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Abstract: In this paper, a new approach to stability analysis of nonlinear dynamics of an underactuated autonomous underwater

vehicle (AUV) is presented. AUV is a highly nonlinear robotic system whose dynamic model includes coupled terms due to the

hydrodynamic damping factors. It is difficult to analyze the stability of a nonlinear dynamical system through Routh′s stability

approach because it contains nonlinear dynamic parameters owing to hydrodynamic damping coefficients. It is also difficult to analyze

the stability of AUVs using Lyapunov′s criterion and LaSalle′s invariance principle. In this paper, we proposed the extended-Routh′s
stability approach to verify the stability of such nonlinear dynamic systems. This extended-Routh′s stability approach is much easier

as compared to the other existing methods. Numerical simulations are presented to demonstrate the efficacy of the proposed stability

verification of the nonlinear dynamic systems, e.g., an AUV system dynamics.
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1 Introduction

In the recent years, the research on autonomous under-

water vehicle (AUV) has become promising in the field

of advanced robotics due to their specific applications

such as security patrols, search and rescue in hazardous

environments[1−8]. In underactuated systems, a fewer num-

ber of control inputs are available than the degrees of free-

dom (DOF). Further, there lies difficulty in the stability

proof of such system owing to the absence of some control

inputs for DOF to control[9].

An AUV is an unmanned mobile robot which is deployed

into motion in acoustic environment, e.g., oceans. In mili-

tary applications, AUVs are also known as unmanned un-

dersea vehicles (UUVs). AUVs constitute part of a larger

group of undersea systems known as unmanned underwater

vehicles. Another part which includes non-autonomous re-

motely operated underwater vehicles (ROVs) is controlled

and powered from the surface by an operator/pilot.

During the last two and more decades, a group of AUVs

forming a formation or cooperation are assigned different

group tasks. In military missions, a group of autonomous

vehicles are put to keep a specified formation for area cov-

erage and reconnaissance. In small satellite clustering, for-

mation helps to reduce the fuel consumption for propulsion
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and expand their sensing capabilities.

Due to the increasing demand of oil and exponential rise

in oil prices, importance of exploring new energy sources

has given prime importance. As the importance of energy

sources increases, the area of finding the same also increases

and it is extended to the deep see areas as well. Differ-

ent countries strive hard for achieving the success of find-

ing new energy resources through search operations by a

group of AUVs. Exploring and developing deep sea areas

necessitate different kinds of sensors and devices. Remotely

operated vehicles (ROVs) and AUVs directly meet these

requirements[4]. In case of exploration and exploitation

of resources located at deep oceanic environment, AUVs

plays an important role. The AUVs are used in risky and

hazardous operations such as bathymetric surveys, oceano-

graphic observations, recovery of lost man-made objects,

ocean floor analysis, etc.

In some complex cases, the goal can be achieved by

utilizing more than one vehicles simultaneously in a

group[10−14]. This is because the exploitation of these

complex tasks are beyond the capability of a single

AUV. Multiple AUVs are employed to perform the

task easily within a short period of time (Fig. 1). This

group performance of the multiple AUVs are known as

cooperative control. Formation and flocking control of

multiple AUVs are considered as cooperative control.

Cooperative control of AUVs is an important research

topic. Through formation control algorithm, the cooper-

ative motion multi-AUV systems can be achieved. The

formation control deals with the problem of controlling

the relative positions and orientations of AUVs moving in
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a group while allowing the group to move as a whole.

The step-by-step problems of formation control are accom-

plished through the following distinct steps: 1) assignment

of feasible formation, 2) moving in formation, 3) mainte-

nance of formation shape, 4) switching between formations.

Formation is specified in two different ways, i.e., the rigid

formation[15] and flexible formation (desired configuration

may vary)[16]. Flocking is the flying behaviours of a group

(flock) of birds. This is applicable to control a group of

multiple AUVs to perform a desired task. Flocking control

of multiple AUVs is similar to that of formation control

with only difference is that there are no constraints on dis-

tance among AUVs (no distance among AUVs is zero to

avoid collision). In case of formation control, the distances

among AUVs are always fixed.

Fig. 1 Schematic representation of cooperative control of AUVs

(leader-follower approach)

Keeping in view of aforesaid applications of AUVs, their

control design and stability analysis is a subject of enor-

mous importance to the control engineers. In this paper,

we focus on the stability analysis of such nonlinear systems.

