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Abstract: In practice, the model structure, parameters and time-delay of the actual process may vary simultaneously. However,

the general identification methods of the 3 items are performed with separate procedures which is very inconvenient in practical

application. In view of the fact that variable selection procedure can ensure a compact model with robust input-output relation and in

order to explore the feasibility of variable selection algorithm for the simultaneous identification of process structure, parameters and

time-delay, non-negative garrote (NNG) algorithm is introduced and applied to system identification and the corresponding procedures

are presented. The application of NNG variable selection algorithm to the identification of single input single output (SISO) system,

multiple input multiple output (MIMO) system and Wood-Berry tower industry are investigated. The identification accuracy and

the time-series variable selection results are analyzed and compared between NNG and ordinary least square (OLS) algorithms. The

derived excellent results show that the proposed NNG-based modeling algorithm can be utilized for simultaneous identification of the

model structure, parameters and time-delay with high precision.
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1 Introduction

System identification is the foundation of model predic-

tive control and control performance assessment. Many

critical real-time process variables with time-series are con-

tained in many industry processes. It is better to use

identified model to predict the key response variables that

are difficult to be measured with some existed sensor vari-

ables. This model is named inferential sensor model or soft-

sensor model[1]. The application and many kinds of soft-

sensor models or identification methods in different fields

were studied in [2, 3]. The development of soft sensor faces

many challenges. For example, the relationship between

input and output may be nonlinear or vary from time to

time when process operating conditions are changing[4]. So,

non-parametric model, for example, neural network or mul-

tiple local model network, is used to deal with nonlinear

problems generally[5]. The problems of over-fitting and

vagueness of interpretation occur in the black box model

inevitably. In order to deal with the time-variant charac-

teristics in the industry process, adaptive model and real-

time model are used usually. Many sensors are used in the

modern industry process. But, the availability of the data

does not mean that one can get useful information success-
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fully. The method of linear multivariate statistical analysis,

such as, principle component regression (PCR), partial least

squares (PLS)[6] and canonical variables analysis (CVA),

are used to overcome collinearity of high-dimensional and

candidate predictor variable problems in the development

of soft-sensor process[7]. Those methods try to reduce some

latent variables of sensors. In the PCR algorithm, the la-

tent variables represent the main direction of variation in-

formation in the sensor variables. However, the quality of

prediction result has nothing to do with the latent variables.

The prediction will be successful only if the eigenvalues of

latent variables are very small. The aim of PLS is to find

the direction of max covariance between sensor variables

and response variables. The recursive PLS algorithm was

proposed by Qin[8]. The study proved that recursive PLS

algorithm is a useful process monitoring tool. CVA algo-

rithm maximizes the correlation between input and output,

however it cannot ensure the coefficient of irrelevant vari-

able to be zero. Although the PCR/PLS/CVA algorithms

can shrink sensor variables into several key latent variables,

many contributing information from predictor variables are

contained. This is not an ideal situation, because the opera-

tor cannot understand the physical meaning between input

and output and focus on the critical factors of controllable

variables. An important characteristic of model identifi-

cation is the appropriate variable selection. It increases

the transparency and robustness of the model. The process

variables are subjected to simple statistical analyses to iden-

tify a subset of measurements to be used in the inferential
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scheme. This can help us understand the physical meaning

of input and output and focus on analyzing the main factor.

