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Abstract: In this paper, a Duffing oscillator model with delayed velocity feedback is considered. Applying the time delayed feedback

control method and delayed differential equation theory, we establish some criteria which ensure the stability and the existence of

Hopf bifurcation of the model. By choosing the delay as bifurcation parameter and analyzing the associated characteristic equation,

the existence of bifurcation parameter point is determined. We found that if the time delay is chosen as a bifurcation parameter,

Hopf bifurcation occurs when the time delay is changed through a series of critical values. Some numerical simulations show that the

designed feedback controllers not only delay the onset of Hopf bifurcation, but also enlarge the stability region for the model.
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1 Introduction

It is well known that the dynamical behaviors of Duff-

ing oscillator with delayed feedback have been one of the

dominant themes in nonlinear dynamics due to their univer-

sal existence and importance. Over the past decade, there

has been considerable interest in investigating the Duffing

oscillator′s dynamics in various fields of mathematical and

engineering fields. Many excellent and interesting results

have been reported[1−19]. In 2009, Hu and Wang[17] intro-

duced and discussed the following Duffing oscillator with

delayed velocity feedback

ẍ(t) + cẋ(t) + ω2
0x(t) + μx3(t) = νẋ(t − τ ) (1)

where x ∈ R, and the system parameters yield c ≥ 0, ω0 >

0, μ > 0, c − ν > 0. Applying the singular perturbation

methods, Hu and Wang[17] investigated the local Hopf bifur-

cation of (1). The singular perturbation methods (e.g., the

method of multiple scales, the method of averaging, the en-

ergy analysis and the pseudo-oscillator analysis, etc.) have

some advantages over the normal form theory and the cen-

ter manifold theorem in studying the Hopf bifurcation. In

many cases, the singular perturbation methods have some

merits such as easier computation and higher accurate pre-

diction on the local dynamics of time-delay near a Hopf

bifurcation point[17]. It is highlighted as very important to

make the delayed Duffing oscillator stable or improve the
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stability of delayed Duffing oscillator by applying feedback

controller. In this paper, we are concerned with two prob-

lems: one is how to design the controller to improve the

stability of original system (1) when the time delay in orig-

inal system (1) is equal to the time delay in controller and

the parameters of the original system are given, another is

how to design the controller to enlarge the stability region

of original system (1) when the time delay in original sys-

tem (1) is not equal to the time delay in controller and the

parameters of the original system are given. Based on the

analysis above, we will add the following delayed feedback

controller to system (1)

u(t) = k[x(t) − x(t − σ)] (2)

where k is a feedback control parameter. σ is time delay.

Then system (1) takes the form

ẍ(t) + cẋ(t) + ω2
0x(t) + μx3(t) =

νẋ(t − τ ) + k[x(t) − x(t − σ)] (3)

where c ≥ 0, ω0 > 0, μ > 0, c − ν > 0.

In this paper, we will devote our attention to investi-

gating the stability and the existence of Hopf bifurcation

of system (3). That is to say, we shall take the delay τ

as the bifurcation parameter and show that when τ passes

through a certain critical value, the equilibrium loses its

stability and Hopf bifurcation will take place.

This paper is organized as follows. In Section 2, the sta-

bility of the equilibrium and the existence of Hopf bifurca-

tion at the equilibrium are studied. In Section 3, numerical

simulations are carried out to illustrate the validity of the

designed feedback controllers.
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2 Stability and local Hopf bifurcation

In this section, by analyzing the characteristic equation

of the linearized system of system (3) at the equilibrium, we

investigate the stability of the equilibrium and the existence

of the local Hopf bifurcations occurring at the equilibrium.

Let y(t) = ẋ(t), then system (3) has the following equiv-

alent form:
⎧
⎪⎨

⎪⎩

ẋ(t) = y(t)

ẏ(t) = (k − ω2
0)x(t) − cy(t) + νy(t − τ )−

μx3(t) − kx(t − σ).

