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Abstract: This paper presents a method of state estimation for uncertain nonlinear systems described by multiple models approach.

The uncertainties, supposed as norm bounded type, are caused by some parameters′ variations of the nonlinear system. Linear matrix

inequalities (LMIs) have been established in order to ensure the stability conditions of the multiple observer which lead to determine

the estimation gains. A sliding mode gain has been added in order to compensate the uncertainties. Numerical simulations through a

state space model of a real process have been realized to show the robustness of the synthesized observer.

Keywords: Uncertain nonlinear system, norm bounded uncertainty, multiple models approach, multiple observer, sliding mode

observer.

1 Introduction

The knowledge of state variables of nonlinear systems

is necessary in control systems field. Although, in most

real systems, this knowledge is partial because some vari-

ables of the state can not be measured and some sensors

are expensive. As a solution, the researchers turn to the

observer which is a dynamical system able to estimate the

unmeasured state variables. It is noticed that the design of

an observer is preceded by the step of modeling. Indeed,

the modeling operation involves the construction of mathe-

matical model describing the dynamic behavior of the real

system. So, many works are focusing on this issue in

order to reach the correct representation of nonlinear sys-

tems.

The multiple models is one of many tools of systems

modeling. In the literature, methods of obtaining multi-

ple models structure are studied. In fact, the work[1] treats

the method based on the direct identification of model pa-

rameters (number of local models, the structure of weight-

ing functions and data partitioning). In [2], the researchers

present the method based on the linearization of an exist-

ing nonlinear model around the operating points. Other

researchers use a method based on a transformation of the

nonlinear system[3, 4]. As a definition, the multiple models

approach is an interpolation of many submodels qualified

as linear through activation functions. For each submodel,

a local observer is synthesized. The interpolation of

the local observers lead to the obtention of multiple

observers.

State estimation based on multiple models structure is
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widely studied in the literature. Works as [5−7] are in-

terested in determining the estimation gains using Linear

matrix inequalities (LMIs). Later, many researchers have

been focusing on the design of multiple observers in order to

satisfy desired performances. In fact, the authors in [8−11]

show designs of robust multiple observers for unknown in-

put/uncertain systems based on LMI tools. Other works

as [12−15], treat the design of robust sliding mode multi-

ple observers in order to overcome the effect of unknown

inputs, uncertainties and disturbances.

Most of works as [16−18], which deal with multiple ob-

server design for uncertain systems using sliding mode tech-

niques, assume that the uncertainties are bounded. The

disadvantage of such assumption is the way of choosing

the uncertainties′ upper bounds. In order to overcome this

limitation, our contribution comes to enhance and improve

some related works like [19] which assume that the uncer-

tainties are norm bounded.

The objective of our study is to design a sliding mode ob-

server for nonlinear system with time varying uncertainties

supposed as norm bounded. To reach this aim, the mul-

tiple models approach is adopted in modeling such class

of systems which leads to deal easily with the synthesis of

the proposed observer by profiting from the linear tools like

those used in [20−25].

This paper is organized as follows. In Section 2, we give

the problem statement. The structure of the observer is

presented in Section 3. The proof of the estimator′s con-

vergence is demonstrated in Section 4. In Section 5, we

present the simulation results and interpretations. A con-

clusion ends the paper.
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2 Problem statement

Consider a nonlinear system described by{
ẋ = f(x, u)

y = Cx
(1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are, respectively,

the state vector, the input vector and the output vector of

the system. C = [Ip0p×(n−p)] and verifies CCT = Ip. CT

is the transpose of matrix C and it presents also its right

pseudoinverse.

The system (1) can be written under multiple model ap-

proach as follows:⎧⎪⎪⎨
⎪⎪⎩

ẋ =

M∑
i=1

μi(z)(Aix + Biu)

y = Cx

(2)

where Ai and Bi are matrices with appropriate dimensions.

z = [z1, z2, · · · , zr] is considered as the vector of premise

variables. The activation functions μi(z) verify the convex

property: ⎧⎪⎪⎨
⎪⎪⎩

M∑
i=1

μi(z) = 1

0 ≤ μi(z) ≤ 1.