It is important to analyze and decide what makes the sys-

tem performance worse[9]. Recently, the tightening method

based on shrinking or setting coefficients of a greedy model

to has drawn a lot of attention. The two popular meth-

ods are non-negative garrote (NNG)[10] and least absolute

shrinkage and selection operator (LASSO)[11]. The NNG

method has two stages which are shrinkage amplitude and

the parameter estimation of regression model with ordinary

least square (OLS). LASSO and its mutation algorithm can

calculate the parameter and shrink amplitude at the same

time, but one must make sure that the objective function

is a piecewise continuous function. The advantage of these

methods is that the irrelevant variable will be shrunk to

zero. Meanwhile, this method and other similar methods

are very popular in the field of biological data exploration

and machine learning[12]. However, they are not widely

used in the modeling of industry process. Pan et al.[5] put

forward an improved partial least square NNG algorithm,

in order to establish a static input and output model of final

quality prediction during the semiconductor manufacturing

process. The classical variable selection methods are based

on Cp criteria (CP), Akaike information criterion (AIC),

the Bayes information criterion (BIC), etc. However, these

methods are computationally infeasible for even moderate

numbers of predictors. This type of method is implemented

in stepwise fashion through forward selection or backward

elimination[13]. The implementations are known to be sub-

optimal in many applications because of the myopic nature

of the stepwise. However, NNG algorithm can select the

variable via shrinking or setting greedy model parameter

to be zero. NNG method can make up for the deficiency

of the traditional variable selection. It is proved that NNG

method is path consistent in the sense of probability and the

coefficient estimation or variable selection has a consistency

with actual process model at least. Many existing process

identification methods suppose that the model structure is

known. In fact, this is not true in most cases. The model

order is determined by system input and output data, when

there is no prior knowledge of model structure. The accu-

racy of model cannot be met if the model order is too low.

However, the model will be too complicated with a high

model order. There existed some specific methods to deter-

mine model order, however, its separated from parameter

identification[14, 15]. Furthermore, the time delay or inter-

action matrix identification plays an important role in de-

termination of performance benchmarks for control system

performance evaluation/monitoring. The NNG variable se-

lection algorithm is used as a new method to identify the

open loop process parameters. The identification result and

the model order can be obtained simultaneously. The delay

time of the model or interactor matrix can be achieved as a

bonus. The details are as follows: we can construct a high

order (higher than the real order) model during the identi-

fication, that is construct enough time series as alternative

variables, then select the vital variables and the correspond-

ing model order with the usage of NNG algorithm. This

identification method can help us understand the physical

meaning of the input and output by analyzing the key fac-

tors. Furthermore, it is helpful to figure out the causes of

affecting the performance. For the variable selection prob-

lem in the linear regression model, the requirements are as

follows: the independent variables contained in the regres-

sion equation are as little as possible; small variance and

less mean square error of regression coefficient and small

mean square error of prediction value[10]. Therefore, the

accuracy of prediction and interpretability are two impor-

tant indicators of the estimation of regression model. The

final goal of variable selection is to determine a simpler vari-

able among all the variables. There are two steps for NNG

modeling[16]. The first step is to achieve a set of regres-

sion coefficient with conventional least square (LS) method.

The second step is to solve a series of constrained quadratic

programming problem to shrink the regression coefficient

with the goal of variable selection. In practice, the model

structure, parameter and time-delay of the actual process

may vary simultaneously. However, the general identifica-

tion methods of the three items are performed with separate

procedures and it is very inconvenient in practical applica-

tion. As we know, proper variable selection procedure can

ensure a compact model and results in robust input-output

relation, so the variable selection algorithm is introduced

to investigate the feasibility of simultaneous identification

of process structure, parameter and time-delay. A novel

method of system identification is proposed based on NNG

variable selection in this paper. This method can obtain

the model structure, parameter and time-delay at the same

time rather than in three separate procedures. The derived

excellent results show that the proposed NNG-based model-

ing algorithm can be utilized for simultaneous identification

of the model structure, parameter and time-delay with high

precision.

2 Problem formulation

An Auto-regressive exogenous (ARX) model is consid-

ered as follows:

A(z−1)y(k) = B(z−1)u(k − d) + ξ(k) (1)

where ξ(k) is a white noise with zero mean and unit vari-

ance, and A(z−1) = 1 + a1z
−1 + a2z

−2 + · · · + anaz−na ,

B(z−1) = b1z
−1 + b2z

−2 + · · ·+ bnbz−nb , {a1, a2, · · · , ana}
are the parameters to be identified using process input and

output data {u1, u2, · · · , uN} and {y1, y2, · · · , yN} respec-

tively.

