fi-

nite horizon MDP via an RL algorithm. We used the MAT-

LAB software in all our experiments, and we note that no

experiment took more than 5 seconds on an Intel Pentium

Processor with a speed of 2.66 GHz on a 64-bit operating

system.

4.1 Infinite horizon MDP

We consider a problem of preventive maintenance from

[29]. A failure-prone production line is considered. When

the line fails, it has to be repaired, which takes the whole

day. At times, the line is maintained in a preventive man-

ner, which takes the entire day. The model developed is

similar to that in [12] for which data was obtained from a

firm in New York. The underlying problem here is one of

determining which action to perform at the start of each

day: a production or a maintenance. As the line ages,

its probability of failure increases. A preventive mainte-

nance costs less than a repair, which must be performed in

case of failure. The underlying dynamics of this line will

be modeled as a Markov chain, and the decision-making

problem can be set up as an MDP which has two actions

{produce, maintain}. We now present some notation.

1) Cr: Cost of a repair

2) Cm: Cost of a maintenance

3) z: Parameter that will define the failure probabilities

4) days: Number of days since last repair or maintenance.

We will assume that when the system is repaired or

maintained, it is as good as new. As stated above, we

use the model in [12] for the failure dynamics, where

the state of the MDP is defined by days and transi-

tion probability law under the production action is de-

fined as follows: p(days, produce, days + 1) = zdays and

p(days,produce, 0) = 1 − zdays for days = 0, 1, · · · , D,

where D is the maximum value for the variable days;

all other transition probabilities for the action will equal

0. In practice, a suitable positive integer will be chosen

for the value of D such that at D, p(D, produce, 0) �

1; hence, we will assume that p(D, produce, 0) = 1 and

p(D, produce, D) = 0. For the maintenance action, the

transition probability law will be as follows: for days =

0, 1, · · · , D, p(days,maintain,0)=1 and other values of the

transition probability will equal 0. Since, the transition to

state 0 implies a failure, under action produce, and a main-

tenance, under action maintain, we have the following for

the transition reward matrix: r(days,produce, 0) = −Cr

and r(days, produce, 0) = −Cm for days = 0, 1, · · · , D; all

other values of r(·, ·, ·) equal 0. We now present an illustra-

tive example:

Example 1. We use the following values in this exper-

iment: Cm = 3, Cr = 10, z = 0.99, θ = 10, τ = −5, and

D = 20. Using the policy iteration algorithm presented

above, we obtain the following solution after 6 iterations:

Action produce is optimal in states days = 0, 1, · · · , 5 and

from days = 6 onwards, action maintain is optimal. We

compared this to the risk-neutral situation where θ = 0,

for which the optimal solution is: action produce in states

days = 0, 1, · · · , 7 and from days = 8 onwards, action

maintain. It is clear thus that the risk-averse solution rec-

ommends maintenance at an earlier age (6 days) in compar-

ison to the age recommended by the risk-neutral solution

(8 days). A plot of the behavior of the algorithm, which

shows the value of φ in each iteration of the algorithm, is

presented in Fig. 1.

Fig. 1 Progression of policy iteration: objective function here is

φ.

4.2 Infinite horizon SMDP

We now consider a case where the RL algorithm will be

used on an infinite horizon SMDP from [30]. The transi-

tion probabilities for problems of this nature are not easy to

evaluate, and hence simulation-based algorithms (e.g., RL)

form a useful alternative. A production-inventory system,

i.e., a machine with a finished product buffer is considered.

The buffer stores the product until the demand from the

customer arrives. The demand has a size of 1, while the

machine increases the size of the buffer by 1 when it pro-

duces a part successfully. There is an upper limit, S, on how

much the buffer can store. The machine takes a break from

production when this upper limit is reached, and it remains

on vacation until the buffer falls to a pre-determined level,

s. The input random variables for this model are: time

for producing a part (production time), the time between

failures, the time for a repair, the time between demand

arrivals, and the time for a maintenance. The “age” of the

machine is determined by the number of units produced

since last repair or maintenance.