(3)

The aim of this paper is to develop a sliding mode observer

for the reconstruction of unmeasured variables of uncertain

nonlinear system described by the following multiple mod-

els: ⎧⎪⎪⎨
⎪⎪⎩

ẋ =
M∑

i=1

μi(z)((Ai + ΔAi)x + Biu)

y = Cx

(4)

where ΔAi represent the variation of parameters and verify

the following hypothesis:

Hypothesis 1. We suppose that the uncertainties are

norm bounded type:

ΔAi = Ma
i FaNa

i

where Fa ∈ Rk×l respects the following constraint:

FT
a Fa ≤ Il×l.

It should be noted that Fa defines the structure of

parameters′ uncertainties or variations.

3 Structure of the sliding mode ob-

server

Consider the multiple observer presented in [5] which has

the following form:⎧⎪⎪⎨
⎪⎪⎩

˙̂x =
M∑

i=1

μi(z)(Aix̂ + Biu + Li(y − ŷ))

ŷ = Cx̂.

(5)

The estimation gains Li ∈ Rn×p are determined by solv-

ing the following LMI′s :

(Ai − LiC)TP + P (Ai − LiC) < 0, for i = 1 · · ·M. (6)

The structure of the proposed observer is an extended

form of (5) and it is given by⎧⎪⎪⎨
⎪⎪⎩

˙̂x =
M∑

i=1

μi(z)(Aix̂ + Biu + Li(y − ŷ) + αi)

ŷ = Cx̂

(7)

where x̂ ∈ Rn is the estimate state vector, Li ∈ Rn×p are

the estimation gains. αi represent the sliding mode gains

which play their role in compensating the uncertainties ΔAi

for each local model.
Theorem 1. The error estimation between the system

(4) and (7) converges asymptotically to zero if there ex-
ist symmetric positive definite matrix P ∈ Rn×n and ma-
trices Wi ∈ Rn×p, and a positive scalar ε such that for
i = 1, · · · , M :

[
AT

i P + PAi − CTWi
T + WiC + 2ε−1Na

i
TNa

i PMa
i

Ma
i

TP −ε−1I

]
< 0,

ε > 0 (8)

where C and Ma
i Na

i are known matrices.

And the following conditions are fulfilled⎧⎨
⎩

If r �= 0, then αi = ε−1x̂TNa
i

TNa
i x̂P−1CT s

‖ s ‖2

If r = 0, then αi = 0
(9)

where s is the sliding mode surface. The gains of the ob-

server are derived from Li = P−1Wi.

4 Stability analysis of the observer

In the proof of theorem, the following lemma is used:

Lemma 1. For every two matrices X and Y with ap-

propriate dimensions, the following property holds:

XTY + Y TX ≤ βXTX + β−1Y TY, β > 0 (10)

Lemma 2[26]. For a symmetric matrix M partitioned

into blocks:

M =

[
Z S

ST R

]
(11)

where both Z and R are symmetric and square. Assume

that R > 0, then the following properties are equivalent:

M > 0

Z − SR−1ST > 0.

In order to prove the stability of the observer, let us define

the state and output errors:

e = x − x̂ (12)

r = y − ŷ. (13)
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The dynamics of estimation error is given by

ė = ẋ − ˙̂x (14)

ė =

M∑
i=1

μi(z)((Ai − LiC)e + ΔAix − αi) (15)

defining the sliding surface

s = r = Ce = C(x − x̂). (16)

Considering the following candidate Lyapunov function:

V = sTQs (17)

where Q is a symmetric positive definite matrix and

rank(Q) = p. Using (15) and (16), its time derivative is

given by

V̇ = ṡTQs + sQṡ

V̇ =
M∑

i=1

μi(z)(eT(Ai − LiC)TCTQCe+

xTΔAi
TCTQCe − αT

i CTQCe+

eTCTQC(Ai − LiC)e+

eTCTQCΔAix − eTCTQCαi). (18)