Equation (1) can be written in another way as below:

y(k) =− a1y(k − 1)− · · · − anay(k − na)+

b1u(k − d− 1) + · · ·+ bnbu(k − d− nb) + ξ(k). (2)

The structure parameters na, nb and d must be known

as priori knowledge for the most system identification algo-

rithms. However, it is difficult to know the structure pa-
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rameter in some cases. So, the regular system identification

algorithms do not work in this situation.

We assign a value to the structure parameters na, nb, for

example, na = Na, nb = Nb. We can ensure that Na and

Nb are bigger enough than the actual value of structure

parameter. Then, (2) can be re-written as

y(k) =− a1y(k − 1)− · · · − aNay(k −Na)+

b1u(k − 1) + · · ·+ bNbu(k −Nb) + ξ(k). (3)

Then NNG variable selection algorithm can be utilized

to calculate the values and frequencies of each time-series

variables. When the tightening method based on shrink-

ing is utilized, many setting coefficients of the model will

become 0. Suppose that the result is as follows:

{a1, a2, · · · , aNa} = {ar1, ar2, · · · , ara, 0, · · · , 0}
{b1, b2, · · · , bNb} = {0 · · · 0, br1, br2, · · · , brb, 0, · · · , 0}.

(4)

Then, from (4), we know that there are Na− ra parame-

ters of {y(k−1), · · · , y(k−Na)} being 0 and Nb−rb param-

eters of {u(k − 1), · · · , u(k − Nb)} being 0. The identified

system can be written as

y(k) =− ar1y(k − 1)− · · · − aray(k − ra)+

br1u(k − d− 1) + · · ·+ brbu(k − d− rb) + ξ(k).

(5)

Thus, it can be concluded that ra is the order of the

system and d is the delay time of the process.

3 The conventional identification algo-

rithm

3.1 Least squares identification

As described in (1) and (2), (2) can be transformed into

y(k) = ϕT(k)θ + ξ(k) (6)

where ϕT(k) ∈ R(na+nb+1)×1 , ϕT(k) =

[−y(k − 1), · · · ,−y(k − na), u(k − d), · · · , u(k − d− nb)]
T

and θ = [a1, · · · , ana , b0, · · · , bnb ]
T ∈ R(na+nb+1)×1.

It is supposed that the input and output data

{y(k), u(k), k = 1, 2, · · ·L} can be rewritten, where L is

the length of the data.

y(1) = ϕT(1)θ + ξ(1)

y(2) = ϕT(2)θ + ξ(2)

...

y(L) = ϕT(L)θ + ξ(L). (7)

Assume that

Y =




y(1)

y(2)
...

y(L)



∈ RL×1, Φ=




ϕT(1)

ϕT(2)
...

ϕT(L)



∈ RL×(na+nb+1).

(8)

From (8), the least squares equation can be obtained as

below:

Y = Φθ + ζ (9)

where Y and Φ are formed by input and output data, θ is

the parameters that need to be identified.

θ = (ΦTΦ)−1ΦTY. (10)

However, the structure parameters na, nb and d must be

known as priori knowledge for the least square identification

algorithm. Furthermore, it is difficult to know the struc-

ture parameter in some cases. So, the LS identification

algorithm does not work in the circumstance of identifying

model structure, parameter and time-delay simultaneously.

3.2 Subspace identification

A state space model of linear invariant system is consid-

ered as follows:

x(k + 1) = Ax(k) + Bu(k) + Ke(k)

y(k) = Cx(k) + Du(k) + e(k) (11)

where x(k) ∈ Rn, u(k) ∈ Rm, y(k) ∈ Rp and e(k) ∈ Rp is

white noise sequence with covariance Ke. (A, B, C, D) are

the system matrices of controller with appropriate dimen-

sion.

We should construct the Hankel matrix of the input and

output data to identify the plant system parameters. The

standard subspace notation can be achieved through the

iteration of (11).

Yf = ΓNXf + Hd
NUf + Hs

NEf

Yp = ΓNXp + Hd
NUp + Hs

NEp

Xf = ANXp + ∆d
NUp + ∆s

NEp

(12)

where subscript p denotes past horizon and f denotes fu-

ture horizon. Respectively, the past and future input block

Hankel matrices are defined as

Up =




u0 u1 · · · uj−1

u1 u2 · · · uj

...
...