The state-space for the SMDP will be defined as: b, c,

where c denotes the number of parts produced since last

repair or maintenance, and b stands for the number of parts

currently inside the buffer. There are two actions that the

decision maker can select from: {Produce, Maintain}. The

242 International Journal of Automation and Computing 13(3), June 2016

action is to be selected at the end of a production cycle,

i.e., when one unit is produced.

Example 2. We use the following data-set from [30]:

(S, s) = (3, 2). Further, we will use the following nota-

tion: Expo(λ) will denote an exponential distribution with

a mean of 1/λ, while Erl(shape, scale) will denote an Er-

lang distribution with the shape and scale parameters as

specified within brackets and Unif(a, b) will denote the uni-

form distribution with a as the minimum and b as the max-

imum. In our experiment, we use: Expo(1/10) for time

between arrivals, Erl(8, 12.5) for the time between failures,

Erl(2, 100) for the time for repair, Erl(8, 1.25) for the pro-

duction time, and Unif(5, 20) for the maintenance time.

Cr = $5, Cm = $2, and profit per sale of one unit is $1.

The policy turns out to have a threshold nature, i.e., for

i = 1, 2, 3, when the buffer equals i, the production action

is chosen as long as the production count c is less than ci

and maintain action when c ≥ ci. We also use τ = −$3, a

value less than the cost of maintenance, and θ = 10.

When the RL algorithm is run for the downside-risk-

adjusted objective, it returns c1 = 3, c2 = 4, and c3 = 7;

when buffer is empty, the action is to produce regardless

of the size of the buffer. The value of the average reward,

ρ, equals 0.026 3 while the probability of failure, which is

essentially the downside risk here, equals 0.004 1. For the

risk-neutral case, which is obtained by setting θ = 0, the

thresholds are c1 = 5, c2 = 5, and c3 = 6; when the buffer is

empty, the action is to produce regardless of the size of the

buffer. Also, ρ = 0.034 2 and the downside risk is 0.010 6

for the risk-neutral case. As is clear, when the algorithm

accounts for the downside risk, the latter gets lowered but

the average reward also falls, which is as expected. In all

the experiments, we used η = 0.99 and the following rules

for the step-sizes: αk =
150

(300 + k)
and βk =

10

(300 + k)
.

For small problems, it is possible to run the algorithm with

different values for η, but for larger problems, one must

guesstimate a value.

4.3 Finite horizon MDP

The goal here is to numerically analyze a simple two-

stage finite horizon MDP for which an optimal policy can

be identified via inspection. The following example will also

be used as a test case for the RL algorithm and to explain

the usefulness of the downside risk criterion.

Example 3. The problem has 2 stages, i.e., N = 2 and

the initial state is unique. Fig. 2 provides the data for this

example. We will have eight policies, shown in Table 1.

Table 2 shows the expected total reward for each policy

and the total downside risk, as well as the risk-adjusted

objective function φ(1, 1). We provide details of the values

in the second and third rows of Table 2 — in order to explain

how these calculations are performed. When policy 1 is

chosen, it is clear from the data in Fig. 2 that the total

expected reward (TER) for this policy will be

TER = 0.7(10 + 4) + 0.3(2 + 5) = 11.9.

Fig. 2 The figure shows the transition probabilities and rewards

for the different actions in Example C in which τ = 6 and θ = 10

Table 1 Definitions of the eight policies; the numbers provided

in the second through the fourth column denote actions for the

stage-state combination

Policy Stage 1 Stage 2 Stage 2

State 1 State 1 State 2

1 1 1 1

2 2 1 1

3 1 2 2

4 2 2 2

5 1 1 2

6 1 2 1

7 2 1 2

8 2 2 1

We use τ = 6 and θ = 10 in our experiments. Then, the

downside risk (DR) of any policy will be

DR = Prob(X1 < τ) + Prob(X2 < τ)

where Xs denotes the immediate reward earned in stage s

for s = 1, 2. Then, the downside risk for policy 1 will be

DR = 0.3 + 1 = 1.3.

As a result, the objective function for this Policy will be:

φ(1, 1) = 11.9 − θ(1.3) = 11.9 − 10(1.3) = −1.1. Next, we

consider Policy 2. Here, the corresponding values will be

TER = 0.5(6 + 4) + 0.5(7 + 5) = 11

DR = 0 + 1 = 1

φ(1, 1) = 11− 10(1) = 1.