Supposing that P = CTQC, one can obtain:

V̇ =
M∑

i=1

μi(z)(eT((Ai − LiC)TP + P (Ai − LiC))e+

xTΔAi
TPe + eTPΔAix − 2eTPαi). (19)

Applying the Lemmas 1 and 2, one can obtain:

xTΔAT
i Pe + eTPΔAix = xT(Ma

i FaNa
i )TPe+

eTPMa
i FaNa

i x = eTPMa
i FaNa

i x+

xTNa
i

TFT
a Ma

i
TPe ≤ εeTPMa

i Ma
i

TPe+

ε−1xTNa
i

TNa
i x. (20)

So, the derivative of the Lyapunov function can be ob-

tained as follows:

V̇ =
M∑

i=1

μi(z)(eT((Ai − LiC)TP + P (Ai − LiC)+

εPMa
i Ma

i
TP )e + ε−1xTNa

i
TNa

i x − 2eTPαi). (21)

Replacing the state by its new expression:

x = x̂ + e (22)

one can obtain the following equality:

ε−1xTNa
i

TNa
i x = ε−1(x̂ + e)TNa

i
TNa

i (x̂ + e) =

ε−1x̂TNa
i

TNa
i x̂ + ε−1x̂TNa

i
TNa

i e+

ε−1eTNa
i

TNa
i x̂ + ε−1eTNa

i
TNa

i e. (23)

Now, using the Lemma 1 with β = 1, this leads to obtain:

ε−1x̂TNa
i

TNa
i x̂ + ε−1x̂TNa

i
TNa

i e+

ε−1eTNa
i

TNa
i x̂ + ε−1eTNa

i
TNa

i e ≤
2ε−1x̂TNa

i
TNa

i x̂ + 2ε−1eTNa
i

TNa
i e. (24)

As a consequence, a new inequality can be obtained as

V̇ ≤
M∑

i=1

μi(z)(eT((Ai − LiC)TP + P (Ai − LiC)+

εPMa
i Ma

i
TP + 2ε−1Na

i
TNa

i )e + 2ε−1x̂TNa
i

TNa
i x̂

− 2eTPαi). (25)

According to the output error, two cases can be investi-

gated:

Case 1. If r �= 0, then

2ε−1x̂TNa
i

TNa
i x̂ − 2eTPαi = 0 (26)

αi = ε−1x̂TNa
i

TNa
i x̂P−1CT s

‖ s ‖2
. (27)

So, the inequality becomes:

V̇ ≤
M∑

i=1

μi(z)(eT((Ai − LiC)TP + P (Ai − LiC)+

εPMa
i Ma

i
TP + 2ε−1Na

i
TNa

i )e). (28)

Case 2. If r = 0, then αi = 0,

V̇ ≤
M∑

i=1

μi(z)(eT((Ai − LiC)TP + P (Ai − LiC)+

εPMa
i Ma

i
TP + 2ε−1Na

i
TNa

i )e). (29)

As a conclusion, the system converges asymptotically to

zero if and only if:

(Ai − LiC)TP + P (Ai − LiC)+

εPMa
i Ma

i
TP + 2ε−1Na

i
TNa

i < 0. (30)

Supposing Wi = PLi, we obtain

AT
i P + PAT

i − CTW T
i − W T

i C+

εPMa
i Ma

i
TP + 2ε−1Na

i
TNa

i < 0. (31)

By using Schur Complement, cited in Lemma 2, the in-
equality can be written in the LMI form:[

AT
i P + PAi − CTWi

T + WiC + 2ε−1Na
i

TNa
i PMa

i

Ma
i

TP −ε−1I

]
< 0.

(32)

After determining P and Wi, the values of estimation

gains are given by

Li = P−1Wi.

The sliding mode gains take the following expressions:⎧⎨
⎩

If r �= 0, then αi = ε−1x̂TNa
i

TNa
i x̂P−1CT s

‖ s ‖2

If r = 0, then αi = 0.
(33)

By using CCT = Ip, the value of Q can be deduced from P

as follows:

P = CTQC

CPCT = CCTQCCT

Q = CPCT.
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In conclusion, starting with V = sTQs > 0, where QT =

Q > 0, we obtain V̇ < 0. So, the estimation error converges

asymptotically to zero.