Prior to presenting our work, we first review some of the

approaches to nonlinear system stability analysis. Some of

the stability analysis methods employed for nonlinear sys-

tems are as follows. The describing function (DF) method

is used for stability analysis of nonlinear systems for which

detailed description is available in [17]. DF method can

be combined with the small gain theorem (SGT) to an-

alyze the robust stability of nonlinear systems which has

separable nonlinearities[18] . Bode envelop of linear transfer

functions along with DF may be used for presenting the

stability analysis of nonlinear systems[19]. In the early sev-

enties, the stability analysis of nonlinear bounded input and

bounded output (BIBO) systems was carried out by using

Popov′s stability criterion[20] . The nonlinear systems whose

stability probability is one as well as the p-stability of the

nonlinear systems can be analyzed with the use of Popov′s
stability criterion[21].

The stability of the nonlinear system can be ana-

lyzed using different new and efficient methods. These

methods include Lyapunov stability criteria[22, 23], D-

stabilization using the Lyapunov′s method[24], LaSalles in-

variance principle[25], etc. Asymptotical stabilization of a

feedback linearized controller is analyzed based on poten-

tial functions in [26]. The stability of the controller for path

following of underactuated AUV has been analyzed by em-

ploying direct Lyapunov candidate function in [27]. This

Lyapunov′s stability criterion is employed for the stabil-

ity analysis of formation controllers of fully actuated AUVs

in [3, 28]. Lyapunov′s method along with LaSalles invari-

ance principle both have been applied in combination for

stability analysis of consensus based flocking controller of

mobile robots whose dynamics is nonlinear in [29]. These

are generally complex methods because in case of Lyapunov

approach, it is difficult to choose the Lyapunov′s function

and further Lasalles invariance principle also depends upon

Lyapunov approach. The stability of the nonlinear systems

is analyzed in the discrete time domain[30−32] .

When considering the kinematics and dynamics of the

AUV, different nonlinear and complex are taken to be con-

sideration. These are, the inter-coupled mass matrix which

is the inertia matrix contains added masses, the centripetal

and Coriolis forces and torques, hydrodynamic damping

factors, the lifting and gravitational effects, etc. These fac-

tors make the dynamics of the AUV are highly nonlinear

and coupled. However, the stability of the AUV systems

should be analyzed and ensured once the controller is to

be applied in real-time. Hence, the stability analysis of the

AUVs and the controllers are important as well as diffi-

cult tasks. For simplifying this task, a new approach using

extended-Routh′s Stability criterion is presented in this pa-

per. The contribution of this paper lies in the development

of an innovative idea for the proof of stability of the dynam-

ics of a nonlinear system particularly underactuated AUVs.

The stability is proved based on extended-Routh′s stability

criterion. It is a simpler approach to analyze the stability

of a dynamic system in comparison to the other methods

described in previous paragraphs.

The rest of the paper is organized as follows. The sta-

bility analysis of nonlinear systems in generalized form

with existing techniques are briefly explained in Section 2.

Extended-Rouths stability method is then presented in

Section 3. In Section 4, AUV kinematics and dynamics

are described. Stability analysis of the dynamic system is

demonstrated in Section 5. The stability of the AUV sys-

tem is proved through a simulation study and discussions

are presented in Section 6. Section 7 presents the conclu-

sions of the paper.

2 Existing methods of stability analysis

of nonlinear systems

There are many techniques exist in literature which are

directly or indirectly applicable to analyses the stability of

the nonlinear system. But out of these, in this section only

important existing techniques utilized for stability analysis

of nonlinear systems are briefly explained.
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2.1 Jacobian eigenvalue theorem

Consider a nonlinear system which is presented by

ẋ(t) = f(x, y) (1a)

ẏ(t) = g(x, y) (1b)

where f and g are mathematical functions which are dif-

ferentiable with continuous partial derivatives. These func-

tions are vanishes at the point (x0, y0). To analyze the

functional value at this point, let be the Jacobian matrix at

this point (x0, y0) and this matrix is presented by

J =

[
fx(x0, y0) fy(x0, y0)

gx(x0, y0) gy(x0, y0)

]
. (2)

A system is said to be stable at (x0, y0) if all the eigen-

values of possesses have negative real parts. And if one or

more than eigenvalues have negative real parts, then the

system is said to be unstable at the point (x0, y0).

From this it is observed that, this theorem is not suitable

to verify the stability of a system when the eigenvalue of the

Jacobian possesses zero real parts.

2.2 Linearization method

Most of the nonlinear systems are mathematically repre-

sented by nonlinear differential equations. Linearization of

a nonlinear differential equation generally produces a time

varying linear system. Since stability is the local property

any system, after linearization one can easily expect that

whether the system is stable or not. An n order nonlin-

ear system may be presented by only one nonlinear n order

equation or by a set of n different first order equations. This

is resented below[33].

ẋ1 = f1(x1, x2, · · · , xn)

ẋ2 = f2(x1, x2, · · · , xn)

· · ·
ẋn = fn(x1, x2, · · · , xn). (3)

In matrix form, this can be presented by

ẋxx = f(xxx). (4)

The solution of equation (3) is given by a phase plane

trajectory in an n dimensional state space.