(4)

Obviously, (4) has a unique equilibrium E(0, 0). Then we

obtain the linearized system of (4)
⎧
⎪⎨

⎪⎩

ẋ(t) = y(t)

ẏ(t) = (k − ω2
0)x(t) − cy(t) + νy(t − τ )−

kx(t − σ)

(5)

whose characteristic equation is

λ2 + cλ + ω2
0 − k − νλe−λτ + ke−λσ = 0. (6)

To study the stability of the equilibrium E(0, 0) of (4) and

Hopf bifurcation, it is sufficient to investigate the distri-

bution of roots of the transcendental (6). The following

Lemma that is stated in [20] is useful in studying the loca-

tion of roots of the transcendental (6).

Lemma 1[20]. For the transcendental equation

P (λ, e−λτ1 , · · · , e−λτm) =

λn + p
(0)
1 λn−1 + · · · + p

(0)
n−1λ + p(0)

n +
[
p
(1)
1 λn−1 + · · · + p

(1)
n−1λ + p(1)

n

]
e−λτ1 + · · ·+

[
p
(m)
1 λn−1 + · · · + p

(m)
n−1λ + p(m)

n

]
e−λτm = 0

as (τ1, τ2, τ3, · · · , τm) vary, the sum of orders of the zeros

of P (λ, e−λτ1 , · · · , e−λτm) in the open right half plane can

change, and only a zero appears on the imaginary axis or a

zero crosses the imaginary axis.

Now we consider two cases.

Case 1. τ = σ. In this case, (6) takes the form

λ2 + cλ + ω2
0 − k − (νλ − k)e−λτ = 0. (7)

Lemma 2. When τ = 0, the equilibrium E(0, 0) of

system (3) is asymptotically stable.

Proof. For τ = 0, the characteristic (7) becomes

λ2 + (c − ν)λ + ω2
0 = 0. (8)

Since c − ν > 0, ω2
0 > 0, then both roots of (8) are nega-

tive. Thus (3) is asymptotically stable.

For ω > 0, iω is a root of (7) if and only if

−ω2 + cωi + ω2
0 − k − (νωi − k)e−ωτ i = 0. (9)

Separating the real and imaginary parts, we get
{

k cos ωτ − νω sin ωτ = ω2 − ω2
0 + k

νω cos ωτ + k sin ωτ = cω
(10)

which leads to the following fourth order polynomial equa-

tion:

ω4 + (2k − 2ω2
0 − ν2 + c2)ω2 + ω4

0 − 2kω2
0 = 0. (11)

It is easy to see that if either

2k − 2ω2
0 − ν2 + c2 > 0 (12)

or

Δ = (2k − 2ω2
0 − ν2 + c2)2 − 4(ω4

0 − 2kω2
0) < 0 (13)

then (11) has no positive root. Assume that

{
2k − 2ω2

0 − ν2 + c2 < 0

Δ = (2k − 2ω2
0 − ν2 + c2)2 − 4(ω4

0 − 2kω2
0) > 0

(14)

then (11) has two positive roots

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ω± =

√
2

2

[

− (2k − 2ω2
0 − ν2 + c2)±

√
(2k − 2ω2

0 − ν2 + c2)2 − 4(ω4
0 − 2kω2

0)

] 1
2

.

(15)

Without loss of generality, we assume that (11) has two

positive roots ω±. Then, from (10), we can obtain

τ±
j =

1

ω±
arccos

[
k(ω2 − ω2

0 + k) + cνω2

k2 + ν2ω2

]

+
2jπ

ω±
(16)

at which (7) has a pair of purely imaginary roots ±iω±,

where j = 0, 1, · · · .