From Table 2, by evaluating all the policies, it is clear that

Policies 4 and 8 are optimal, i.e., choose Action 2 in Stage 1,

Action 2 in State 1 of Stage 2, and either action in State 2

of Stage 2. For the risk-neutral case, the optimal solutions,

which maximize the expected total reward, are Policies 3

and 6.

A. Gosavi and A. Paralekar / Solving Markov Decision Processes with Downside Risk Adjustment 243

Table 2 The total expected reward (TER), the downside risk

(DR), and the objective function φ(1, 1)

Policy TER DR φ(1, 1)

1 11.9 1.3 −1.1

2 11 1 1

3 12.6 1.3 −0.4

4 11.5 1 1.5

5 11.9 1.3 −1.1

6 12.6 1.3 −0.4

7 11 1 1

8 11.5 1 1.5

We ran the RL algorithm on a simulator of this finite

horizon MDP, and obtained the optimal policy in 1 000 it-

erations with the following Q-values: Q(1, 1, 1) = 6.069 9,

Q(1, 1, 2) = 7.517 1, Q(1, 2, 1) = 0.879 6, Q(1, 2, 2) =

1.832 8, Q(2, 2, 1) = 1.161 4, and Q(2, 2, 2) = 1.294 1. In

other words, Policy 4, which is one of the optimal policies,

is returned. For the risk-neutral case, Policies 3 and 6 are

optimal. When the algorithm is run for the risk-neutral

case, Policy 3 is returned.

In the experiment above, we further use target semi-

variance as a risk metric[23], in order to examine the re-

sulting policy. The risk-adjusted reward using target semi-

variance as a risk metric can be defined as

w(i, s, a, j, s + 1) =r(i, s, a, j, s + 1)− θ×
(
[τ − r(i, s, a, j, s + 1)]+

)2
(15)

where [a]+ ≡ max(0, a). Note that the above is the coun-

terpart of target semi-variance for (10); thus, the target

semi-variance computes the square of the deviation of the

immediate reward below the target, τ , i.e., the target semi-

variance is the square of the semi-deviation below the tar-

get. Note that when the immediate reward exceeds the tar-

get, the deviation equals 0. Using the definition above for

w(·, ·, ·, ·), one can then define w̄(·, ·) via (11) and the objec-

tive function for the target semi-variance in a finite horizon

MDP via Definition 3. The finite horizon RL algorithm for

the downside risk case with the new definition for w(·, ·, ·, ·)
will now serve as the target semi-variance counterpart.

We used θ = 1 in our experiment for target semi-

variance and ran the algorithm for 1 000 iterations in a

simulator for the finite horizon MDP. The following Q-

values were obtained, which yielded the same policy as

obtained in the downside risk case: Q(1, 1, 1) = 19.784 8,

Q(1, 1, 2) = 21.751 6, Q(1, 2, 1) = 17.001 0, Q(1, 2, 2) =

20.686 1, Q(2, 2, 1) = 16.480 4, and Q(2, 2, 2) = 17.272 5.

The reason for using the value of 1 for θ in the semi-

variance case, in contrast to the value of 10 used in the

downside risk case, was that downside risk is a probability,

and as such, its value is upper bounded by 1; however, tar-

get semi-variance can acquire large values (because of the

squaring involved), and therefore a large value for θ can ex-

cessively amplify the importance of the risk. Another way

of explaining this would be to say that using an excessively

large value for the penalty factor, θ, can cause the problem

to ignore the average reward and only emphasize the risk,

which can lead to a solution whose risk is low, but whose

average reward is also low; this is unattractive from all as-

pects. Hence, the penalty factor must be tuned in order

to obtain a sensible policy in practice. Our experiments

suggested that for the problem we considered, using values

such as 10 for θ for the target semi-variance risk produced

unattractive policies; the appropriate values for target semi-

variance are in the range of (1, 3), whereas for the downside

risk case, θ must lie in between 7 and 12. Thus, our ex-

periments suggested that θ must be tuned to obtain useful

solutions.