At equilibrium points, the rate of change of the states

are zeros, i.e., ẋ1 = ẋ2 = · · · = ẋn = 0, hence the points

are singular points where f1(xxx) = f2(xxx) = · · · = fn(xxx) = 0.

Considering this, system (3) is represented by a linear sys-

tem where fff(xxx) is a linear function of xxx and can be pre-

sented by ẋxx = AAAxxx with det (AAA) �= 0. A nonlinear system

may possess more than one equilibrium points as fff(xxx) has

more than one solutions. These equilibrium points may be

stable or unstable. The stability of these points depends

upon the phase-plane trajectory. These are stable in the

phase-plane, if the trajectory approaches the equilibrium

points as t tends to infinity and these points are unstable

if the trajectory move away from the equilibrium points in

the phase-plane.

For stability analysis of the nonlinear system given in (3),

it should be linearized first in the neighborhood of the equi-

librium points and then the stability of the whole system

should be checked. In the neighborhood of the equilibrium

points, the given nonlinear system is act as the linearized

system if the linearization is possible.

The function of the nonlinear equation (4), i.e.,

fi(x1, x2, · · · , xn) with i = 1, 2, 3, · · · , n, can be expanded

in the Taylers series in the neighborhood of each singular

point and this can be represented by

d

dt
(xi − xi0) =

(
∂fi

∂x1

)
(x1 − x10) +

(
∂fi

∂x2

)
(x2 − x20)+

· · · +
(
∂fi

∂xn

)
(xn − xn0). (5)

Equation (5) in matrix form may be presented by

d

dt
(x− x0) = J(x0)(x− x0) (6)

with

J(x0) =

⎡
⎢⎢⎢⎢⎣
∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

...
...

...
...

∂fn

∂x1

∂f2
∂x2

· · · ∂fn

∂xn

⎤
⎥⎥⎥⎥⎦ . (7)

J(x0) is the Jacobian matrix. The elements of this ma-

trix are the partial derivatives of fi(x1, x2, · · · , xn) with

the numerical values corresponding to the singular points.

Equation (6) is the linearized form of the nonlinear system

presented in (1).

Remark 1. This linearization method of stability anal-

ysis of the nonlinear systems is one of the easiest methods

of stability analysis of the nonlinear system with some de-

merits. It does not give complete information about the

stability of the nonlinear system. It follows the necessary

and sufficient condition that for the system to be stable,

all the roots of the characteristic equation should be lies

in the left half of the s-plane. If any one or more than

one roots of that characteristic equation lie in the right half

of the s-plane, the system becomes unstable. It does not

tell about stability of the system when the root lies on the

imaginary axis of the s-plane.

Linearization method provides the idea which is adapted

by the Lyapunov and is used in the stability analysis of non-

linear systems by using the Lyapunov′s indirect method.

In order to prepare the ground for the Lyapunov′s indirect

method of stability analysis, the linearization of the nonlin-

ear differential equations must be done.

2.3 Lyapunov′s direct method

Stability analysis using the Lyapunov′s direct method is

the powerful and common procedure in recent era. The

analysis of this method is presented here.

Consider the Lyapunov candidate function for the sys-

tem presented by (4) is V (xxx). This function is a scalar

function and possesses positive definite value. Here xxx =

[x1, x2, · · · , xn]T is n × 1 state vector whose elements are
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the state variables of the n order nonlinear system. The

origin, i.e., xxx = 0 where all the state variables have zero

values x1 = x2 = · · · = xn = 0 in the state space are as-

sume to be an equilibrium solution. To analyze the stability

of the system, the first derivative of the Lyapunov function

is mandatory to analyze first. The first derivative of this

function is given as

V̇ =
dV

dt
=
∂V

∂x1

dx1

dt
+
∂V

∂x2

dx2

dt
+ · · · + ∂V

∂xn

dxn

dt
. (8)

By assuming the Lyapunov candidate function V (xxx) is

an energy function, the stability can be analyzed. V (xxx)

is a positive definite and gradually decreases with time so

that it vanishes at the origin and the system became stable.

Hence first derivative of the Lyapunov candidate function

is negative definite or semi-definite.

The stability of the system can be analyzed by examin-

ing the Lyapunov candidate function along with the first

derivative of this function. The sufficient conditions for dif-

ferent stability conditions are mathematically presented as

follows.

Consider the Lyapunov candidate function V (xxx) such

that

V (xxx) : Rn → R.

V (xxx) ≥ 0, if and only if xxx = 0 (positive definite).