Let λ(τ ) = α(τ ) + iω(τ ) be the root of (7) satisfying

α(τ±
j ) = 0, ω(τ±

j ) = ω±. Due to functional differential equa-

tion theory, for τ±
j , there exists ε > 0 such that λ(τ ) is

continuously differentiable in τ for |τ − τ±
j | < ε. Then the

following transversality condition holds. �
Lemma 3. If (14) is satisfied, then

dReλ(τ )

dτ

∣
∣
∣
τ=τ+

j

> 0,
dReλ(τ )

dτ

∣
∣
∣
τ=τ−

j

< 0. (17)

Proof. Differentiating the (7) with respect to τ leads to

[
dλ

dτ

]−1

= − 2λ + c − νe−λτ

λ(νλ − k)e−λτ
− τ

λ
=

− (2λ + c)eλτ − ν

λ(νλ − k)
− τ

λ
.

Then,

Re

[
dλ

dτ

]−1

τ=τ±
j

=

− Re

[
(2ω±i + c)eω±iτ±

j − ν

ω±i(νω±i − k)

]

− Re

[
τ

ω±i

]

=

− Re

[
(2ω±i + c)(cos ω±τ±

j + i sin ω±τ±
j ) − ν

ω±i(νω±i − k)

]

=




(νω2
±)2 + (kω±)2

(18)
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where 
 = (c2ω2
± + 2kω2

±) cos ω±τ±
j + (ckω± − 2cω3

±)

× sin ω±τ±
j − cνω2

±. By (10), we get

⎧
⎪⎪⎨

⎪⎪⎩

cos ω±τ±
j =

k(ω2
± − ω2

0 + k) + cνω2
±

k2 + ν2ω2
±

sin ω±τ±
j =

ckω± − (ω2
± − ω2

0 + k)νω±
k2 + ν2ω2

±
.

(19)

In view of (18) and (19), we have

Re

[
dλ

dτ

]−1

τ=τ
±
j

=
ω2
±

s2ω4
± + k2ω2

±
×

{√

(2k − 2ω2
0 − ν2 + c2)2 − 4(ω4

0 − 2kω2
0)

}
. (20)

Thus

Re

[
dλ

dτ

]−1

τ=τ
+
j

> 0, Re

[
dλ

dτ

]−1

τ=τ
−
j

< 0. (21)

�
From Lemmas 1–3, we can obtain the following result

about the distribution of the characteristic roots of (7).

Lemma 4. Let ω±, τ±
j (j = 0, 1, 2, · · · ) be defined by

(15) and (16), respectively.

1) If (12) or (13) holds, then all the roots (7) have nega-

tive real parts for all τ ≥ 0;

2) If (14) holds and τ = τ+
j (τ = τ−

j , respectively), then

(7) has a pair of imaginary roots ±ω+i (±ω−i, respectively).

Furthermore, if there is a positive integer k such that

τ ∈ [0, τ+
0 ) ∪ (τ−

0 , τ+
1 ) ∪ ·... ∪ (τ−

k−1, τ
+
k )

then all roots of (7) have negative real parts; when τ =

τ+
j j = 0, 1, 2, · · · , k (τ = τ−

j j = 0, 1, 2, · · · , k − 1, respec-

tively), then all roots of (7) have negative real parts except

±ω+i (±ω−i, respectively), and when

τ ∈ (τ+
0 , τ−

0 ) ∪ (τ+
1 , τ−

1 ) ∪ ·... ∪ (τ+
k−1, τ

−
k−1)

and τ > τ+
k , then (4) has at least one root with positive

real part.

Spectral properties of (7) immediately lead to the proper-

ties of the zero solutions of (4), equivalently, the properties

of the equilibrium E(0, 0) for system (3).

Theorem 1. Let ω±, τ±
j (j = 0, 1, 2, · · · ) be defined by

(15) and (16), respectively. For (3), we have

1) If (11) or (13) holds, then the equilibrium E(0, 0) is

asymptotically stable for all τ ≥ 0;

2) If (14) holds, then there is a positive integer k such

that the equilibrium E(0, 0) switches k times from stability

to instability to stability; that is, the equilibrium E(0, 0) is

asymptotically stable when

τ ∈ [0, τ+
0 ) ∪ (τ−

0 , τ+
1 ) ∪ · · · ∪ (τ−

k−1, τ
+
k )

and unstable when

τ ∈ (τ+
0 , τ−

0 ) ∪ (τ+
1 , τ−

1 ) ∪ · · · ∪ (τ+
k−1, τ

−
k−1)

and τ > τ+
k . Equation (3) undergoes a Hopf bifurcation

near E(0, 0).

