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Abstract: This work investigates a simple and practical bio-immune optimization approach to solve a kind of chance-constrained

programming problem without known noisy attributes, after probing into a lower bound estimate of sample size for any random variable.

Such approach mainly consists of sample allocation, evaluation, proliferation and mutation. The former two, depending on a lower

bound estimate acquired, not only decide the sample size of random variable and the importance level of each evolving B cell, but

also ensure that such B cell is evaluated with low computational cost; the third makes diverse B cells participate in evolution and

suppresses the influence of noise; the last, which associates with the information on population diversity and fitness inheritance, creates

diverse and high-affinity B cells. Under such approach, three similar immune algorithms are derived after selecting different mutation

rules. The experiments, by comparison against two valuable genetic algorithms, have illustrated that these immune algorithms are

competitive optimizers capable of effectively executing noisy compensation and searching for the desired optimal reliable solution.
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1 Introduction

Chance-constrained programming (CCP) or probabilis-

tic programming is a kind of uncertain optimization which

involves in constraints with noise. Despite of wide appli-

cations, it is studied scarcely because of being a challeng-

ing task. The main difficulty is that the noise environ-

ment influences seriously the optimized quality, execution

efficiency and individual′s evaluation; hence, it is almost im-

possible to obtain the theoretical optimum of a given CCP

problem. This makes the existing intelligent approaches

become extremely difficult in solving a large number of

practical optimization problems with noise. In the liter-

ature, some evolutionary computation-based achievements

solving expected value optimization problems without any

constraint restriction have been reported[1, 2]. Such work

concentrates mainly on either analyzing performance char-

acteristics of some existing evolutionary algorithms or ex-

tending them through designing special sampling schemes.

However, these achievements become difficult when dealing

with CCP problems, due to chance constraints or prob-

abilistic inequalities. So, novel intelligent techniques are

desired for such kind of problem.

In the early theoretical research on CCP, many

researchers investigated how to handle CCP′s con-

straints under certain assumptions, e.g., convexity[3],

linear approximation[4], transformation or stochastic
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simulation[5−7]. However, their methods might be difficult

in solving practical CCP problems because of sophisticated

transformation or computational complexity. Sahinidis[8]

reviewed in detail the classical theory and methods devel-

oped to cope with uncertain programming problems, and

also discussed multiple kinds of CCP approaches. After-

wards, several advanced methodologies, e.g., double-loop,

single-loop and decoupled methods[9, 10], were suggested to

solve general chance constraints. Deb et al.[10] proposed

a hybrid optimization technique by integrating their mul-

tiobjective algorithm NSGA-II with the above methods.

In their approach, an additional objective function is uti-

lized to handle all the chance constraints, and hence the

problem solving is reformulated as a bi-objective problem.

Their method is desirable when only the optimized qual-

ity is considered. Up to now, some computational tech-

niques for CCP problems have been reported[11−14]. For

instance, Cao et al.[14] suggested two kinds of CCP mod-

els to evaluate the extra cost of uncertainty for the refinery

short-term crude oil scheduling problem under uncertain de-

mands of distillation units. The two models are converted

respectively into the analytically equivalent ones, while the

branch and bound method is used to solve them. All these

techniques mentioned are restricted mainly to normally dis-

tributed random variables[10], while requiring that the CCP

models be transformed into analytically deterministic pro-

gramming ones[15, 16]. However, if so, they are extremely

difficult when noise information is unknown[17]. Poojari

and Varghese[18] developed a modified steady state genetic

algorithm (SSGA) for general CCP, and proposed two kinds

of genetic algorithms (i.e., SSGA-A and SSGA-B), by in-

troducing two optimality scoring functions and specifying
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a fixed sample size for each random variable. Our experi-

ments have showed that the algorithms are useful when the

noise is weak. Unfortunately, their fitness schemes deem

easily those inferior individuals as better ones.

Since a number of authors demonstrated that bio-

inspired immune algorithms were superior to several clas-

sical intelligent approaches for multimodal optimization

problems[19−23], immune optimization has become increas-

ingly popular. Several authors investigated how to utilize

the existing immune algorithms to handle uncertain opti-

mization problems[24−27] . Especially, de França et al.[27]

proposed a modified artificial immune network by extend-

ing their original immune network opt-aiNet suitable for

static optimization problems. Their principal work concen-

trates on some additional procedures to improve the overall

performance of such immune network. To our knowledge, in

addition to our work, immune algorithms for CCP problems

have been rarely reported in the field of artificial immune

systems.

In our previous work[28], an immune algorithm in noisy

environments, coping with expected value optimization

problems without constraints, was proposed based on the

hypothesis test and simplified immune metaphors of the

humoral immunity. The algorithm can suppress noises and

rapidly discover the optimal solution of a given optimization

problem, in terms of a dynamic suppression radius and a

time-varying suppression probability. Further, after inves-

tigating an a priori estimate of sample size of the sample

approximation problem related to CCP, we in this paper

put forward a practical chance-constrained programming

immune approach (CCPIA) to solve CCP problems without

any known noise information, depending on the clonal selec-

tion theory in biological immunology. Under the approach,

three similar immune algorithms are developed through se-

lecting different mutation rules. The main purpose doing so

is to examine CCPIA′s characteristics sufficiently. Subse-

quently, they are compared to SSGA-A and SSGA-B men-

tioned above, relying upon two theoretical test problems

and three engineering problems. Experimental results have

displayed their potential value.

2 Problem formulation

Consider the following CCP problem of the form (Pα):

min{E[f(xxx, ξ)], xxx ∈ Xα}

where

Xα = {xxx ∈ D : Pr{Gi(xxx, ξ) ≤ 0} ≥ 1 − αi, 1 ≤ i ≤ I,

gj(xxx) ≤ 0, hk(xxx) = 0, 1 ≤ j ≤ J, 1 ≤ k ≤ K}.

In such model, D ⊂ Rp represents a bounded and closed

domain; ξ is an unknown distributed random vector with

support Ξ ⊂ Rd; f(xxx, ξ) stands for the stochastic objective

function, and Gi(xxx, ξ) is the i-th stochastic constraint; αi is

the i-th significance level; gj(xxx) and hk(xxx) are the determin-

istic constraints. Set α = (α1, α2, · · · , αI). E[·] and Pr{·}

are the mathematical expectation and probability opera-

tors, respectively.