Then the different conditions of stability are as follows.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V̇ (xxx) =
d

dt
V (xxx) < 0, system is GAS

V̇ (xxx) =
d

dt
V (xxx) ≤ 0, system is GS

V̇ (xxx) =
d

dt
V (xxx) ≥ 0, system is unstable. (9)

GAS: Globally asymptotically stable

GS: Globally stable.

If V (xxx) is indefinite, then it is not possible to decide

about the stability of the system.

Remark 2. Construction of the Lyapunov candidate

function is a very difficult task, it is because there no defi-

nite procedure to develop or construct the Lyapunov func-

tion. This function is created only by assumptions and trial

and error method.

Remark 3. There is only sufficient condition of the sta-

bility analysis, but there are no necessary conditions. In

case of failure of the Lyapunov candidate function in test-

ing for the stability or asymptotically, it does not give any

guarantee about the origin is not stable.

2.4 Popov criterion

It is one of the popular methods of analysis of the sta-

bility of the nonlinear systems. In some attributes, this

method can be compared with the Nyquist stability crite-

ria for linear systems.

Consider a nonlinear system having a transfer function

which contains the linear part G(s) and a nonlinear part.

This is globally asymptotically stable if there exists a real

number q having any value (positive, negative or zero) for

every value of ω such that it satisfies the following inequal-

ity.

Re [(1 + jωq)G (jω)] +
1

k
> 0 (10)

where k is the slope. In more appropriate manner, the

Popov criterion can be applied in the G (jω) plane graphi-

cally. A modified frequency response function G∗ (jω) which

is the Popov locus can be applied on it and can be defined

as

G∗ (jω) = Re [G (jω)] + jωIm [G (jω)] . (11)

Hence,

Re [G∗ (jω)] = Re [G (jω)] (12a)

Im [G∗ (jω)] = ωIm [G (jω)] (12b)

with every value of ω ≥ 0. For this nonlinear system to be

globally asymptotically stable, the graphical interpretation

is necessary. For a system to be GAS, the sufficient condi-

tion is that, the plot of the G∗ (jω) should lie fully to the

right of the Popov line. The Popov line crosses the real axis

at − 1
k

with the slope − 1
q

, here q is a real number having

any vale.

2.5 Lasalles invariance principle

LaSalle′s invariance principle is also known as the

invariance principle[34] and Barbashin-Krasovskii-LaSalle

principle[35]. It is the criterion for the asymptotic stabil-

ity analysis of nonlinear autonomous dynamical system.

Let us consider an n order nonlinear system, whose state

vector is presented by xxx = [x1, x2, · · · , xn] and the elements

are the state variables of the system.

The dynamics of the system is presented as follows[36] .

The origin xxx = 0, i.e., all the state variables have zero

values (x1 = x2 = · · · = xn = 0) in the state space, which

is assume to be an equilibrium solution.

fff(0) = 0, at origin (13a)

(ẋxx) = fff(x). (13b)

Let Ω ⊂ D ⊂ Rn be a compact positively invariant set with

respect to the system defined in (13). Let V : D → R is

the continuously differentiable function which satisfies the

condition V̇ (x) ≤ 0 in Ω. Again, let E ⊂ Ω be the set of

all points in Ω where V̇ (x) ≤ 0. Let E, M ⊂ E be the

largest invariant set. Then, every solution starting in the

set Ω must approaches M at t→ ∞. That is

lim
t→∞

⎛
⎜⎜⎜⎝ inf

z∈M
‖xi(t) − z‖︸ ︷︷ ︸

dist(xi(t)M)

⎞
⎟⎟⎟⎠ = 0, i = 1, 2, 3, · · · , n. (14)

It should be noted that the inclusion of the sets in the

LaSalles theorem is M ⊂ E ⊂ Ω ⊂ D ⊂ Rn.

3 Extended-routh′s stability method

In this section extended-Routh′s stability criterion

(ERSC) for analysis of nonlinear systems is described
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briefly.

Consider a nonlinear dynamic system given as follows:

ẋxx = fff(xxx, t,uuu), t ∈ [t0,∞), xxx ∈ Rn, uuu ∈ Rm, m ≤ n

(15a)

yyy = hhh(xxx, t,uuu), yyy ∈ Rl, 1 ≤ l ≤ n (15b)

where xxx = xxx(t) is the state vector of the system, uuu = uuu(t) is

the control input, fff is the continuously differentiable non-

linear function. xxx(t0) = xxx0, t0 > 0 is the initial condition,

yyy = yyy(t) is the system output, hhh is a continuously differen-

tiable nonlinear function.