Case 2. τ �= σ. In this case, the characteristic equation

of system (3) takes the form

λ2 + cλ + ω2
0 − k − νλe−λτ + ke−λσ = 0. (22)

Lemma 5[21]. Consider the following equation

(z2 + pz + q)ez + r = 0 (23)

then all the roots of (23) have negative real parts it and

only if r ≥ 0 and r sin an
pan

< 1 or −q < r < 0 and
r sin an

pan
< 1, aκ(κ ≥ 0) is the root of the equation cot a =

a2−q
ap

, aκ ∈ (κπ, κπ + 1), where the positive integer n is de-

fined as follows:

1) If r ≥ 0 and p2 ≥ 2q, then n = 1;

2) If r ≥ 0 and p2 < 2q, then n is odd κ such that aκ is

closest to
√

q − p2

2
;

3) If r < 0 and p2 ≥ 2q, then n = 2;

4) If r < 0 and p2 < 2q, then n is even such that aκ is

closest to
√

q − p2

2
.

For σ �= 0, we consider the two cases: τ = 0 and τ > 0.

Case 3. When σ �= 0, τ = 0. We have the following

result.

Theorem 2. For (3) with σ �= 0. If the following

conditions are satisfied, k ≥ 0 and k sin an
c−ν

< 1 or k < 0 and

k sin an
c−ν

< 1, aκ is the root of the equation cot a =
a2−ω2

0+kσ

a(c−ν)σ
,

where the positive integer n is defined as follows:

1) If k ≥ 0 and (c − ν)2σ2 ≥ 2(ω2
0 − kσ2), then n = 1;

2) If k ≥ 0 and (c − ν)2σ2 < 2(ω2
0 − kσ2), then n is odd

κ such that aκ is closest to
√

ω2
0 − kσ2 − (c−ν)2σ2

2
;

3) If k < 0 and (c − ν)2σ2 ≥ 2(ω2
0 − kσ2), then n = 2;

4) If k < 0 and (c − ν)2σ2 < 2(ω2
0 − kσ2), then n is even

such that aκ is closest to

√

ω2
0 − kσ2 − (c−ν)2σ2

2
are satis-

fied, then the equilibrium E0(0, 0) for system (3) is asymp-

totically stable.

Proof. Let z = λσ, then (22) takes the form

[z2 + (c − ν)σz + (ω2
0 − k)σ2]ez + kσ2 = 0. (24)

Corresponding to (23), we have p = (c − ν)σ, q = ω2
0 −

kσ2, r = kσ2. By Lemma 5, we can conclude that if the

conditions in Theorem 2 are fulfilled, then all the roots of

(22) have negative real parts. Thus the equilibrium E(0, 0)

for (3) is asymptotically stable. �
Case 4. When σ �= 0, τ > 0. We have the following

result.

Theorem 3. If 0 < k < 2
3
ω2

0 holds, then

1) holds when

{

Re

[
dλ

dτ

]−1

τ=τ∗,λ=iω∗

}

< 0

then for all τ ≥ 0 and τ �= τ∗, the equilibrium E(0, 0) of

system (3) is asymptotically stable.

2) When {

Re

[
dλ

dτ

]−1

τ=τ∗,λ=iω∗

}

> 0
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then for all τ ∈ [0, τ∗), the equilibrium E(0, 0) of system

(3) is asymptotically stable and for all τ > τ∗, the equi-

librium E(0, 0) of system (3) is unstable and τ = τ∗ is the

bifurcation value.

Proof. Let λ1,2 = ±iω be a pair of purely imaginary

roots. Substituting it into (22) and separating the real and

imaginary parts, we get
{

νω cos ωτ = −ω2 + ω2
0 − k + k cos ωσ

νω sin ωτ = cω − k sin ωσ.
(25)

Then we have

ω4 + [c2 − 2(ω2
0 − k) − 2k cos ωσ − ν2]ω2 − 2ckω sin ωσ+

k2 cos2 ωσ − 2(ω2
0 − k)k cos ωσ + k2 sin2 ωσ = 0.