In order to deal with the above constraints, let Γ(xxx) rep-

resent the total of constraint violations for a given xxx ∈ D,

i.e., the sum of violations for all the constraints. It sat-

isfies that Γ(xxx) = 0 if and only if xxx ∈ Xα; for xxx,yyy ∈ D,

if Γ(xxx) < Γ(yyy), xxx is said to be better than yyy. xxx ∈ Xα is

called a reliable solution, and an unreliable solution oth-

erwise. xxx∗ ∈ Xα is called an optimal reliable solution

only if E[f(xxx∗, ξ)] ≤ E[f(xxx, ξ)] for ∀xxx ∈ Xα. Usually,

Pα is processed by solving a sample average approxima-

tion problem, due to the difficulty of calculating E[f(xxx, ξ)]

and Pr{Gi(xxx, ξ) ≤ 0} for a given xxx ∈ D. Recently, there

have been many sample approximation methods for chance

constraints[29, 30]. Luedtke and Ahmed[29] acquired a lower

bound estimate to the true optimal value for a CCP prob-

lem with only a joint probabilistic constraint, relying upon

a sample approximation problem with a larger confidence

level than the required confidence level. Their theoreti-

cal result is helpful in probing into a lower bound esti-

mate of sample size for a Monte Carlo sample approxi-

mation problem of Pα. We now consider independent ob-

servations of the random vector ξ, i.e., ̂ξ1, ̂ξ2, · · · , ̂ξM and

ξ1,i, ξ2,i, · · · , ξM,i, 1 ≤ i ≤ I , where M is the sample size.

The sample average approximation problem is usually de-

fined as follows (P β
M ):

min{FM (xxx) =
1

M

M
∑

l=1

f(xxx, ̂ξl), xxx ∈ Xβ
M}

where β = (β1, β2, · · · , βI), 0 < βi < 1, 1 ≤ i ≤ I , and

Xβ
M = {xxx ∈ D :

1

M

M
∑

l=1

Π(Gi(xxx, ξl,i) ≤ 0) ≥ 1 − βi,

1 ≤ i ≤ I, gj(xxx) ≤ 0, hk(xxx) = 0, 1 ≤ j ≤ J, 1 ≤ k ≤ K}.
In the above approximation model, Π(·) is the indica-

tor function which takes value 1 when · is true and 0

otherwise[29] ; we say β > α if βi > αi with 1 ≤ i ≤ I .

To solve Pα by means of P β
M , we need to know the follow-

ing estimate for which the proof can be found in Appendix.

Theorem 1. Let xxx∗
α and x̂xxβ

M be the optima of Pα and

P β
M with the minima θ∗

α and ̂θβ
M , respectively. If β > α,

and a ≤ f(xxx, ξ) ≤ b for (xxx, ξ) ∈ D × Ξ, then the following

estimate holds for η > 0,

Pr{θ∗
α ≥ ̂θβ

M − η} ≥ 1 − (c + 2)e{−2κ2M} (1)

where c > I and κ = min

{

η

b − a
, min
1≤i≤I

βi − αi

2
√

αi

}

.

Remark 1. Usually, it is difficult to decide a and b

in practice. In order to overcome this point, let η de-

pend on b − a, e.g., η = b − a. This way, k is decided

by min{βi−αi
2
√

αi
, 1 ≤ i ≤ I}, provided that the parameters,

βi − αi, 1 ≤ i ≤ I , take small values.

Remark 2. A lower bound of M can be acquired with

significance level δ, 0 < δ < 1, namely if

M ≥ Mδ ≡ 	 1

2k2
log

c + 2

δ

 (2)
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we have

Pr{θ∗
α ≥ ̂θβ

M − η} ≥ 1 − (c + 2)e
−log

c + 2

δ = 1 − δ
(3)

where Mδ is dependent on αi, βi, c and δ, providing us a

lower bound estimate of sample size of random vector ξ

at a given candidate for CCPIA. Also, we can control Mδ

between 100 and 250, provided that the settings of the pa-

rameters are rational; for example, when α = 0.05, β =

0.1, δ = 0.1 and c = 1.01, we acquire Mδ = 136. More

details can be found in Table 1 given in Section 5. Addi-

tionally, we say that a given candidate xxx in D with sample

size M is empirically reliable if xxx ∈ Xβ
M and unreliable oth-

erwise.

3 Clonal selection theory

When an organism is exposed to an antigen, a second

signal from Th cells stimulates antigenic receptors of B cells

to bind to such antigen. This stimulation causes that such

B cells proliferate and differentiate into two different cell

types (i.e., plasma and memory cells). If such plasma cells

are active, they will secrete some antibodies to neutralize

the triggering antigen. In addition, the memory cells will

become long-lived ones. Once the specific antigen is found

once again in the immune system, these memory cells will

commence rapidly differentiating into plasma cells capable

of producing high-affinity antibodies. Such theory involves

in some important properties[31]:

1) Cell selection. Those B cells with high affinities to the

invading antigen are chosen to change their pattern struc-

tures so that better B cells can be created.

2) Clonal expansion. Those stimulated B cells proliferate

and differentiate into two different cell types. The plasma

cells produce some clones with their clonal sizes propor-

tional to their affinities. The memory ones will live in the

immune system for a long time.

3) Hypermutation. During the clonal expansion, random

changes are introduced in the variable region. Occasionally,

one such change leads to an increase in the affinity of the

lymphocytes. This process creates a variety of new B cells,

where the mutation probability of a B-cell is inversely pro-

portional to its affinity to the antigen. After so, some worse

clonal cells will encounter suppression.

The clonal selection theory formulates an evolutionary

process, which may be simulated to design CCPIA for CCP

problems. Theoretically, after an antigen enters the im-

mune system, high-affinity B cells are selected to reproduce

some clones, while these clones have opportunities to change

their genes according to their mutation probabilities. Then,

all mutated clones and their parents maintain the relation

of suppression and stimulation through immune regulation.

Additionally, some new cells from the bone marrow are cre-

ated to strike a dynamical balance.