The state-space model of the nonlinear dynamic (15) may

also be described as

ẋ(t) = AAA(xxx, t)xxx+BBBuuu (16a)

y(t) = CCC(xxx, t)xxx+DDDuuu (16b)

where AAA = AAA(x, t) is the state or system matrix and

AAA ∈ Rn×n whose elements are state dependent, BBB is the in-

put matrix, BBB ∈ Rn×m, CCC is the output matrix, CCC ∈ Rl×n,

DDD is the feed forward matrix, DDD ∈ Rl×m. The coefficients

of state matrix AAA are state dependent and the states are

input dependent both in frequency and amplitude.

The Routh′s stability criterion was developed for linear

time invariant systems, and therefore is not directly ap-

plicable to nonlinear systems given in (16a) and (16b). For

stability analysis of nonlinear dynamic systems, a new plane

named as g(t)-plane is introduced here. The conventional

Routh′s stability method is extended to extended-Routh′s
stability method in g(t)-plane for the stability analysis of

nonlinear time varying systems.

Let us define the g(t)-plane as

g(t) = σ(t) + jω(t) (17)

where g(t) is differential operator

(
d

dt

)
and a time vary-

ing complex variable. σ(t) and ω(t) are real numbers. As

a whole, in the g(t)-plane, σ(t) represents the real part

and ω(t) represents the imaginary part. j is the imagi-

nary unit[37−39]. Here the dynamic equation is nonlinear,

it is considered in a g(t)-plane instead of the s-plane which

is used for analysis of linear time invariant systems. For

linear time invariant system s = σ + jω, the g(t)-plane is

shown in Fig. 2.

The characteristic equation of system (16) may be writ-

ten as

|gI −A| = 0. (18)

This is a nonlinear differential equation of order n as

dim(A(·)) = n× n. The coefficients of this nonlinear equa-

tion contain the state dependent terms as the elements of

the matrix A are also state dependent. Hence this nonlinear

differential equation may be presented in the form of

ang
n + an−1g

n−1 + · · · + a1g + a0 = 0 (19)

where ais are the coefficients of gi and contain the state

dependent nonlinear terms, i = 0, 1, 2, 3, · · · , n. The roots

of (19) are the poles as these are state dependent and vary

with time, hence these poles are called as dynamic poles.

Fig. 2 Presentation of g-plane

Theorem 1.[39] The necessary condition for the nonlin-

ear system to be stable is that, all the elements of the first

column of dynamic-Routh′s array must have positive val-

ues.

gnan an−2an−4 an−6 · · ·
gn−1an−1 an−3an−5 an−7 · · ·
gn−2b1 b2b3 · · · · · ·
gn−3c1 c2c3 · · · · · ·

gn−4
...

...
...

g1
...

g0
... (20)

where the polynomials bj and cj can be determined as fol-

lows, j = 1, 2, 3, · · · .

b1 =
−1

an−1

∣∣∣∣∣ an an−2

an−1 an−3

∣∣∣∣∣ =
−1

an−1
(anan−3 − an−1an−2)

b2 =
−1

an−1

∣∣∣∣∣ an an−4

an−1 an−5

∣∣∣∣∣ =
−1

an−1
(anan−5 − an−1an−4)

b3 =
−1

an−1

∣∣∣∣∣ an an−6

an−1 an−7

∣∣∣∣∣ =
−1

an−1
(anan−7 − an−1an−6)

...

c1 =
−1

b1

∣∣∣∣∣an−1 an−3

b1 b2

∣∣∣∣∣ =
−1

b1
(an−1b2 − b1an−3)

c2 =
−1

b1

∣∣∣∣∣an−1 an−5

b1 b3

∣∣∣∣∣ =
−1

b1
(an−1b3 − b1an−5)

...

(21)

This theorem is used to analyze the stability of the AUV

in Section 4.
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Here an example is presented to demonstrate the role of

extended-Routh′s stability method as a mean to show the

stability of the nonlinear systems. Let us consider a simple

nonlinear system presented by[40]

ẋ = y + x(x2 + y4)

ẏ = −x+ y(x2 + y4). (22)

Considering α = (x2 + y4), in state space form, (22) may

be presented as [
ẋ

ẏ

]
=

[
α 1

−1 α

] [
x

y

]
. (23)

The dynamic characteristic equation is |gI −A| = 0, with

A =

[
α 1

−1 α

]

or

g2 − 2αg + (α2 + 1) = 0. (24)

The stability of the system can be checked through

dynamic-Routh′s stability array as

g2|1 (α2 + 1)

g1| − 2α

g0|(α2 + 1). (25)

As α = (x2 + y4), so α is always positive. So all the ele-

ments of the first column do not have positive values. So

the system is unstable. As the number of sign changes of

the elements of the first column of the extended-Routh′s
stability array is two, so there are two dynamic poles on

the right hand side of the g-plane.