Denote

f(ω) = ω4 + [c2 − 2(ω2
0 − k) − 2k cos ωσ − ν2]ω2−

2ckω sin ωσ + k2 cos2 ωσ − 2(ω2
0 − k)k cos ωσ+

k2 sin2 ωσ = 0.

If 0 < k < 2
3
ω2

0 holds, then f(0) < 0. Since

limω→+∞ f(ω) = +∞, then there exists a ω∗ > 0 such that

f(ω∗) = 0. Substituting ω = ω∗ into the second equation of

(25), we get

τ j =
1

ω∗

[

arccos

(−ω∗2 + ω2
0 − k + k cos ω∗σ

νω∗

)

+ 2jπ

]

(26)

where j = 0, 1, 2, · · · . Denote τ∗ = min{τ j}. Differentiating

(22) with respect to τ , we get

(
dλ

dτ

)−1

= −2λ2 + c − νe−λτ − ke−λσσ

νλ2e−λτ
− τ

λ
. (27)

Then
[

Re

(
dλ

dτ

)]−1

τ=τ∗,λ=iω∗
=

−Re

[
−2ω∗2 + c − νe−iω∗τ∗ − ke−iω∗σσ

−νω∗2e−iω∗τ∗

]

− (28)

Re

[
τ∗

iω∗

]

=

Re

[
−2ω∗2 + c − νe−iω∗τ∗ − ke−iω∗σσ

νω∗2e−iω∗τ∗

]

=

Re

[
−2ω∗2 + c − νe−iω∗τ∗ − ke−iω∗σσ

νω∗2e−iω∗τ∗

]

=

(c − 2ω∗2) cos ω∗τ∗ − ν − kσ

νω∗2 . (29)

If

[

Re

(
dλ

dτ

)]−1

τ=τ∗,λ=iω∗
< 0

then the characteristic (22) only has one pair of purely

imaginary roots and the other roots have negative real parts

when τ = τ∗. Moreover, Reλ decreases with the increase of

τ . If

[

Re

(
dλ

dτ

)]−1

τ=τ∗,λ=iω∗
> 0

then the characteristic (22) will add one pair of roots with

positive real parts when τ > τ∗. �

3 Numerical examples

In this section, we give numerical simulations to verify

the correctness of our designed feedback controllers. As an

example, we consider the system (3) with c = 2, ω0 = 2, μ =

1, ν = 2. That is

ẍ(t) + 2ẋ(t) + 4x(t) + x3(t) =

2ẋ(t − τ ) + k[x(t) − x(t − σ)]. (30)

Similar to the process of transforming (3) into (4), system

(29) can become the following form

⎧
⎪⎨

⎪⎩

ẋ(t) = y(t)

ẏ(t) = (k − 4)x(t) − 2y(t) − 3y(t − τ ) − 2x3(t)−
kx(t − σ)

(31)

which has a unique equilibrium E(0, 0). Next, we consider

five cases.

Case 5. Let τ = σ and the feedback control parameter

k = 0. Then system (30) takes the form

{
ẋ(t) = y(t)

ẏ(t) = −4x(t) − 2y(t) − 3y(t − τ ) − 2x3(t).
(32)

It is easy to check that the condition 2) of Theorem 2.1

is satisfied. By Matlab 7.0 software, we get τ∗ ≈ 0.612.

The zero equilibrium E(0, 0) is stable when τ = 0.61 < τ∗

which is illustrated by the computer simulations (see Fig. 1).

When τ = 0.63 which passes through the critical value τ∗ ≈
0.612, the zero equilibrium E(0, 0) loses its stability and a

Hopf bifurcation occurs, i.e., a family of periodic solutions

bifurcate from the zero equilibrium E(0, 0) (see Fig. 2).