5 Numerical example

5.1 Description of denitrification process

In this section, the proposed design approach is applied

to a model of denitrification process. This process is a bac-

terial culture of Pseudomonas denitrificas where biomass,

X, begins consuming acetic acid, S3, and the nitrate, S1,

and rejects nitrites, S2. Then it continues to use acetic acid

and nitrite product.

The process is described by the following model[27]:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ṡ1 = −y11μ1X + D(S1in − S1)

Ṡ2 = (y12μ1 − y22μ2)X + D(S2in − S2)

Ṡ3 = −(y13μ1 − y23μ2)X + D(S3in − S3)

Ẋ = (μ1 + μ2)X − kdX − DX

(34)

where S1, S2, S3 and X are respectively the concentrations

of the respective species. S1in, S2in S3in are the respective

supply of S1, S2 and S3 concentrations. kd is the mortality

rate of the microorganisms. D is the dilution rate, and

the yij denote yield coefficients and finally μ1 and μ2 are

respectively the specific growth rates of the biomass on the

acetic acid and nitrite and have the following expressions:

μ1 = μ1max
S3

(S3 + kS3)

S1

(S1 + kS1)

μ2 = μ2max
S3

(S3 + kS3)

S2

(S2 + kS2)
.

Let′s define the state vector x, the input vector u and

the output vector y of the system: x = [S1 S2 S3 X]T,

u = [S1in S2in S3in]T and y = [S1 S2 S3]
T.

5.2 Multiple model form

The multiple model is adopted as an approach in order

to design the observer for state estimation. We employ the

procedure presented in [3, 4]. Considering the process, we

define the following nonlinearities as the premise variables:

z1 = D (35)

z2 =
S3

(S3 + kS3)

S1

(S1 + kS1)
(36)

z3 =
S3

(S3 + kS3)

S2

(S2 + kS2)
. (37)

The nonlinear model can be written in the following quasi-

linear parameter varying (LPV) form:

ẋ = A(z)x + B(z)u (38)

with matrix A(z) and B(z) are expressed by using the

premise variables:

A(z) =

⎡
⎢⎢⎢⎣
−z1 0 0 a14

0 −z1 0 a24

0 0 −z1 a34

0 0 0 a44

⎤
⎥⎥⎥⎦ (39)

B(z) =

⎡
⎢⎢⎢⎣
−z1 0 0

0 z1 0

0 0 −z1

0 0 0

⎤
⎥⎥⎥⎦ (40)

where

a14 = −y11μ1maxz2

a24 = y12μ1maxz2 − y22μ2maxz3

a34 = −y13μ1maxz2 − y23μ2maxz3

a44 = −z1 + μ1maxz2 + μ2maxz3 − kd. (41)

Each one of the premise variables can be expressed as

zj = Fj1zj1 + Fj2zj2, for j = 1, 2, 3 (42)

where

zj1 = max{zj}
zj2 = min{zj}
Fj1 =

zj − zj2

zj1 − zj2

Fj2 =
zj1 − zj

zj1 − zj2
. (43)

The constant matrices Ai and Bi defining the 8 submod-

els are determined by using the matrices A(z) and B(z) and

z(j, i), i = 1, 2 and j = 1, 2, 3.

A1 = A(z11, z21, z31), A2 = A(z11, z21, z32)

A3 = A(z11, z22, z31), A4 = A(z11, z22, z32)

A5 = A(z12, z21, z31), A6 = A(z12, z21, z32)

A7 = A(z12, z22, z31), A8 = A(z12, z22, z32)

B1 = B(z11), B2 = B3 = B4 = B1

B5 = B(z12), B6 = B7 = B8 = B5. (44)

The activation functions have the following expressions:

μ1(z) = F11F21F31

μ2(z) = F11F21F32

μ3(z) = F11F22F31

μ4(z) = F11F22F32

μ5(z) = F12F21F31

μ6(z) = F12F21F32

μ7(z) = F12F22F31

μ8(z) = F12F22F32. (45)

Finally the nonlinear model can be written in multiple

model form: ⎧⎪⎪⎨
⎪⎪⎩

ẋ =
8∑

i=1

μi(z)(Aix + Biu)

y = Cx.