4 Immune optimization approach

4.1 Algorithm formulation

For simplicity, we only cite some main immune properties

in the clonal selection principle mentioned above. Corre-

sponding to the approximation model P β
M as in Section 2, a

real-encoded B-cell is viewed as a candidate solution, while

the antigen is regarded as the problem itself. Our goal is to

acquire the optimal reliable solution of Pα by solving P β
M

with gradually increasing M . In the following algorithm de-

sign, we require that the sample size of random vector ξ be

decided by the importance of B-cell in a given population,

namely different B cells are attached different sample sizes.

Thereby, the sample size M in P β
M for CCPIA is replaced by

m(xxx) defined below with m(xxx) ≤ Mδ, due to computational

complexity. The following pseudo-procedure formulates our

immune optimization approach:

CCPIA pseudo-procedure
1) Input: N-population size, Mδ-lower bound, m-initial sam-

ple size, Mc-clonal sample size and T -maximal iteration
2) Set n = 1
3) Initialization, A = Population(N, m)
4) While n ≤ T do
5) Execute sample allocation: Allocation(A, Mδ, n)
6) Perform evaluation: Evaluation(A)
7) Enforce reproduction, B = Proliferation(A)
8) Implement mutation, C = Mutation(B, Mc)
9) Carry out population update, A = Update(A ∪ C, N)
10) n = n + 1
11) End while

12) Output: The best B-cell.

The above pseudo-procedure presents an optimization

mechanism for P β
M . Step 3 generates an initial population

with size N , which requires to calculate the empirical ob-

jective value and the sum of empirical constraint violations

for each cell; steps 5 to 10 are a run period, which ulti-

mately creates the desired solution of Pα. The modules are

designed below.

Theoretically, if the sample size of ξ is large enough, we

can obtain the approximate solution of Pα by solving P β
M

with a higher confidence vector than the required confi-

dence vector α, but the computational cost is expensive.

Thus, when executing the above CCPIA, we ask that the

sample size of ξ at each B-cell increases gradually. Pre-

cisely, such cell is with a dynamically increasing sample

size, which helps CCPIA reduce the total of evaluations

within a single run. To this end, let Mn, given in this work

by 	mN
√

n + 1
, represent the sum of sample sizes for B

cells in the current population at the moment n. There-

after, Mn is allocated to B cells in the population. So,

when gradually increasing the sample sizes of evolving B

cells, CCPIA searches for the approximate optimum of Pα.

Further, Theorem 1 gives us a lower bound (Mδ) utilized to

limit the increasing sample size at each B cell. This helps

us design a sample allocation scheme below.

In Allocation(A, Mδ , n), all B cells in A are first divided

into two subpopulations of empirically reliable solution pop-
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ulation X1 and empirically unreliable solution population

X2; second, let N1 denote the size of X1. So, the sample

size of ξ for a B cell xxx in A is defined by

m(xxx) =

⎧

⎨

⎩

min{Mδ ,
Mn
N1

}, xxx ∈ X1

min{Mδ ,
Mn
N

}, xxx ∈ X2.
(4)

Here, the main motivation doing so is to guarantee that

any empirically reliable solution can get a larger sample

size than any empirically unreliable one. Also, considering

computational cost, the cells in X1 or X2 are required to

attach the same sample size.

Evaluation(A) decides the importance of each cell in

A. In other words, based on the above sample allocation

scheme, we calculate and normalize the empirical average

objective values and constraint violations for B cells in A,

and correspondingly obtain μ̂(xxx) and ̂Γ(xxx) with xxx ∈ A,

where μ̂(xxx) ∈ [−1, 1] and ̂Γ(xxx) ∈ (0, 1]. This way, the im-

portance of a B-cell xxx in A can be measured through its

affinity Aff(xxx) given by

Aff(xxx) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

N − l(xxx)

N
(2 − μ̂(xxx)), xxx ∈ X1

N − N1 − m(xxx)

N
(1 − ̂Γ(xxx)), xxx ∈ X2

(5)

where l(xxx) and m(yyy) represent the importance levels of xxx

in X1 and yyy in X2, respectively; for example, after increas-

ingly ranking all elements in X1 according to their empiri-

cal objective values, e.g., xxx1,xxx2, · · · , we get that l(xxx2) = 2.

Equation (5) illustrates that Aff(xxx) > Aff(yyy) if xxx ∈ X1

and yyy ∈ X2, because of l(xxx) < N1 +m(yyy) and 2− μ̂(xxx) ≥ 1.

Proliferation(A) keeps diverse cells in A and decides their

clonal sizes attached. Precisely, we first rank decreasingly

all cells in A in terms of their affinities decided by (5), e.g.,

xxx1,xxx2, · · · ,xxxN . Second, introduce a niche-like suppression

radius δ(xxx) to eliminate redundant cells in A,

δ(xxx) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Aff(xxx)ν

σA + Aff(xxx)ν
, f(xxx, ξ) ≡ f(xxx)

(σA)ν

(σA)ν + σ̂(xxx)
, otherwise

(6)

with ν ≥ 1, where σA denotes the variance of empirical av-

erage objective values for all B cells in A; σ̂(xxx) represents

the variance of observations for xxx with sample size m(xxx).

Equation (6) indicates an important fact in the case where

f(xxx, ξ) depends on ξ, namely if σA is larger, there are many

B cells in A to be eliminated. So, we divide A into l dis-

connected subclasses, O(xxxmi), 0 ≤ i < l, where m0 = 1,

and O(xxxmi) consists of elements in A whose affinities are

between aff(xxxmi)−δ(xxxmi) and aff(xxxmi). Further, xxxmi as

a surviving cell reproduces a clonal subpopulation Cl(xxxmi)

whose size equals that of O(xxxmi). Thereafter, those surviv-

ing cells in A are kept with their clonal sizes. Such module

can guarantee that diverse B cells are admitted to survive

and that those B cells with higher affinities can propagate

many more clones.

Mutation(B, Mc) creates N clones mutated. Each clone

xxx in B mutates its genes through a special mutation rule,

e.g., Gaussian or nonuniform mutation, in which its muta-

tion probability is defined by

pm(xxx) =
(σB)ν

(σB)ν + aff(xxx)
. (7)

Further, after being assigned the same small sample size

Mc, all mutated clones are required to calculate their em-

pirical average objective values and constraint violations.