Case 6. Let τ = σ and the feedback control parameter

k = −0.05. Then system (30) takes the form

⎧
⎪⎨

⎪⎩

ẋ(t) = y(t)

ẏ(t) = −4.05x(t) − 2y(t) − 3y(t − τ ) − 2x3(t)−
0.05x(t − τ ).

(33)

It is easy to check that the condition 2) of Theorem 1 is sat-

isfied. By Matlab 7.0 software, we get τ∗ ≈ 0.65. The zero

equilibrium E(0, 0) is stable when τ = 0.63 < τ∗ which is

illustrated by the computer simulations (see Fig. 3). When

τ = 0.8 which passes through the critical value τ∗ ≈ 0.65,

the zero equilibrium E(0, 0) loses its stability and a Hopf
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bifurcation occurs from the zero equilibrium E(0, 0) (see

Fig. 4).

Case 7. Let τ = σ and the feedback control parameter

k = −0.099. Then system (30) takes the form

⎧
⎪⎨

⎪⎩

ẋ(t) = y(t)

ẏ(t) = −4.099x(t) − 2y(t) − 3y(t − τ ) − 2x3(t)−
0.099x(t − τ ).

(34)

It is easy to check that the condition 2) of Theorem 1 is ful-

filled. By Matlab 7.0 software, we get τ∗ ≈ 0.67. The zero

equilibrium E(0, 0) is stable when τ = 0.63 < τ∗ which is

illustrated by the computer simulations (see Fig. 5). When

τ = 0.9 passes through the critical value τ∗ ≈ 0.67, the zero

equilibrium E(0, 0) loses its stability and a Hopf bifurcation

occurs from the zero equilibrium E(0, 0) (see Fig. 6).

Case 8. Let τ �= σ and the feedback control parameter

k = 0.5. Then system (30) takes the form

⎧
⎪⎨

⎪⎩

ẋ(t) = y(t)

ẏ(t) = −3.5x(t) − 2y(t) − 3y(t − τ ) − 2x3(t)+

0.5x(t − σ).

(35)

Fix σ = 0.7. It is easy to check that the condition 2) of

Theorem 3 is fulfilled. By Matlab 7.0 software, we get τ∗ ≈
0.619. The zero equilibrium E(0, 0) is stable when τ =

0.6 < τ∗ which is depicted in Fig. 7. When τ = 1.2 passes

through the critical value τ∗ ≈ 0.619, the zero equilibrium

E(0, 0) loses its stability and a Hopf bifurcation occurs from

the zero equilibrium E(0, 0) (see Fig. 8).

Case 9. Let τ �= σ and the feedback control parameter

k = 0.8. Then system (30) takes the form

⎧
⎪⎨

⎪⎩

ẋ(t) = y(t)

ẏ(t) = −3.2x(t) − 2y(t) − 3y(t − τ ) − 2x3(t)+

0.8x(t − σ).

(36)

Fix σ = 0.7. It is easy to check that the condition 2)

of Theorem 3 is satisfied. By Matlab 7.0 software, we get

τ∗ ≈ 0.63. The zero equilibrium E(0, 0) is stable when τ =

0.62 < τ∗ which is depicted in Fig. 9. When τ = 1.3 passes

through the critical value τ∗ ≈ 0.63, the zero equilibrium

E(0, 0) loses its stability and a Hopf bifurcation occurs from

the zero equilibrium E(0, 0) (see Fig. 10).

Remark 1. From Cases 5–7, we know that when

feedback control parameter k = 0 (i.e., without control),

the system (31) is asymptotically stable when τ ∈ [0, 0.612]

when feedback control parameter k = 0.05, the system

(32) is asymptotically stable when τ ∈ [0, 0.65] and when

feedback control parameter k = 0.099, the system (33) is

asymptotically stable when τ ∈ [0, 0.67]. Thus we can con-

clude that a suitable feedback controller can enlarge the

stable region of the original system with appropriate choice

of feedback control parameter k.