5 Conclusions

The intersection of risk and MDPs has been studied for

many years now. There is a significant body of literature

on the exponential utility function and MDPs. Further,

papers written on the risks of revenues falling below pre-

specified targets in MDPs have mostly addressed the issue

of minimizing the so-called threshold probability or down-

side risk, which is at one extreme of the solution spectrum.

For instance in the maintenance problem, minimizing the

risk would lead to an impractical policy in which mainte-

nance would be recommended on the first day, thus not

allowing any production. In this paper, our goal was much

more pragmatic—to develop solution techniques that ad-

dressed the issue of reducing the downside risk and at the

same time obtaining a reasonably high value for the aver-

age reward. To this end, we used a downside-risk-adjusted

objective function and developed the underlying Bellman

equations for SMDPs/MDPs on the infinite horizon, as well

as MDPs on the finite horizon under some assumptions.

Thereafter, we developed dynamic programming algorithms

and reinforcement learning algorithms. We concluded with

a numerical analysis to demonstrate the usefulness of the

downside risk penalty. Our theoretical and numerical anal-

ysis provides encouraging results.

A number of directions for future work can be envisioned.

First, the numerical tests should be extended to problems

of a larger scale. Second, the problem can be analyzed after

the key assumptions made in this analysis, on the nature of

the underlying Markov chains for the infinite horizon and

the nature of policies and uniqueness of starting states for

the finite horizon, are relaxed.

Acknowledgement

The authors would like to acknowledge the two anony-

mous reviewers and the associate editor for finding critical

typos in the paper and making suggestions for improve-

ment.

Appendix

A1. Relative value iteration

We first present a relative value iteration algorithm for

MDPs in which any state in the system is first chosen as

the distinguished state.

244 International Journal of Automation and Computing 13(3), June 2016

Step 1. Select any arbitrary state from S to be a dis-

tinguished state i∗. Set k = 1, and select arbitrary values

for the vector �J 1. Specify a small, but positive termination

value for ε.

Step 2. Compute for each i ∈ S:

Jk+1(i) = max
a∈A(i)

[
∑

j∈S

p(i, a, j)[wτ (i, a, j) + Jk(j)]

]

.

When calculations are complete for every state above, set

φk = Jk+1(i∗).
Step 3. For each i ∈ S, calculate:

Jk+1(i)← Jk+1(i)− φk.

Step 4. If

|| �J k+1 − �J k||∞ < ε

go to Step 5. Otherwise, increment k by 1 and return to

Step 2.

Step 5. For each i ∈ S, choose

d(i) ∈ arg maxa∈A(i)

[
∑

j∈S

p(i, a, j)[wτ (i, a, j) + Jk(j)]

]

.

The ε-optimal policy is d; φk is the optimal objective

function′s estimate.

A2. Convergence of the RL algorithm for infinite

horizon MDPs

Theorem 4. Assume that the iterates αk and βk sat-

isfy the following condition: limk→∞ βk

αk = 0. Then, under

Assumptions 1-2 and if the step sizes, αk and βk satisfy

3, the sequence of iterates in the RL algorithm for infinite

horizon, {Qk(·, ·)}∞k=1, converges with probability 1 to the

unique solution of (9) and leads to an optimal solution of

the SMDP, as k→∞.

Proof. The proof follows directly from Theorem 7 in [23]

by noting that the function w(·, ·, ·) in [23] would have to

be replaced by the function w(·, ·, ·) defined here. �
A3. Convergence of the DP algorithm for finite

horizon MDPs

Theorem 5. Under Assumptions 4-6, the sequences of

iterates, {Jk(·)}∞k=1, generated by the finite horizon DP al-

gorithm converges to the unique solution of the Bellman

optimality equation, i.e., (12), as k→∞.