In particular, if f(xxx, ξ) depends on ξ, we update the empir-

ical values of the mutated clones by inheriting those of their

parents. Namely, for a given mutated clone xxx′ with its par-

ent xxx, if μ̂(xxx′) is between μ̂(xxx)− σ̂(xxx) and μ̂(xxx)+ σ̂(xxx), then

μ̂(xxx′) and ̂Γ(xxx′) are updated by μ̂(xxx)+μ̂(xxx′)
2

and
̂Γ(xxx)+̂Γ(xxx′)

2

respectively. This is because we demand that Mc be small

as possible, which is helpful in reducing the computational

cost of such scheme and also in suppressing the noise influ-

ence on the optimized quality.

Update(A ∪ C, N) is composed of those mutated clones

in C and some parents in A without any empirical con-

straint violation. If the number of these cells is beyond N ,

the better elements are stored; otherwise, pick up some re-

maining better parents so that a new population with size

N is formed.

4.2 Computational complexity

In a run period, CCPIA only needs to calculate the em-

pirical values of B cells appearing in Steps 6 and 8. So,

we can estimate its computational cost in the worst case

given by the following conclusion. The proof is given in the

Appendix.

Theorem 2. If Mc < Mδ, the computational complexity

of CCPIA in the worst case is O(MδN).

As associated to the proof of the above theorem, CCPIA

needs at most m̂c times to compute within a run period with

m̂c ≤ N((Mδ + Mc + 1)I + 2(J + K)), where I, J and K

are the numbers of constraints mentioned in Section 2. We

know that either SSGA-A or SSGA-B mentioned in Section

1, which is selected to participate in comparison against

CCPIA, needs to calculate ms times within an iterative pe-

riod with ms = N(MI+J +K), where M denotes the same

sample size attached with each individual. In the corre-

sponding literature, the authors took M as 300, due to the

optimized quality. We can assert that the computational

cost of CCPIA is lower than that of each of the two ap-

proaches, as Mδ +Mc is required to be not beyond 260. For

example, if taking N = 80, Mc = 10, I = J = K = 1, α =

0.025, β = 0.075, δ = 0.01, c = 1.5 and M = 300, (2) de-

rives Mδ = 117, and hence m̂c ≤ 10 560, but ms = 24 160.

5 Numerical experiments

Our experiments are executed on a personal computer

with CPU/3.30 GHz and RAM/2.98 MB. Based on CCPIA,

three similar immune algorithms, CCPIA-A, CCPIA-G

and CCPIA-U, are derived through designating the mu-
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tation rule in the mutation scheme in order as polyno-

mial mutation[32], classical Gaussian mutation and nonuni-

form mutation. These three algorithms are used to exam-

ine CCPIA′s characteristics including its convergence, solu-

tion quality and efficiency. As we mention in introduction,

SSGA-A and SSGA-B[18] are two competitive approaches

for general single-objective CCP problems. They are cho-

sen to participate in comparison, depending on the follow-

ing five representative CCP examples. All these five algo-

rithms are required to execute respectively 100 single runs

on the approximation model of each test example. Let their

population sizes N be 40, and the maximal iteration num-

ber 200. Especially, other parameter values of SSGA-A

and SSGA-B are taken from the reported literature[18], i.e.,

pcross = 0.7, pmut = 0.1, prept = 0.5, λmin = 0.01, λmax =

0.99, and sample size 300 for each individual. After ex-

perimental trials for CCPIA, we take m = 20, Mc = 10 and

ν = 1.2, while the settings of parameters, presented in (2) in

Section 2 are given in Table 1 below. Also, the reason why

we select the following examples with Gaussian distribution

is because some theoretical maxima or minima are known,

which helps us analyze the statistical results. Especially, it

is pointed out that, whereas Examples 1 and 2 below are

two stochastic linear programming problems, their equiva-

lent models are nonlinear. Also, in order to examine the

characteristics of the above approaches, our work is to di-

rectly solve their sample approximation problems, instead

of their analytically equivalent models.

Example 1. Feed mixer problem[18]

Let x1, x2, x3 and x4 represent the proportion of barley,

oats, sesame flakes and groundnut meal in the mix, respec-

tively; ξ = (ξ1, ξ2, ξ3, ξ4) is a random vector with its ele-

ments denoted respectively by the amount of protein for

such four materials. The feed mixer model is described as

a stochastic programming model Pα

Max 24.55x1 + 26.75x2 + 39.00x3 + 40.50x4

s.t.,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2.3x1 − 5.6x2 − 11.1x3 − 1.3x4 ≥ 5

Pr{x1ξ1 + x2ξ2 + x3ξ3 + x4ξ4 ≥ 21} ≥ 1 − α

x1 + x2 + x3 + x4 = 1, x1, x2, x3, x4 ≥ 0

ξ1 ∼ N(12, 0.53), ξ2 ∼ N(11.9, 0.44)

xi3 ∼ N(41.8, 4.5), ξ4 ∼ N(52.1, 0.79).

In this experiment, we take α = 0.05 and 0.2, and ob-

tain the same theoretical maximum 39.933 7. After each

algorithm executes 100 times directly on the approxima-

tion model with β = 0.1 or 0.3, those solutions found are

required to be evaluated 105 times so as to acquire their

theoretical constraint violations. The statistical results are

listed in Table 2, while Fig. 1 below displays the average

search curves.

Table 2 presents that SSGA-A cannot find any empiri-

cally reliable solution when β = 0.1 or 0.3, due to SR = 0.