(a) t–x(t) diagram

(b) t–y(t) diagram

(c) x(t)–y(t) diagram

(d) t–x(t)–y(t) diagram

Fig. 1 Response of state variables and phase portrait of system

(3) with τ = 0.61 < τ∗ ≈ 0.612. The equilibrium is asymptoti-

cally stable.
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(a) t–x(t) diagram

(b) t–y(t) diagram

(c) x(t)–y(t) diagram

(d) t–x(t)–y(t) diagram

Fig. 2 Response of state variables and phase portrait of system

(31) with τ = 0.63 > τ0 ≈ 0.612. Hopf bifurcation occurs from

the equilibrium.

(a) t–x(t) diagram

(b) t–y(t) diagram

(c) x(t)–y(t) diagram

(d) t–x(t)–y(t) diagram

Fig. 3 Response of state variables and phase portrait of system

(32) with τ = 0.63 < τ∗ ≈ 0.65. The equilibrium is asymptoti-

cally stable.
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(a) t–x(t) diagram

(b) t–y(t) diagram

(c) x(t)–y(t) diagram

(d) t–x(t)–y(t) diagram

Fig. 4 Response of state variables and phase portrait of system

(32) with τ = 0.8 > τ∗ ≈ 0.612. Hopf bifurcation occurs from

the equilibrium.

(a) t–x(t) diagram

(b) t–y(t) diagram

(c) x(t)–y(t) diagram

(d) t–x(t)–y(t) diagram

Fig. 5 Response of state variables and phase portrait of system

(33) with τ = 0.63 < τ∗ ≈ 0.67. The equilibrium is asymptoti-

cally stable.
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(a) t–x(t) diagram

(b) t–y(t) diagram

(c) x(t)–y(t) diagram

(d) t–x(t)–y(t) diagram

Fig. 6 Response of state variables and phase portrait of system

(33) with τ = 0.9 > τ∗ ≈ 0.67. Hopf bifurcation occurs from

the equilibrium.

(a) t–x(t) diagram

(b) t–y(t) diagram

(c) x(t)–y(t) diagram

(d) t–x(t)–y(t) diagram

Fig. 7 Response of state variables and phase portrait of system

(34) with τ = 0.6 < τ∗ ≈ 0.619. The equilibrium is asymptoti-

cally stable.
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(a) t–x(t) diagram

(b) t–y(t) diagram

(c) x(t)–y(t) diagram

(d) t–x(t)–y(t) diagram

Fig. 8 Response of state variables and phase portrait of system

(34) with τ = 1.2 > τ∗ ≈ 0.619. Hopf bifurcation occurs from

the equilibrium.

(a) t–x(t) diagram

(b) t–y(t) diagram

(c) x(t)–y(t) diagram

(d) t–x(t)–y(t) diagram

Fig. 9 Response of state variables and phase portrait of system

(35) with τ = 0.62 < τ∗ ≈ 0.63. The equilibrium is asymptoti-

cally stable.
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(a) t–x(t) diagram

(b) t–y(t) diagram

(c) x(t)–y(t) diagram

(d) t–x(t)–y(t) diagram

Fig. 10 Response of state variables and phase portrait of system

(35) with τ = 1.3 > τ∗ ≈ 0.63. Hopf bifurcation occurs from the

equilibrium.

4 Conclusions

In this paper, we deal with a Duffing oscillator model

with delayed velocity feedback. Some sufficient conditions

which ensure the stability and the existence of Hopf bifur-

cation of the model are obtained by using the time delayed

feedback control method and delayed diffierential equation

theory. By choosing the delay as bifurcation parameter and

analyzing the associated characteristic equation, the exis-

tence of bifurcation parameter point is determined. It is

shown that if the time delay is chosen as a bifurcation pa-

rameter, Hopf bifurcation occurs when the time delay passes

through a series of critical values. Numerical simulations

show that the designed feedback controllers not only delay

the onset of Hopf bifurcation, but also enlarge the stability

region for the model. The control method can be applied

to control Hopf bifurcation of other delayed model.
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