(46)
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The multiple model used for denitrification process is

modified in order to take account of the uncertainties af-

fecting the parameters μ1max and μ2max. These parameters

appear in the coefficients a14, a24, a34, a44. So, the struc-

ture of ΔAi will have the following form:

ΔAi =

⎡
⎢⎢⎢⎣
0 0 0 Δa14i

0 0 0 Δa24i

0 0 0 Δa34i

0 0 0 Δa44i

⎤
⎥⎥⎥⎦ (47)

Δa14i = −y11Δμ1maxz2i

Δa24i = y12Δμ1maxz2i − y22Δμ2maxz3i

Δa34i = −y13Δμ1maxz2i − y23Δμ2maxz3i

Δa44i = Δμ1maxz2i + Δμ2maxz3i. (48)

As we have supposed that the uncertainties are of norm

bounded type: ΔAi = Ma
i FaNa

i where

Ma
i =

⎡
⎢⎢⎢⎣

−y11 0

y12z2i −y22z3i

−y13z2i −y23z3i

z2i z3i

⎤
⎥⎥⎥⎦ , Fa =

[
Δμ1max

Δμ2max

]

Na
i =

[
0 0 0 1

]
. (49)

The nonlinear model of the denitrification process and

the proposed observer are simulated under the initial con-

ditions and parameters values given, respectively, by Tables

1 and 2.

Table 1 Initial conditions

Variables Values

S1(0) 0.6 g/L

S2(0) 0 g/L

S3(0) 2.77 g/L

X(0) 0.15 g/L

Ŝ1(0) 0.6 g/L

Ŝ2(0) 0 g/L

Ŝ3(0) 2.77 g/L

X̂(0) 0.2 g/L

Table 2 Parameters values

Parameters Values

y11 6.2

y12 3.3

y22 1.2

y13 1.1

y23 1.6

µ1max0 0.17 h−1

µ2max0 0.085 h−1

kS1 0.05 g/L

kS2 0.07 g/L

kS3 0.1 g/L

kd 0.025 h−1

The variations of some parameters are shown in Fig. 1.

Fig. 1 Parameters variations

The uncertainties Δμ1max and Δμ2max are given as fol-

low: ⎧⎪⎨
⎪⎩

Δμ1max = 0.05 × sin(
2πt

50
)

Δμ2max = 0.02 × sin(
2πt

50
).

(50)

The evolution of the known inputs of the denitrification

process are shown by Fig. 2.

Fig. 2 Evolution of the known inputs

5.3 Luenberger observer

The resolution of the inequalities in (6) leads to obtain

the matrices P and Li:

P =

⎡
⎢⎢⎢⎣
1.376 9 0 0 0.624 5

0 1.376 9 0 −0.020 6

0 0 1.376 9 0.526 5

0.624 5 −0.020 6 0.526 5 2.028 9

⎤
⎥⎥⎥⎦

L1 =

⎡
⎢⎢⎢⎣
−0.725 2 −34.374 1 10.803 2

28.396 5 0.558 0 4.382 4

−9.310 1 −9.508 3 1.783 5

2.392 9 13.258 8 −3.722 3

⎤
⎥⎥⎥⎦
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L2 =

⎡
⎢⎢⎢⎣

1.326 2 −78.905 8 −7.289 1

65.398 9 0.803 7 8.535 9

7.050 2 −19.863 2 −0.528 4

−2.130 4 29.711 4 2.323 1

⎤
⎥⎥⎥⎦

L3 =

⎡
⎢⎢⎢⎣

4.445 2 21.629 0 −29.755 7

−18.100 0 0.239 4 −1.869 0

28.713 0 5.105 9 −3.423 6

−9.007 6 −8.077 9 9.894 1

⎤
⎥⎥⎥⎦

L4 =

⎡
⎢⎢⎢⎣

2.091 1 37.702 5 −11.052 2

−32.073 7 0.172 8 1.410 3

10.878 0 3.437 8 −1.017 6

−3.816 8 −12.536 9 3.602 3

⎤
⎥⎥⎥⎦

L5 =

⎡
⎢⎢⎢⎣

2.425 9 23.495 0 −11.340 5

−20.391 0 0.325 6 2.862 8

11.390 1 −0.136 3 −0.947 2

−4.400 7 −6.989 0 3.601 4

⎤
⎥⎥⎥⎦

L6 =

⎡
⎢⎢⎢⎣

0.702 3 −30.556 1 −0.200 3

25.716 9 0.589 1 −0.302 2

0.510 8 −3.773 3 0.498

−0.600 3 10.650 2 −0.178 5

⎤
⎥⎥⎥⎦

L7 =

⎡
⎢⎢⎢⎣

0.341 3 0.708 8 1.254 0

−0.439 4 0.421 2 −0.842 2

−1.024 7 1.056 8 0.686 4

0.195 5 −0.587 5 −0.670 4

⎤
⎥⎥⎥⎦

L8 =

⎡
⎢⎢⎢⎣

0.496 0 −0.137 0 0.101 2

0.133 9 0.430 0 −0.008 8

0.047 3 0.005 0 0.508 3

−0.145 4 0.002 0 −0.204 7

⎤
⎥⎥⎥⎦ .

The system and the observer are simulated with the pres-

ence of the uncertainties described by (50). Figs. 3−6 show

the Luenberger estimator tracking the real state. But, it is

mentioned that the accuracy is bad because the observer

Fig. 3 Evolution of S1: Real value (solid) and estimated value

(dotted)

Fig. 4 Evolution of S2: Real value (solid) and estimated value

(dotted)

Fig. 5 Evolution of S3: Real value (solid) and estimated value

(dotted)

Fig. 6 Evolution of X: Real value (solid) and estimated value

(dotted)

presents a non robust behavior. Moreover, it should be

highlighted that the non robustness appears very clear in



208 International Journal of Automation and Computing 14(2), April 2017

Fig. 5 because it corresponds to the unmeasured variable.

5.4 Sliding mode observer

Solving the inequalities described in (8) leads to obtain

the numeric values of the matrices P , Q and Li and the

scalar ε:

P =

⎡
⎢⎢⎢⎣
1.087 4 1.442 7 0.190 6 2.013 6

1.442 7 2.049 1 −0.042 7 2.223 6

0.190 6 −0.042 7 3.153 1 4.751 1

2.013 6 2.223 6 4.751 1 10.342 6

⎤
⎥⎥⎥⎦

ε = 3.041 0

L1 = 103

⎡
⎢⎢⎢⎣
−0.725 2 −34.374 1 10.803 2

0.007 9 0.066 3 0.767 3

0.037 9 −0.387 3 −0.028 0

−0.025 1 0.262 9 0.071 9

⎤
⎥⎥⎥⎦

L2 = 103

⎡
⎢⎢⎢⎣
−0.629 1 −0.930 9 1.062 1

0.369 6 0.579 9 −0.627 3

−0.089 6 −0.028 5 0.117 7

0.084 1 0.069 6 −0.126 1

⎤
⎥⎥⎥⎦

L3 =

⎡
⎢⎢⎢⎣
−95.998 6 −449.054 7 −373.767 6

158.013 2 278.704 3 152.003 4

124.331 8 −15.963 8 −114.290 6

−72.456 8 34.766 9 92.442 2

⎤
⎥⎥⎥⎦

L4 = 103

⎡
⎢⎢⎢⎣
−0.564 3 −1.440 1 −0.538 1

0.420 8 0.665 5 0.339 3

0.042 2 −0.385 3 −0.033 3

−0.000 1 0.314 2 0.047 0

⎤
⎥⎥⎥⎦

L5 =

⎡
⎢⎢⎢⎣

245.167 0 330.393 1 −109.980 7

−113.614 6 −120.024 4 21.615 0

73.863 0 134.920 7 −57.752 4

−57.267 7 −100.533 0 43.214 4

⎤
⎥⎥⎥⎦

L6 =

⎡
⎢⎢⎢⎣
−111.913 7 −431.242 2 −250.206 3

101.720 1 196.656 0 154.905 5

31.815 6 −120.240 6 −17.764 8

−14.730 5 96.875 6 23.491 2

⎤
⎥⎥⎥⎦

L7 =

⎡
⎢⎢⎢⎣
−22.885 6 −20.766 8 334.853 6

11.211 4 59.766 0 −205.384 0

−8.310 8 67.139 6 29.943 1

5.830 7 −39.686 5 −34.867 9

⎤
⎥⎥⎥⎦

L8 =

⎡
⎢⎢⎢⎣
−38.817 6 −223.497 2 −94.385 6

42.907 0 109.093 6 152.003 4

20.184 1 −52.384 6 −114.290 6

−10.971 5 44.084 7 7.164 3

⎤
⎥⎥⎥⎦ .

Each sliding mode gain αi is modified as follows:⎧⎨
⎩

αi = ε−1x̂TNa
i

TNa
i x̂P−1CT s

‖ s ‖2 + δ
, if s �= 0

αi = 0, if s = 0.
(51)

The parameter δ is a small scalar and it is used in order

to smooth out the discontinuity.

The simulation of the system and the sliding mode ob-

server took place with the same conditions of the observer

of Section 5.3. Figs. 7−10 show the evolution of the four

Fig. 7 Evolution of S1: Real value (solid) and estimated value

(dotted)

Fig. 8 Evolution of S2: Real value (solid) and estimated value

(dotted)

Fig. 9 Evolution of S3: Real value (solid) and estimated value

(dotted)
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Fig. 10 Evolution of X: Real value (solid) and estimated value

(dotted)

state variables of denitrification process. It is clear that

the estimated values converge to the real ones with an im-

proved accuracy which lead to say that the proposed ob-

server presents a robust behavior via parametric variations

in comparison with the observer of Section 5.3.

In Fig. 11, additional curves of estimation errors are pre-

sented in order to support the previous figures of state vari-

ables in showing the performance of the proposed observer.

It is noticed that e1, e2, e3 and e4 are the estimation errors

of S1, S2, S3 and X, respectively.

Fig. 11 Evolution of estimation errors

Another simulation is performed with different initial

conditions for the observer:

Ŝ1(0) = 0.7 g/L, Ŝ2(0) = 0.01 g/L,

Ŝ3(0) = 2.9 g/L, X̂(0) = 0.2 g/L.

The results are presented in Figs. 12–15 which show the

evolution of the state variables, for both the system and

the observer, and provide a zoom captured near the initial

conditions in order to check the behavior of the estimator

in the transient phase.

6 Conclusions

A robust sliding mode observer based on multiple models

is developed for a nonlinear uncertain system. The design

of observer gain is based on LMI′s tools that guarantee the

asymptotic convergence of estimation error. A sliding mode

(a) Evolution of S1

(b) View near initial conditions of S1

Fig. 12 Curves of S1: Real value (solid) and estimated value

(dotted)

(a) Evolution of S2
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(b) View near initial conditions of S2

Fig. 13 Curves of S2: Real value (solid) and estimated value

(dotted)

(a) Evolution of S3

(b) View near initial conditions of S3

Fig. 14 Curves of S3: Real value (solid) and estimated value

(dotted)

term is added in order to ensure the robustness against the

uncertainties. A classic Luenberger multiples observer and

the proposed multiple observer are applied to estimate the

state of a denitrification process under uncertainties that

affected the maximum of specific growth rates. The simu-

lation results demonstrate the effectiveness of the proposed

multiple observer.

(a) Evolution of X

(b) View near initial conditions of X

Fig. 15 Curves of X: Real value (solid) and estimated value

(dotted)
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