SSGA-B is of better performance than SSGA-A, because

of the values on CR, SR and RER below. On the other

hand, we also note that other three approaches, CCPIA-A,

CCPIA-G and CCPIA-U, can all acquire empirically reli-

able solutions in each execution, owing to their values on

CR and SR. The values on Std.Dev and CI below il-

lustrate that all the algorithms can all gain stable search-

ing effects, as their confidence intervals found are narrow;

thus, these algorithms should be locally or globally conver-

gent (see Fig. 1). Further, through the values on Mean and

RER below, we know that the immune approaches can all

obtain their approximate optimal solutions in the case of

α =0.05 or 0.2, as the error rates on RER, caused by them

are at most 1.5%, namely their average values found are

close to the theoretical maximum. Relatively, CCPIA-A

achieves the best search performance. These indicate that

different mutation rules make CCPIA acquire different op-

timized qualities, while the sample allocation scheme helps

CCPIA accelerate to seek the desired reliable solution and

suppress the noise influence as well. We also notice that

the five approaches can all obtain respectively similar re-

sults in the cases of β = 0.1 and 0.3, which is because those

reliable solutions might belong to the same region when α

takes 0.05 and 0.2. Further, through the values on AT , we

see that each of the five algorithms presents the same ef-

ficiency when β takes 0.1 and 0.3. We also observe that

SSGA-A has the highest performance efficiency, but it can

only find unreliable solutions with large constraint viola-

tions. In addition, CCPIA-A has a higher efficiency than

each of SSGA-B, CCPIA-G and CCPIA-U; CCPIA-G and

CCPIA-U are secondary. Fig. 1 hints that SSGA-A gets

early into local search; CCPIA-U can converge rapidly, but

CCPIA-G is convergent slowly. Additionally, it seems to be

true that SSGA-A can achieve the best effect through such

figure, because of its mean value (Mean) under β = 0.1 or

0.3. In fact, it can only acquire the worst effect, as it cause

large constraint violations. This phenomenon will also ap-

pear in the following experiments.

Example 2. Kilosa farmer problem[18]

Poojari and Varghese[18] introduced the yield problem of

crops for a family in Kilosa. Such problem was solved

Table 1 Settings of parameters as in (2) for different examples

Example
Case 1 Case 2

α β δ c Mδ α β δ c Mδ

1 0.05 0.1 0.1 1.01 136 0.2 0.3 0.1 1.01 136

2 0.6 0.7 0.9 2.01 179 0.8 0.9 0.85 2.001 248

3 0.05 0.1 0.1 2.01 147 0.2 0.27 0.5 2.01 167

4 0.1 0.17 0.1 9.01 191 0.2 0.27 0.8 9.01 214

5 0.9 0.97 0.9 0.01 295 0.8 0.87 0.9 0.01 262
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Table 2 Comparison of statistical values found for Example 1 with 100 runs per algorithm

Opt. β Mean Std.Dev CI SR (%) CR RER (%) AT

SSGA-A 40.496 0.002 [40.496, 40.497] 0 3.70 2.9 0.28

SSGA-B 39.927 0.010 [39.925, 39.928] 98 10−7 1.5 1.67

CCPIA-A 39.9337 0.10 39.933 4 10−4 [39.933 4,39.933 5] 100 0 1.5 0.66

CCPIA-G 39.882 0.030 [39.877, 39.887] 100 0 1.4 0.77

CCPIA-U 39.932 8 0.001 [39.932 7, 39.932 9] 100 0 1.5 0.74

SSGA-A 40.497 0.002 [40.496, 40.497] 0 3.70 2.9 0.28

SSGA-B 39.926 0.011 [39.925, 39.927] 96 10−7 1.5 1.68

CCPIA-A 39.9337 0.30 39.933 4 10−4 [39.933 4, 39.933 5] 100 0 1.5 0.66

CCPIA-G 39.879 0.041 [39.875, 39.883] 100 0 1.4 0.77

CCPIA-U 39.932 9 0.001 [39.932 8, 39.932 9] 100 0 1.5 0.74

CI: Confidence interval, SR: Rate of empirically reliable solutions found among all solutions acquired, CR: Mean of constraint violations of

solutions found, RER: Relative error rate between the theoretical maximum (or minimum) and the empirical mean (Mean), AT : Average time

(second).

Fig. 1 Comparison of average search curves with 100 runs for Example 1. fn is the average of the 100 best objective values at the

n-th iteration with 100 executions.

through developing a stochastic programming model.

Namely, let x1 and x2 be the respective acreage of maize

and sorghum per hectare; ε1 and ε2 are their random yields

per hectare with normal distributions; ξ is the total random

rainfall during the growing season. The model is formulated

below:

Min x1 + x2

s.t.,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Pr{2.8ξ1x1 + 2.8ξ2x2 ≥ 44} ≥ 1 − α

Pr{6.4ξ1x1 + 8.0ξ2x2 ≥ 89} ≥ 1 − α

0 ≤ xi ≤ 20, i = 1, 2, ξ1 = 0.02ζ − 1.65 + ε1

ξ2 = 0.008ζ + 5.92 + ε2

ζ ∼ N(515.5,
√

18 769), ε1, ε2 ∼ N(0, 10).

This problem is more difficult than Example 1 because

of strong noises with large variances. The main purpose

choosing it in this work is to examine whether the above

approaches can effectively suppress the noise influence on

the optimized quality. In this experiment, we take α = 0.6

and 0.8, and hence obtain the theoretical minima 1.383 8

and 0.904 7 for the equivalent analytical model, respectively.

Further, similarly dealing with Example 1, we acquire Ta-

ble 3 below by directly solving P β
M . The average search

curves are given in Fig. 2. Table 3 reveals some character-

istics of the above approaches. In the case of β = 0.7, the

values on CR and SR hint that SSGA-A and SSGA-B fail

to solve such P β
M , as they can only find some empirically un-

reliable solutions with somewhat large constraint violations

and relative error rates. The main reason is because their

individual evaluation schemes deem easily inferior solutions

as better ones during a single run. However, the immune

approaches can all find many empirically reliable solutions

for multiple single runs; in particular, despite the somewhat

large values on Mean and Std.Dev in Table 3, CCPIA-A

can obtain the best effect because of the values on SR and

RER. Its empirical mean found is close to the theoretical

minimum (1.383 8 or 0.904 7), while such theoretical value

is next to its confidence interval, e.g., [0.999 8, 1.015 2].

The statistical values, obtained by the three immune

approaches illustrate further that different mutation rules

make CCPIA present different performance characteristics.