. . .
...

uN−1 uN · · · uN+j−2




Uf =




uN uN+1 · · · uN+j−1

uN+1 uN+2 · · · uN+j

...
...

. . .
...

u2N−1 u2N · · · u2N+j−2




.
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Meanwhile, the past and future output block Hankel ma-

trices Yp and Yf have the same structure. The state matri-

ces Xp, Xf are defined as follows:

Xp = X0 =
(

x0 x1 · · · xj−1

)
∈ Rn×j

Xf = XN =
(

xN xN+1 · · · xN+j−1

)
∈ Rn×j .

(13)

The lower triangular Toeplitz matrices Hd
N , Hs

N are de-

fined as

Hd
N=




D 0 0 · · · 0

CB D 0 · · · 0

CAB CB D · · · 0
...

...
...

. . .
...

CAN−2B CAN−2B CAN−2B · · · D



∈ RlN×mN

Hs
N=




I 0 0 · · · 0

CK I 0 · · · 0

CAK CK I · · · 0
...

...
...

. . .
...

CAN−2K CAN−2K CAN−2K · · · I



∈ RlN×lN .

The extended observability matrix is

ΓN =
(

CT (CA)T (CA2)
T · · · (CAN−1)

T
)T

.

The future input Uf and Ef can be eliminated by con-

ducting an oblique projection
Yf

Uf Wp
of the subspace matrix

(14) for the case of open loop system.

Yf = ΓNXf + Hd
NUf + Hs

NEf (14)

ON =
Yf

UfWp
= ΓN X̂N (15)

where Wp =
(

Up Yp

)T

, X̂f is the estimation state se-

quence. The column space of ON and ΓN are overlapped,

when ΓN is full rank. The system order is equal to the

dimension of ΓN , that is rank(ON ) = n.

ON can be obtained by conducting singular value decom-

position (SVD) of ΓN .

ON =
(

U1 U2

) (
S1 0

0 S2

) (
V1

T

V2
T

)
(16)

where S1 ∈ Rn×n. It is supposed that ΓN = U1S1
1
2 . Then

X̂f = ΓN
†ON . S2 = 0, when the system is without noise.

The elements of S2 are much closed to zero, when there

is existence of noise, while the diagonal of S1 are bigger

than zero. So the numerical value that is greater than zero

stands for the order of the system.

There are two steps of subspace identification: 1) Con-

struct the Hankel matrices with the past and future input

and output data to obtain the predicted subspace. Then the

system observation matrix or state sequence and the sys-

tem order can be achieved by the SV decomposition of the

predicted subspace. 2) Obtain the system state matrices

{A, B, C, D} by solving the least squares problems. There

are two kinds of identification algorithms, that is observa-

tion matrix based and state sequence estimation based.

From this section, we know that either least squares iden-

tification algorithm or subspace identification algorithm can

identify the model structure, parameter and time-delay in

separate procedures. However, the model structure, param-

eter and time-delay of the actual process may vary at the

same time. So the conventional identification algorithms

are very inconvenient in practical application. Thus, its so

urgent and valuable to have a methodology to identify the

model structure, parameter and time-delay simultaneously.

4 System identification based on non-

negative garrote

Assuming that a set of observed data {X, y}, X ∈ Rn×p

is the input matrix. p represents the number of input vari-

ables. y ∈ Rn×1 is the quality variables (response vari-

ables). Suppose that S and y have normalized zero mean

and unit standard deviation. β̂0 ∈ Rp×1 is the estimation

of linear regression model with OLS.

y = Xβ + ε. (17)

Equation (6) can be also established, when ε is a color

noise rather than white noise. There is no noise correlation

between y and X in the open-loop system. The second

step is to shrink the coefficient by solving the optimization

problem:

J = min
cj

∥∥∥y −Xβ̂0 · ∗c
∥∥∥

2

s.t. cj ≥ 0,
px∑

j=1

cj ≤ s.
(18)