Proof. We only sketch the proof, because it follows di-

rectly from that of the convergence of the SSP. Essentially,

the finite horizon MDP can be treated as a special case

of the SSP under Assumptions 4−6. This can be done by

treating the state-stage pair as the state in the SSP. Propo-

sition 2.1 (b) of [2] shows the convergence of the value it-

eration algorithm for the SSP; when r(·, ·, ·) in that result

is replaced by w(·, ·, ·) defined in this paper, the result is

immediate. �
A4. Convergence of the RL Algorithm for finite

horizon MDPs

Theorem 6. Under Assumptions 3−6, the sequence of

iterates in the RL algorithm for finite horizon, {Qk(·, ·)}∞k=1

converges with probability 1 to the unique solution of (13).

Proof. Under Assumptions 3−6, the convergence is im-

mediate from Proposition 5.5 (a) in [2] after noting that the

finite horizon problem can be treated as a special case of

the SSP and replacing the function r(·, ·, ·) by w(·, ·, ·). �

References

[1] R. S. Sutton, A. G. Barto. Reinforcement Learning: An
Introduction, Cambridge, USA: The MIT Press, 1998.

[2] D. P. Bertsekas, J. N. Tsitsiklis. Neuro-dynamic Program-
ming, Athena Scientific: Belmont, USA, 1996.

[3] P. Balakrishna, R. Ganesan, L. Sherry. Accuracy of rein-
forcement learning algorithms for predicting aircraft taxi-
out times: A case-study of Tampa bay departures. Trans-
portation Research Part C: Emerging Technologies, vol. 18,
no. 6, pp. 950–962, 2010.

[4] Z. Sui, A. Gosavi, L. Lin. A reinforcement learning approach
for inventory replenishment in vendor-managed inventory
systems with consignment inventory. Engineering Manage-
ment Journal, vol. 22, no. 4, pp. 44–53, 2010.

[5] P. Abbeel, A. Coates, T. Hunter, A. Y. Ng. Autonomous
autorotation of an RC helicopter. Experimental Robotics,
O. Khatib, V. Kumar, G. J. Pappas, Eds., Berlin Heidel-
berg, Germany: Springer, pp. 385–394, 2009.

[6] R. A. Howard, J. E. Matheson. Risk-sensitive Markov deci-
sion processes. Management Science, vol. 18, no. 7, pp. 356–
369, 1972.

[7] M. Rabin. Risk aversion and expected-utility theory: A
calibration theorem. Econometrica, vol. 68, no. 5, pp. 1281–
1292, 2000.

[8] P. Whittle. Risk-sensitive Optimal Control, NY, USA: John
Wiley, 1990.

[9] J. A. Filar, L. C. M. Kallenberg, H. M. Lee. Variance-
penalized Markov decision processes. Mathematics of Op-
erations Research, vol. 14, no. 1, pp. 147–161, 1989.

[10] M. J. Sobel. The variance of discounted Markov decision
processes. Journal of Applied Probability, vol. 19, no. 4,
pp. 794–802, 1982.

[11] M. Sato, S. Kobayashi. Average-reward reinforcement
learning for variance penalized Markov decision problems.
In Proceedings of the 18th International Conference on Ma-
chine Learning, Morgan Kaufmann Publishers Inc., San
Francisco, USA, pp. 473–480, 2001.

[12] A. Gosavi. A risk-sensitive approach to total productive
maintenance. Automatica, vol. 42, no. 8, pp. 1321–1330,
2006.

[13] A. Gosavi. Variance-penalized Markov decision processes:
Dynamic programming and reinforcement learning tech-
niques. International Journal of General Systems, vol. 43,
no. 6, pp. 649–669, 2014.

[14] A. Gosavi. Reinforcement learning for model building and
variance-penalized control. In Proceedings of Winter Simu-
lation Conference, IEEE, Austin, USA, pp. 373–379, 2009.

A. Gosavi and A. Paralekar / Solving Markov Decision Processes with Downside Risk Adjustment 245

[15] O. Mihatsch, R. Neuneier. Risk-sensitive reinforcement
learning. Machine Learning, vol. 49, no. 2–3, pp. 267–290,
2002.

[16] P. Geibel. Reinforcement learning via bounded risk. In Pro-
ceedings of Internation Conference on Machine Learning,
Morgan Kaufman, pp. 373–379, 2009.

[17] M. Heger. Consideration of risk in reinforcement learning.
In Proceedings of the 11th International Machine Learning
Conference, Bellevue, USA, pp. 162–169, 2001.