4 AUV kinematics and dynamics

The kinematic and dynamic equations of an AUV are

presented here. There are two types of frames of references

considered, i.e., body fixed frame of reference {B} and earth

fixed frame of reference {I}. The later is known as inertial

frame of reference. The origin of B is coinciding with the

center of mass of the vehicle. The schematic presentation

of an AUV is presented in Fig. 3. In Fig. 3, the parameters

Xe, Ye and Ze present the X, Y and Z axis coordinates of

the earth-fixed frame of reference, and Oe presents its ori-

gin. In the similar manner, the parameters Xb, Yb and Zb

present the X, Y and Z axis coordinates of the body-fixed

frame of reference and Ob presents its origin. The motion of

an AUV in six degrees of freedom (DOF) can be described

by the following vectors[41]:

η = [x, y, z, ϕ, θ, ψ]T

ν =[u, v, w, p, q, r]T

τ =[X,Y,Z,K,M,P ]T (26)

where η denotes the position and orientation vector of AUV

in the inertial frame. x, y, z are the coordinates of position

and ϕ, θ, ψ are orientation coordinates along longitudinal,

transversal and vertical axes respectively. ν is the velocity

vector within the body-fixed frame. u, v, w denote linear

velocities, p, q, r are angular velocities. X,Y,Z are forces,

K,M,P denote moments. The nonlinear dynamic and kine-

matic equations of motion can be expressed as

Mν̇ + C(ν)ν̇ +D(ν)ν̇ + g(η) = τ

η̇ = J (η) ν (27)

whereM is the inertia matrix including added mass, C(ν) is

the matrix of Coriolis and centripetal terms including added

mass. D(ν) denotes hydrodynamic damping and lift matrix

and g(η) is the vector of gravitational forces and moments.

τ is the vector of forces and moments acting on the AUV in

the body-fixed frame. J (η) is the velocity transformation

matrix between AUV frame and earth fixed frame.

Fig. 3 Schematic representation of an AUV showing forces and

torques

This transformation matrix can be represented as

J(η) =

[
J1(η) 03×3

03×3 J2(η)

]
(28)

where

J1(η) =⎡
⎢⎣cos(ψ) cos(θ) − sin(ψ) cos(φ) + cos(ψ) sin(θ) sin(φ)

sin(ψ) cos(θ) cos(ψ) cos(φ) + sin(φ) sin(θ) cos(ψ)

− sin(θ) cos(θ) sin(φ)

sin(ψ) sin(φ) + cos(ψ) cos(φ) sin(θ)

− cos(ψ) sin(φ) + sin(θ) sin(ψ) cos(φ)

cos(θ) cos(φ)

⎤
⎥⎦

(29)

J2(η) =

⎡
⎢⎢⎣

1 sin(φ)tan(θ) cos(φ)tan(θ)

0 cos(φ) − sin(φ)

0
sin(φ)

cos(θ)

cos(φ)

cos(θ)

⎤
⎥⎥⎦ . (30)

Here we have described the AUV kinematics and dynam-

ics in two degrees of freedom as an example for simpler

analysis. We considered the underactuated AUV is mov-

ing only in horizontal plane, i.e., yaw plane. The origin of
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body fixed frame of reference B is coinciding with the center

of mass of the vehicle. For a simpler analysis, the follow-

ing assumptions are made, which are as follows. Center of

mass (CM) and center of buoyancy (CB) coincide with each

other. Mass distribution all over the body is homogeneous.

The hydrodynamic terms of higher order as well as heave,

pitch and roll motions are negligible.

The kinematic equation of the vehicle in the horizontal

plane is given by[27]

⎡
⎢⎣ẋẏ
ψ̇

⎤
⎥⎦ =

⎡
⎢⎣cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣uv
r

⎤
⎥⎦ . (31)

The dynamic equations of the AUV are given by

u̇ =
m22

m11
vr − Xu

m11
u− Xu|u|

m11
u |u| + 1

m11
Fu

v̇ = −m11

m22
ur − Yv

m22
v − Yv|v|

m22
v |v|

ṙ =
m11 −m22

m33
uv − Nr

m33
r − Nr|r|

m33
r |r| + 1

m33
Fr. (32)

Here Fu = force applied to the body for linear motion, Fr

= force applied to the body for angular motion, m11,m22

= combined rigid-body and added mass terms, m11= com-

bined rigid-body and added moment of inertia about the

Zb axis, Xu, Yv and Nr are the linear and quadratic drag

terms coefficients, Xu|u| is the non-linear axial drag coeffi-

cient, Yv|v| and Nr|r| are the nonlinear cross-flow drag co-

efficients.