With s decreasing, more cj is equal to 0, the other non-

zero coefficients are shrunk. Given 0 ≤ s ≤ p, we can get

a set of solutions. Solution trajectory will appear when s

is varying from 0 to p. Prediction error is estimated by

the method of v-fold cross validation[17] to find the opti-

mal s to minimize prediction error, then we can get the

optimal regression coefficient. The detail of steps for de-

termining optimal regression coefficient with the method of

v-fold cross validation are as below:

1) The data set L = {X, y} can be separated into sub-

set L1 · · ·Lv. The initial prediction coefficient β̂ of every

subset is calculated with ordinary least square, then, the

optimization problem of (18) is solved as

c(v)(s) = arg min
cj

nLv∑
i=1

(yi −Xic · ∗β̂)
2

s.t. cj ≥ 0,
px∑

j=1

cj ≤ s.
(19)
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Suppose that L̄v = L − Lv, then, the cross validation

error is

CV E(v)(s) =

nL̄v∑
i=1

(yi −Xic
(v)(s) · ∗β̂)

2
. (20)

Optimal s can be selected by minimizing v-fold cross val-

idation error, that is

s∗ = arg min
0≤s≤px

1

v

v∑
v=1

CV E(v)(s) (21)

2) Once again the following equation is solved to achieve

the overall optimal regression coefficient:

c∗ = arg min
cj

nL∑
i=1

(yi −Xic · ∗β̂)
2

s.t. cj ≥ 0,

px∑
j=1

cj ≤ s∗. (22)

3) The regression coefficient derived from NNG algorithm

can be expressed as follows:

β̂NNG = c∗ · ∗β̂. (23)

The advantages of NNG algorithm are easiness and con-

venience in practice. The differences between NNG and

other subset selection methods are as follows:

In the method of subset selection, the trade-off between

the effectiveness of model fitting and the penalty strength

of the number of selected variables is presented via differ-

ent criteria, while the approach of NNG is implemented

by directly selecting the parameter s. Different values of s

correspond to different penalty strength[10].

5 Simulation application

5.1 SISO system

In order to verify the validity of process model and time

delay identification NNG-based method, considering a sec-

ond order model described by (24)

A(q)y(t) = B(q)u(t) + ε(t) (24a)

where ε(k) is a white noise with mean 0 and unit variance.

And where
{

A(q) = 1− 1.5q−1 + 0.7q−2

B(q) = q−d(1 + 0.5q−1)
(24b)

d is delay time of second order system, and d ≥ 1 .

Zero mean and unit variance white noise is used to moti-

vate the system in the experience. Suppose that the orders

of polynomial A(q) and B(q) of ARX model is (5, 5) when

generating open-loop input and output data. So, the pa-

rameters that need to be identified are a1, · · · , a5, b0, · · · , b5

respectively. Set sample size as nL = 1500. The value of d

can be selected as 1, 2, 3, 4. Regression coefficient of 1 000

sets of open-loop input and output data can be estimated

by NNG algorithm. The frequency of every non-zero coef-

ficient in 1 000 experiments is shown as in Fig. 1.

From Fig. 1 (a), we notice that the frequency of

a1, a2, b1, b2 whose coefficients are not equal to zero is 1 000

respectively, whereas the others are less than 300 when

d = 1. So, we know that a1, a2, b1, b2 are not zero, while

the other coefficients are equal to zero, with the method of

NNG algorithm in the ARX model. The order of polyno-

mial A(q) is 2. Because a1a2 are not equal to zero, while

a3a4a5 are equal to zero. In the same way, we know that

the order of B(q) is 2. The system delay time d is 1, because

b0 is zero. We can derive the system order and system de-

lay time from the other figures in the same way. So, NNG

algorithm is useful for the identification of the system order

and system delay time.

When d = 3, the parameter trajectory of 1 000 experi-

ments with the identification method of NNG algorithm is

shown in Fig. 2.

From Fig. 2, the identified parameter fluctuates up and

down in the vicinity of the actual value, which illustrates

the effectiveness of the identification result with NNG al-

gorithm. When d = 3, the compared result of the mean

value and standard deviation of parameters with NNG and

OLS algorithms using the same data is shown in Table 1.