In the case of β = 0.9, the similar characteristics of the

immune approaches can be known from Table 3; CCPIA-A

and CCPIA-U can almost find empirically reliable solutions

during each run, while their average values are close to the

theoretical minimum by comparison against the results in

the case of β = 0.7. Besides, Fig. 2 shows that SSGA-A and

SSGA-B get into local search but the immune approaches
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are convergent. Additionally, Table 3 also presents that

SSGA-B spends the most runtime to execute a single run;

CCPIA-A is secondary. Relatively, SSGA-A needs the least

time to complete the process of optimization, but its per-

formance effect is worst.

Example 3. Non-convex problem[18]

Min − 9x2
1 + 10x1x2 − 50x1 + 8x2 + 460

s.t.,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Pr{x1 − 0.277x2
2 + 0.235x2 ≤ 3.718 + ξ1} ≥ 1 − α

Pr{x1 + 0.019x3
2 − 0.446x2

2 + 3.98x2 ≤
15.854 + ξ2} ≥ 1 − α

0 ≤ xi ≤ 4, i = 1, 2, η ∼ N(0, 1), ξ1 ∼ N(0, 0.01)

ξ2 ∼ N(−5, 0.02).

This is an extended version of the theoretical non-convex

analytical optimization problem. When α takes 0.05 and

0.20, we acquire the theoretical minima of 151.604 and

150.673, respectively. Similar to the above experiments, the

statistical results are listed in Table 4. The average search

curves are drawn in Fig. 3. Through Table 4, the values

on SR, CR and RER hint that when β = 0.1, CCPIA-P

and CCPIA-U can all find some empirically reliable solu-

tions with small relative error rates (RER) for many runs.

Moreover, their average values can all approach the theoret-

ical minimum. Relatively, CCPIA-U is best (see Fig. 3). Al-

though CCPIA-G can also acquire the desired value close to

the theoretical minimum, it can hardly find empirically reli-

able solutions in each run. Obviously, SSGA-A and SSGA-

B cannot gain their desired effects. In the case of β = 0.27,

the similar conclusion can be found, in which the major dif-

ference is that SSGA-B can obtain some empirically reliable

Table 3 Comparison of statistical values found for Example 2 with 100 runs per algorithm

Opt. β Mean Std.Dev CI SR (%) CR RER (%) AT

SSGA-A 0.000 17 10−4 [0.000 16, 0.000 17] 0 0.6 99.9 0.16

SSGA-B 0.009 0.08 [0.005 4, 0.011 8] 0 0.59 99 3.49

CCPIA-A 1.383 8 0.7 1.008 0.20 [0.999 8, 1.015 2] 24 0.088 27.2 1.87

CCPIA-G 0.8497 0.16 [0.8436 7, 0.855 7] 13 0.14 38.6 1.72

CCPIA-U 0.9532 0.21 [0.945 3, 0.961 0] 45 0.092 31.1 1.52

SSGA-A 0.0002 10−4 [0.000 2, 0.000 22] 0 0.2 16 1

SSGA-B 0.0002 10−4 [0.000 2, 0.000 21] 0 0.2 99.9 3.49

CCPIA-A 0.909 4 0.9 0.7728 0.060 [0.772 1, 0.773 5] 91 10−4 15 2.14

CCPIA-G 0.7131 0.028 [0.712 7, 0.713 4] 59 0.004 21.6 1.98

CCPIA-U 0.7409 0.047 [0.740 4, 0.741 5] 87 0.0038 18.5 1.78

Fig. 2 Comparison of average search curves with 100 runs for Example 2

Table 4 Comparison of statistical values found for Example 3

Opt. β Mean Std.Dev CI SR (%) CR RER (%) AT

SSGA-A 116.013 0.011 [116.011, 116.015] 0 0.9 23.5 0.07

SSGA-B 116.375 3.615 [115.781, 116.969] 1 0.891 23.2 1.37

CCPIA-A 151.604 0.1 153.763 11.363 [151.898, 155.629] 10 0.304 1.4 0.64

CCPIA-G 149.795 0.541 [149.706, 149.884] 2 0.500 1.2 0.57

CCPIA-U 151.394 0.484 [151.315, 151.474] 83 0.024 0.1 0.59

SSGA-A 116.012 0.008 [116.011, 116.013] 0 0.73 23 0.07

SSGA-B 117.052 5.942 [116.402, 117.703] 3 0.708 22.3 1.38

CCPIA-A 150.673 0.27 150.555 5.541 [149.948, 151.161] 19 0.233 0.1 0.69

CCPIA-G 149.665 0.465 [149.614, 149.716] 2 0.331 0.7 0.59

CCPIA-U 150.661 0.310 [150.627, 150.695] 89 0.018 0.01 0.62
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Fig. 3 Comparison of average search curves with 100 runs for Example 3

solutions during some runs. Further, the statistical values

on AT show that SSGA-A has the highest efficiency but the

worst effect; SSGA-B has the lowest efficiency; CCPIA-U

has a lower efficiency and the best effect.

Example 4. Car side-impact problem[10]

The car side-impact problem is described by a stochas-

tic programming model. It includes 7 decision variables,

i.e., (x1, x2, · · · , x7), 4 random variables (ξ1, · · · , ξ4) and 9

stochastic constraints. The mathematical model is given as

follows:

Min 1.98 + 4.9x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5 + 10−5x6 + 2.73x7,

s.t.
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1.16 − 0.371 7x2x4 − 0.009 31x2ξ3 − 0.484x3ξ2 + 0.01343x6ξ3 ≤ 1