5 Stability analysis of the AUV dynam-

ics

This section presents the exploration of the soul goal of

the paper, i.e., the stability analysis of the underactuated

AUV whose kinematics and dynamics are explained in the

Section 4. For stability analysis of the dynamic system pro-

vided in (32), extended-Routh′s stability criterion[37−39] are

used. Equation (32) is a highly nonlinear and coupled equa-

tion. Rearranging (32) and presenting in matrix form one

can get as follows:⎡
⎢⎣u̇v̇
ṙ

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

− Xu

m11
−Xu|u|
m11

|u| m22

m11
r 0

−m11

m22
r − Yv

m22
− Yv|v|
m22

|v| 0

m11 −m22

m33
v 0 −Nr

m33
−Nr|r|
m33

|r|

⎤
⎥⎥⎥⎥⎥⎥⎦
×

⎡
⎢⎣uv
r

⎤
⎥⎦ +

⎡
⎢⎢⎢⎣

1

m11
0

0 0

0
1

m33

⎤
⎥⎥⎥⎦

[
Fu

Fr

]
. (33)

Equation (33) is in the state-space form and can be written

as

Ẋ = AX +BU (34)

where X =

⎡
⎢⎣uv
r

⎤
⎥⎦

with

A=

⎡
⎢⎢⎢⎢⎢⎢⎣

− Xu

m11
− Xu|u|

m11
|u| m22

m11
r 0

−m11

m22
r − Yv

m22
− Yv|v|
m22

|v| 0

m11 −m22

m33
v 0 − Nr

m33
− Nr|r|

m33
|r|

⎤
⎥⎥⎥⎥⎥⎥⎦

and

B =

⎡
⎢⎢⎢⎣

1

m11
0

0 0

0
1

m33

⎤
⎥⎥⎥⎦ , U =

[
Fu

Fr

]
. (35)

Here, the state or system matrix and the state dependent

elements are coupled and nonlinear input matrix B is the

function of the combined rigid-body and added mass terms.

Substituting the numerical values of the parameters of (33)

from Table 1, one can get (33) in approximate form as

⎡
⎢⎣u̇v̇
ṙ

⎤
⎥⎦ =

⎡
⎢⎣−0.3 − 0.5 |u| 1.25r 0

−0.8r −0.4 − 0.8 |v| 0

−0.6v 0 −0.6 − 1.25 |r|

⎤
⎥⎦

⎡
⎢⎣uv
r

⎤
⎥⎦ +

⎡
⎢⎢⎢⎣

1

215
0

0 0

0
1

80

⎤
⎥⎥⎥⎦

[
Fu

Fr

]
.

(36)

Some parameters are given below and the other parame-

ters of the AUV are given in Table 1[27].

m11 = m−Xu̇ = 215 kg

m22 = m− Yv̇ = 265 kg

m33 = Iz −Nṙ = 80kg·m2
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Table 1 Hydrodynamic parameters of the AUV[27]

Parameter Symbol Value Unit

Mass m 185 kg

Rotational mass IZ 50 kg·m2

Added mass Xu̇ −30 kg

Added mass Yv̇ −80 kg

Added mass Nṙ −30 kg·m2

Surge linear drag Xu 70 kg/s

Surge quadratic drag Xu|u| 100 kg/m

Sway linear drag Yv 100 kg/s

Sway quadratic drag Yv|v| 200 kg/m

Yaw linear drag Nr 50 kg·m2/s

Yaw quadratic drag Nr|r| 100 kg·m2

The stability analysis of the AUV is presented using the

extended-Routh′s stability criteria in the following section.

Consider the dynamic system (36) where the mass matrix

can be rewritten as

A =

⎡
⎢⎣−0.3 − 0.5 |u| 1.25r 0

−0.8r −0.4 − 0.8 |v| 0

−0.6v 0 −0.6 − 1.25 |r|

⎤
⎥⎦
(37)

or

A =

⎡
⎢⎣a11 a12 a13

a21 a22 a23

a31 a32 a32

⎤
⎥⎦ (38)

where

a11 = −0.3 − 0.5 |u| , a12 = 1.25r, a13 = 0

a21 = −0.8r, a22 = −0.4 − 0.8 |v| , a23 = 0

a31 = −0.6v, a32 = 0, a33 = −0.6 − 1.25 |r| . (39)

All the elements of (37) and (38) have one to one correspon-

dences. Hence, the characteristic equation in g-plane may

be presented by

|gI −A| = 0. (40)

Solving (40),

g3 + (−a11 − a22 − a33) g
2+

(a11a22 + a22a33 + a11a33 − a12a21) g+

(a12a21a33 − a11a22a33) = 0 (41a)

b3g
3 + b2g

2 + b1g + b0 = 0 (41b)

b3 = 1

b2 = −a11 − a22 − a33

b1 = a11a22 + a22a33 + a11a33 − a12a21

b0 = a12a21a33 − a11a22a33. (41c)

Using extended-Routh′s stability criterion

g3 b3 b1

g2 b2 b0

g1 b2b1 − b3b0
b2

0

g0 b0 0. (42)

For a system to be stable, all the coefficients of first col-

umn of the matrix given in (42) should be positive. From

Table 1, for stability, we have

b3 =1 > 0

b2 = − a11 − a22 − a33 =

1.3 + 0.5 |u| + 0.8 |v| + 1.25 |r| . (43)

This is obtained by substituting the value of (39) in (41c).