[18] Y. Chen, J. H. Jin. Cost-variability-sensitive preventive
maintenance considering management risk. IIE Transac-
tions, vol. 35, no. 12, pp. 1091–1102, 2003.

[19] C. Barz, K. H. Waldmann. Risk-sensitive capacity control in
revenue management. Mathematical Methods of Operations
Research, vol. 65, no. 3, pp. 565–579, 2007.

[20] K. J. Chung, M. J. Sobel. Discounted MDPs: Distribu-
tion functions and exponential utility maximization. SIAM
Journal of Control and Optimization, vol. 25, no. 1, pp. 49–
62, 1987.

[21] M. Bouakiz, Y. Kebir. Target-level criterion in Markov de-
cision processes. Journal of Optimization Theory and Ap-
plications, vol. 86, no. 1, pp. 1–15, 1995.

[22] C. B. Wu, Y. L. Lin. Minimizing risk models in Markov
decision processes with policies depending on target val-
ues. Journal of Mathematical Analysis and Applications,
vol. 231, no. 1, pp. 47–67, 1999.

[23] A. Gosavi. Target-sensitive control of Markov and semi-
Markov processes. International Journal of Control, Au-
tomation and Systems, vol. 9, no. 5, pp. 941–951, 2011.

[24] A. A. Gosavi, S. K. Das, S. L. Murray. Beyond exponential
utility functions: A variance-adjusted approach for risk-
averse reinforcement learning. In Proceedings of the 2014
IEEE Symposium on Adaptive Dynamic Programming and
Reinforcement Learning (ADPRL), IEEE, Orlando, USA,
pp. 1–8, 2014.

[25] D. P. Bertsekas. Dynamic Programming and Optimal Con-
trol, USA: Athena, 1995.

[26] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming, New York, USA: John
Wiley & Sons, Inc., 1994.

[27] T. K. Das, A. Gosavi, S. Mahadevan, N. Marchalleck. Solv-
ing semi-Markov decision problems using average reward
reinforcement learning. Management Science, vol. 45, no. 4,
pp. 560–574, 1999.

[28] J. Baxter, P. L. Bartlett. Infinite-horizon policy-gradient es-
timation. Journal of Artificial Intelligence, vol. 15, pp. 319–
350, 2001.

[29] A. Parulekar. A Downside Risk Criterion for Preventive
Maintenance, Master dissertation, University at Buffalo,
The State University of New York, 2006.

[30] T. K. Das, S. Sarkar. Optimal preventive maintenance in
a production inventory system. IIE Transactions, vol. 31,
no. 6, pp. 537–551, 1999.

Abhijit Gosavi received the B.Eng. de-
gree in mechanical engineering from the Ja-
davpur University, India in 1992, and the
M.Eng. degree in mechanical engineering
from the Indian Institute of Technology,
Madras, India in 1995. He received the
Ph. D. degree in industrial engineering from
University of South Florida in 1999. Cur-
rently, he is an associate professor in De-

partment of Engineering Management and Systems Engineering
at Missouri University of Science and Technology. He has pub-
lished more than 60 refereed journal and conference papers. His
research interests include simulation-based optimization, Markov
decision processes, productive maintenance, and revenue man-
agement. He has received research funding awards from the Na-
tional Science Foundation of the United Stated of America and
numerous other agencies. He is a member of IIE, ASEM, and
INFORMS.

His research interests include simulation-based optimization,
Markov decision processes, productive maintenance, and revenue
management.

E-mail: gosavia@mst.edu (Corresponding author)
ORCID ID: 0000-0002-9703-4076

Anish Parulekar received the B.Eng.
degree in mechanical engineering from Uni-
versity of Mumbai, India in 2004, and the
M. Sc. degree in industrial engineering from
Department of Industrial and Systems En-
gineering at the University of Buffalo, State
University of New York, USA in 2006. He
currently serves as a deputy vice president
and the head of Marketing Analytics in

Axis Bank, Mumbai, India.
His research interests include risk, computing, and Markov

control.
E-mail: anish.parulekar@axisbank.com