We can see that the resulting value identified with OLS is

larger than that with NNG for the zero actual parameter

and so is the standard deviation of sample data. As all the

(a) d = 1

(b) d = 2
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(c) d = 3

(d) d = 4

Fig. 1 The frequency of non-zero regression coefficients in 1000

experiments

regression coefficient identified by OLS are not equal to 0

during the 1 000 experiments, so model structure and delay

time cannot be obtained via OLS identification method.

We can conclude that the regression model derived from

NNG method are fewer parameter, less complexity and

good accuracy.

(a) The identified coefficient A(q)

(b) The identified coefficient B(q)

Fig. 2 The identified coefficient trajectory with NNG algorithm

in 1 000 experiments

5.2 MIMO system

In order to verify the effectiveness of NNG algorithm for

MIMO system, consider a MIMO system (25)





A(q)y(k) = B(q)u(k) + ε(k)

A(q) = 1− 0.8q−1 − 0.2q−2 + 0.6q−3

B(q) =

[
B11 B12

B21 B22

]

B11 = 3q−1 − 3.5q−2 − 1.5q−3

B12 = −4q−2 − 2q−3 − q−4

B21 = q−1 − 0.2q−2 − 0.5q−3

B22 = q−1 − 1.5q−2 + 0.5q−3 + 0.2q−4.

(25)

Fig. 3 The frequency of non-zero regression coefficient in 1000

experiments

Here, ε(k) is a white noise with zero mean and unit vari-

ance. In the experiment, a white noise with zero mean

and unit variance is used to excite the system. Sup-

pose that the orders of A(q) and B(q) of ARX model

are (5, 5, 5, 5, 5) when generating open loop input and

output data, where A(q) = [a1, a2, a3, a4, a5], B(q) =

[B11(q), B12(q), B21(q), B22(q)]. The parameters need to
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be identified are a1, a2, a3, a4, a5 and the coefficient of

B11(q), B12(q), B21(q), B22(q). The data length is nL =

1500. The regression coefficient of 1 000 sets of input and

output data are estimated with NNG algorithm. The fre-

quencies of non-zero coefficient in the 1 000 experiments are

shown as bar graph in Fig. 3. We can obtain that the or-

der of A(q), B11(q), B21(q), B12(q), B22(q) are 3, 3, 3, 4,

4 respectively. The coefficient trajectories of A(q), B22(q)

with the NNG identification method in 1 000 experiments

are shown in Fig. 4. The identified parameters fluctuate

around the actual value. This proves the effectiveness of

the identification result with NNG algorithm.

(a) The identified coefficient A(q)

(b) The identified coefficient B11(q)

(c) The identified coefficient B12(q)

(d) The identified coefficient B21(q)

(e) The identified coefficient B22(q)

Fig. 4 The identified coefficients trajectory of

A(q), B11(q), B12(q), B21(q), B22(q) with NNG algorithm in

1000 experiments

5.3 Industrial example

A two input two output Wood-Berry tower model is con-

sidered in this application. This methane/water rectifying

tower is a classic MIMO system with large time delay. The

tower has strong temperature influence between top and

bottom part. The outputs of this model are the concentra-

tion y1 of distillate from the top of tower and the concen-

tration y2 of liquid from the bottom of tower. The outputs

are controlled by the back flow u1 from the top and steam

reboiler u2 from the bottom. Feed flow w is unmeasurable

disturbance variable. G(s) is the transfer function and H(s)

is the disturbance transfer function.

y = G(s)u + H(s)w (26a)





G(s) =




12.8e−s

16.7s + 1
−18.9e−3s

21.0s + 1
6.6e−7s

10.9s + 1
−19.4e−3s

14.4s + 1




H(s) =




3.8e−8s

14.9s + 1
4.9e−3s

13.2s + 1


 .