As all the terms of b2 of (43) are positive and absolute

values, hence b2 > 0. Also the term b2b1−b3b0
b2

> 0, as

b3 = 1. Again substituting the values of parameters such

as a11, a12, a13, a21, a22, a23, a31, a32 and a32 provided

in (39) in (41c), it is obtained as

b2b1 − b0 = 0.63 + 0.8 |u| + 1.224 |v| + 1.662 |r|+
1.04 |u| |v| + 2.6 |v| |r| + 1.624 |u| |r| + 0.7r2+

|u| |v| |r| + 0.25|u|2 + 0.576|v|2 + 1.09|r|2+
0.2|u|2 |v| + 0.313|u|2 |r| + 0.3 |u| |v|2+
0.8|v|2 |r| + 1.25 |v| |r|2 + 0.78 |u| |r|2+
0.5 |u| r2 + 0.8 |v| r2. (44)

As all the terms of (44) are positive hence (b2b1 − b0) > 0.

Substituting the values of parameters from (39) in (41c), b0
can be found out as

b0 = 0.072 + 0.12 |u| + 0.144 |v| + 0.15 |r| + 0.24 |u| |v|+
0.3 |v| |r| + 0.25 |u| |r| + 0.6r2 + 1.25r2 |r|+
0.5 |u| |v| |r| . (45)

Similarly, all the terms of (45) are of positive signs b0 > 0.

Hence, all the elements of the first column of the matrix

given in (42) are positive. This implies that all the poles

of the dynamic system are on the left half of the g-plane.

Thus, AUV dynamics are stable.

6 Results and discussion

An AUV may be used for path following, path planning,

obstacle avoidance, etc. And a group of multiple AUVs is

used for cooperative control including formation and flock-

ing control. In the case of complex and tedious tasks which

are not possibly by the use of a single AUV, multiple AUVs

are deployed. In each of these motion tasks, advanced

controllers such as adaptive, sliding mode, etc., including

intelligent controller should be used instead of traditional

controllers. It is because of the fact that the dynamics as

well as the kinematics of the AUV are highly nonlinear and

coupled. Before applying the controllers to the AUVs di-

rectly, it is necessary to observe the stability of the AUV

by checking the response to the basic test signals. In this

work, the step signals are considered as test signals. The

stability analysis of AUVs by using the existing methods

mentioned in Sections 1 and 2 are more complicated[27−29] .

In this paper, the stability of an AUV is analyzed using the

extended-Routh′s method. In the first step, the stability is
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analyzed mathematically and then the simulation is carried

out to verify the mathematical results.

To ensure the stable control dynamics of the under-

actuated AUV, the simulation is carried out using Mat-

lab/Simulink environment. The Simulink model of the dy-

namics of the AUV is created and simulated by using pa-

rameters of the AUV given in Table 1. Here the inputs are

taken as step inputs having highest amplitude values. The

numerical parameters used for simulation are provided in

Table 1.

Fig. 4 presents the response of the AUV dynamics when

the step signal is applied. It is observed that the dynamic

stable condition of a highly nonlinear underactuated AUV is

established when the desired inputs are applied. Equation

(24) presents the dynamic model consisting as the output

states and as well as as the control inputs which are step

signals having magnitude 1. From Fig. 4, it is also observed

that the control inputs and the output states of the AUV

match each other without any damping or oscillations. This

shows the stable condition of the system.

Fig. 4 Dynamic response to the step input

7 Conclusions

A brief discussion on AUV and the cooperative control

of a group of multiple AUVs are presented. The important

and essential applications of single and multiple AUVs are

explained. The stability analysis of nonlinear systems using

different existing techniques are presented. Also the stabil-

ity analysis of nonlinear systems through extended-Routh′s
approach is developed. The stability of the highly nonlinear

underactuated robotic system, i.e., AUV, is presented us-

ing extended-Routh′s stability approach. The dynamics of

the AUV are considered here including the hydrodynamic

damping factors. To verify the efficacy of the stability

analysis through the extended-Routh′s stability approach,

a nonlinear dynamic system, e.g., AUV dynamics, is con-

sidered in this paper, and numerical simulation is carried

out. From the obtained results, it is clear that the dynamic

system considered is stable. In the future work, the stabil-

ity analysis of the different controllers are to be presented

with the use of the extended-Routh′s stability criterion.
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