0.261 − 0.015 9x1x2 − 0.188x1ξ1 − 0.019x2x7 + 0.014 4x3x5 + 0.875 7x5ξ3+

0.080 45x6ξ2 + 0.001 39ξ1ξ4 + 0.000 015 75ξ3ξ4 ≤ 0.32

0.214 + 0.008 17x5 − 0.131x1ξ1 − 0.070 4x1ξ2 + 0.030 99x2x6 − 0.018x2x7+

0.020 8x2ξ1 + 0.121x3ξ2 − 0.003 64x5x6 + 0.000 771 5x5ξ3 − 0.000 535 4x6ξ3+

0.001 21ξ1ξ4 + 0.001 84ξ2ξ3 − 0.018x2
2 ≤ 0.32

0.74 − 0.61x2 − 0.163x3ξ1 + 0.001 232x3ξ3 − 0.166x7ξ2 + 0.227x2
2 ≤ 0.32

28.98 + 3.818x3 − 4.2x1x2 + 0.020 7x5ξ3 + 6.63x6ξ2 − 7.77x7ξ1 + 0.32ξ2ξ3 ≤ 32

33.86 + 2.95x3 + 0.179 2ξ3 − 5.057x1x2 − 11x2ξ1 − 0.021 5x5ξ3 − 9.98x7ξ1+

22ξ1ξ2 ≤ 32, 46.36 − 9.9x2 − 12.9x1ξ1 + 0.110 7x3ξ3 ≤ 32,

4.72 − 0.5x4 − 0.19x2x3 − 0.012 2x4ξ3 + 0.009 325x6ξ3 + 0.000 191ξ2
4 ≤ 4

10.58 − 0.674x1x2 − 1.95x2ξ1 + 0.020 54x3ξ3 − 0.019 8x4ξ3 + 0.028x6ξ3 ≤ 9.9

16.45 − 0.489x3x7 − 0.843x5x6 + 0.043 2ξ2ξ3 − 0.055 6ξ2ξ4 − 0.000 786ξ2
4 ≤ 15.7

η ∼ N(0, 1), ξ1 ∼ N(0.35, 0.006), ξ2 ∼ N(0.192, 0.006), ξ3, ξ4 ∼ N(0, 10),

x1, x3, x4 ∈ [0.5, 1.5], x2 ∈ [0.45, 1.35], x5 ∈ [0.875, 2.65], x6, x7 ∈ [0.4, 1.2].

We transform the stochastic constraints into chance con-

straints with the same confidence level 1 − α. In this ex-

periment, we take α =0.1 and 0.2, and obtain the best

objective values 15.57 and 15.576, respectively. Similar to

the above experiments, the statistical results are listed in

Table 5. Obviously, the results in Table 5 below illustrate

that solving the above problem is difficult because of mul-

tiple constraints and strong noises. We see that SSGA-A

and SSGA-B fail to solve it when β =0.17 or 0.27, due to

their large constraint violations. However, the three im-

mune approaches, in particular CCPIA-A and CCPIA-U,

are all suitable for such problem. They can not only find

empirically reliable solutions during each run, but also only

cause small relative error rates and variances; CCPIA-U

can acquire the best effect. The average values, obtained

by them are almost or completely equal to the best value

in the case of β =0.17 or 0.27. Whereas SSGA-A is locally

convergent with the highest efficiency, it causes large con-

straint violations for many single runs. On the other hand,

the three immune approaches can rapidly find the desired

solutions, which demonstrates further that the operators in

CCPIA are rational and useful.

Example 5. Multimodal CCP problem

Max
100
∑

i=1

sin(πixi) + η

s.t.,
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⎪

⎩

Pr{
100
∑

i=1

ζixi ≤ 500} ≥ 1 − α

Pr{
100
∑

i=1

ηixi ≤ 7000} ≥ 1 − α

0 ≤ xi ≤ 10, η ∼ N(0, 1), ζi ∼ exp(1.2),

ηi ∼ logN(0.8, 0.6).
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Table 5 Comparison of statistical values found for Example 4

Best β Mean Std.Dev CI SR (%) CR RER (%) AT

SSGA-A 15.581 0.002 [15.581, 15.581 6] 0 85 904 0.01 0.776

SSGA-B 22.537 0.364 [22.487, 22.586] 0 858 99 44.7 17.40

CCPIA-P 15.57 0.17 15.576 7 0.0003 [15.576 7, 15.576 7] 100 0 0.001 6.06

CCPIA-G 15.712 0.092 [15.700, 15.725] 100 0 0.8 6.06

CCPIA-U 15.576 10−4 [15.576, 15.576] 100 0 10−4 6.05

SSGA-A 15.581 0.003 [15.581, 15.581 7] 0 85903 0.03 0.78

SSGA-B 22.623 0.381 [22.581, 22.665] 0 85898 45.2 17.41

CCPIA-P 15.576 0.27 15.576 7 0.0004 [15.576 7, 15.576 8] 100 0 10−3 6.06

CCPIA-G 15.723 0.121 [15.71, 15.736] 100 0 1 6.07

CCPIA-U 15.576 10−4 [15.576, 15.576] 100 0 10−4 6.06

This is an extended version of one three-dimensional

chance-constrained programming problem[33], including 100

variables and 3 stochastic variables. Solving such problem

becomes extremely difficult because of non-normal distri-

bution, multi-modality and high dimensionality. In this

experiment, since the constraints are crucial, a large sig-

nificance level is defined, i.e., α = 0.8 or 0.9. Relying upon

the parameter settings in Table 1, we obtain two best re-

liable solutions with the best objective values 363.925 and

382.345 when α = 0.9 and 0.8, respectively. After the five

approaches execute 100 times respectively, their respective

statistical results are listed in Table 6.

Through Table 6, the five approaches can acquire sta-

ble results when α = 0.8 and 0.9, in other words, they

can present stable search performance. The values on CR

indicate that SSGA-A and SSGA-B can not find reliable so-

lutions for some runs during 100 executions, and especially

SSGA-B results in large constraint violations. This hints

that the same constraint-handling scheme in both SSGA-A

and SSGA-B needs to make further improvements. How-

ever, CCPIA-A and CCPIA-G can always obtain reliable so-

lutions for each execution, and meanwhile CCPIA-U causes

constraint violation only for a few executions. This exhibits

that the latter three approaches behave well with some mer-

its of effective constraint handling and strong population

exploration.

Since some of the solutions, found by SSGA-A and

SSGA-B after 100 runs are not reliable, their solution quali-

ties are obviously inferior to those gotten by the other three

approaches. On the other hand, the statistical values illus-

trate that CCPIA-A can obtain the best search performance

by comparison with CCPIA-P and CCPIA-G. In addition,

the values on AT illustrate that SSGA-A and SSGA-B need

a lot of runtime to solve the above high-dimensional CCP

problem, whereas other approaches spend only less time

to find the desired solutions. Thereby, CCPIA can effi-

ciently solve one such high-dimensional problem, in which

the adaptive sampling method can speed up to seek the

desired solution.