(26b)
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Sample time Ts = 1 s. The discretized process model is

G(q):

G(q) =
1

A(q)

[
B11(q) B12(q)

B21(q) B22(q)

]
(27a)





A(q) = 1.000 0− 3.740 6q−1+5.246 7q−2−3.270 4q−3+

0.764 4q−4

B11(q)=0.744 0q−1−2.082 2q−2+1.942 2q−3−0.603 8q−4

B12(q) = −0.878 9q−3 + 2.449 6q−4−2.275 6q−5+

0.704 6q−6

B21(q) = 0.578 6q−7+− 1.636 3q−8+1.542 6q−9+

−0.484 7q−10

B22(q) = −1.301 5q−3+3.654 3q−4−3.419 5q−5+

1.066 4q−6.

(27b)

The disturbance w is a white noise with 0 mean and unit

variance. The excitation input has also a 0 mean and unit

variance white noise. Suppose that the order of ARX model

is (5, 11, 11, 11, 11) when generating the input and output

data. Here, A(q) = [a1a2 · · · a12]. There are twelve param-

eters in each polynomial B11(q), B12(q), B21(q), B22(q).

Given nL = 1000. The regression coefficients of 1 000 sets

of input and output data are estimated with NNG algo-

rithm. The frequency of non-zero coefficient in the 1000

experiments are shown as bar graph in Fig. 5. We can ob-

tain that the order of A(q), B11(q), B12(q), B21(q), B22(q)

as 4, 4, 6, 10, 6, respectively.

It can been seen from Fig. 5 that the selected frequency

of variables with zero coefficients is less than 200 and most

of them is about 100. This results illustrate that the vari-

ables with zero coefficient are not been selected in about

90% of the experiments. This figure can prove the effec-

tiveness of variable selection with NNG algorithm. The ten-

dency chart of the identified A(q) which fluctuates around

the true value is shown in Fig. 6.

Fig. 5 The frequency of non-zero regression coefficients in 1000

experiments

Fig. 6 The identified coefficients trajectory with NNG algo-

rithm in 1 000 experiments

Table 1 The identified coefficients with different identification methods

Parameter True value Mean of NNG Standard variance of NNG Mean of OLS Standard variance of OLS

a1 −1.5 −1.499 8 0.017 4 −1.498 8 0.024 5

a2 0.7 0.699 8 0.024 0.697 7 0.046 1

a3 0 0.000 1 0.016 2 0.001 8 0.044 4

a4 0 0.000 1 0.012 −0.001 1 0.035 2

a5 0 0.000 0.005 5 0.000 4 0.017 2

b0 0 0.000 5 0.012 2 0.000 8 0.026 1

b1 0 0.000 2 0.010 6 −0.000 2 0.025 4

b2 0 −0.000 1 0.010 3 0.001 0.02 6

b3 1 0.998 7 0.025 7 0.999 7 0.026 3

b4 0.5 0.495 2 0.030 6 0.502 3 0.035 3

b5 0 0.000 1 0.014 7 0.000 6 0.025 6
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6 Conclusions

Many existing process identification methods treat the

structure, parameter and time-delay identification with sep-

arate procedures. In practice, the model structure is known

as priori knowledge. In fact, this is unrealistic in most

cases. The model accuracy cannot be met if the model

order is supposed smaller than the actual value. In con-

trast, the model will become too complicated with a high

model order. The usual way to determine the model order

is to increase gradually the order from low to high and to

meet the accuracy requirements during the process identi-

fication. In other words, the model structure identification

and the parameter identification are treated as two inde-

pendent tasks. What is more, the time delay, which plays

an important role in determination of control performance

benchmarks, has to be determined with other special meth-

ods. Thus, the existing identification methods for the three

items are performed with separate procedures which is very

inconvenient in practical application. In order to explore

the feasibility of variable selection algorithm for the simul-

taneous identification of process structure, parameter and

time-delay, NNG algorithm is introduced and applied to

system identification. The application of NNG variable se-

lection algorithm in simulation examples and Wood-Berry

tower model are investigated. The identification accuracy

and the time-series variable selection results are compared

and analyzed between NNG and OLS algorithm. The de-

rived excellent results show that the proposed NNG-based

modeling algorithm can be utilized for simultaneous identi-

fication of the model structure, parameters and time-delay

with high precision. But as the NNG algorithm can be only

used to open-loop system, so how the NNG algorithm can

be used for closed-loop system can be further studied.
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