6 Conclusions and further work

Our theoretical work in this paper includes two aspects.

One is to give a theoretical result which estimates the lower

bound of sample size of a random vector appearing in a

given CCP problem; the other is to propose a simple CCPIA

for CCP problems with unknown noisy information, where

some immune metaphors give us inspirations in construct-

ing the immune modules. In CCPIA, the schemes of sam-

ple allocation and evaluation can not only effectively de-

cide the importance of evolving B cells, but also reduce

CCPIA′s computational cost. Additionally, a suppression

radius function is designed to suppress noises dynamically,

while the idea of fitness inheritance is utilized to accelerate

the process of optimization. This way, our optimization

Table 6 Comparison of statistic values found for Example 5

Opt. β Mean Std.Dev CI SR(%) CR RER(%) AT

SSGA-A 271.771 58.449 3 [270.2, 273.341] 1 0.289 25.3 94.1

SSGA-B 216.364 78.931 6 [214.243, 218.484] 15 23.02 40.5 93.4

CCPIA-A 363.925 0.87 312.016 24.110 6 [311.368, 312.664] 100 0 14.2 19.1

CCPIA-G 268.364 9.5416 2 [268.108, 268.621] 100 0 26.2 17.29

CCPIA-U 238.725 11.582 6 [238.413, 239.036] 99 10−4 34.4 20.4

SSGA-A 305.858 46.58 [305.07, 306.646] 4 0.132 20.0 95.38

SSGA-B 252.123 70.501 9 [250.931, 253.316] 3 0.129 34.05 94.92

CCPIA-A 382.345 0.97 311.597 24.113 7 [311.189, 312.005] 100 0 18.5 19.43

CCPIA-G 267.552 10.415 4 [267.376, 267.728] 100 0 30.0 17.96

CCPIA-U 233.641 12.346 [233.433, 233.85] 100 0 38.9 21.7
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mechanism does not need to know noisy information, while

being capable of discovering the approximate optimum for

a given CCP problem. Experimental results show that even

if the noise is strong, CCPIA can also display many mer-

its, e.g., low computational complexity and good effect.

Comparative experiments have demonstrated that different

mutation rules make CCPIA exhibit different characteris-

tics; CCPIA-A and CCPIA-U perform well over other ap-

proaches, and CCPIA-G is secondary. Especially, CCPIA-

A is a potential tool for complex high-dimensional CCP

problems. We will aim further at studying its theoretical

foundations and wide applications.

Appendix

Proof of Theorem 1. If xxx∗
α ∈ Xβ

M , we obtain that

FM (xxx∗
α) ≥ ̂θβ

M . Hence, it follows from θ∗
α < ̂θβ

M − η

that FM (xxx∗
α) − E[f(xxx∗

α, ξ)] > η, which, by means of the

Hoeffding′s inequality, yields that

Pr{θ∗
α < ̂θβ

M − η|xxx∗
α ∈ Xα

M} ≤
Pr{FM (xxx∗

α) − E[f(xxx∗
α, ξ)] > η} ≤

2e
− 2Mη2

(b−a)2 ≤ 2e−2Mk2
. (8)

On the other hand, let

Xβi
M = {xxx ∈ X| 1

M

M
∑

l=1

Π(Gi(xxx, ξl,i) > 0) ≤ βi}. (9)

Since xxx∗
α satisfies the deterministic constraints as in Pα,

xxx∗
α ∈ Xβ

M if and only if xxx∗
α ∈ Xβi

M with 1 ≤ i ≤ I . Moreover,

it is true that xxx∗
α ∈ Xβi

M if and only if
∑M

l=1 Π(Gi(xxx, ξl,i) >

0) ≤ Mβi. If we call the event {Gi(xxx
∗
α, ξl,i) > 0} a success

for given l and i, the probability of a success in trial l is

pi(xxx
∗
α) = Pr{Gi(xxx

∗, ξl,i) > 0} ≤ αi. This occurs that

Pr{xxx∗
α ∈ Xβ

M} =

I
∏

i=1

Pr{xxx∗
α ∈ Xβi

M } =

I
∏

i=1

ρ(βi, pi, M) ≥
I

∏

i=1

ρ(	βiM
, αi, M) (10)

where ρ(αi, βi, M) represents the probability of having at

most 	αiM
 success in M independent trials[29] . Further,

owing to β > α, the Chernoff inequality[30] implies that

ρ(	βiM
, αi, M) ≥ 1 − e
− M(βi−αi)

2

2αi ≥
1 − e−2Mk2

. (11)

Therefore, it follows from (10) and (11) that

Pr{xxx∗
α /∈ Xβ

M} ≤ 1 − {1 − e(−2Mk2)}I ≤
c × e−2Mk2

, with c > I. (12)

This way, (8) and (12) imply that

Pr{θ∗
α < ̂θβ

M − η} = Pr{θ∗
α < ̂θβ

M − η|xxx∗
α ∈ Xα

M}×
Pr{xxx∗

α ∈ Xα
M} + Pr{θ∗

α < ̂θβ
M−

η|xxx∗
α /∈ Xα

M}Pr{xxx∗
α /∈ Xα

M} ≤
Pr{θ∗

α < ̂θβ
M − η|xxx∗

α ∈ Xα
M} + Pr{xxx∗

α /∈ Xα
M} ≤

(c + 2)e{−2Mk2}. (13)

�
Proof of Theorem 2. For a given current population X

with size N at the moment n, the module of the evaluation

evaluates an1 times for the B cells in X given by

an1 = N1(min{M,
Mn

N1
} + min{M,

Mn

N1
}I + J + K)+

(N − N1)(min{M,
Mn

N
} + min{M,

Mn

N
}I + J + K) ≤

N(MI + J + K). (14)

On the other hand, the adaptive mutation evaluates at

most an2 times for the N clones mutated, given by

an2 = N((Mc + 1)I + J + K). (15)

Hence, within a run period, the sum of evaluations of the

appearing individuals an can be obtained by unifying (4),

(5) and (12),

an = an1 + an2 ≤ N(MδI + J + K)+

N((Mc + 1)I + J + K). (16)

Further, since the sizes of I , J and K usually are small,

it follows from Mc < Mδ that an = O(NMδ). �
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