
International Journal of Automation and Computing 13(2), April 2016, 191-198

DOI: 10.1007/s11633-015-0919-5

Biomarker Identification of Rat Liver Regeneration via

Adaptive Logistic Regression

Liu-Yuan Chen1,2 Jie Yang1 Guo-Guo Xu3 Yun-Qing Liu3 Jun-Tao Li2 Cun-Shuan Xu3

1School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
2College of Mathematics and Information Sciences, Henan Normal University, Xinxiang 453007, China

3State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang 453007, China

Abstract: This paper is devoted to identifying the biomarkers of rat liver regeneration via the adaptive logistic regression. By

combining the adaptive elastic net penalty with the logistic regression loss, the adaptive logistic regression is proposed to adaptively

identify the important genes in groups. Furthermore, by improving the pathwise coordinate descent algorithm, a fast solving algorithm

is developed for computing the regularized paths of the adaptive logistic regression. The results from the experiments performed on the

microarray data of rat liver regeneration are provided to illustrate the effectiveness of the proposed method and verify the biological

rationality of the selected biomarkers.
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1 Introduction

Microarray classification is performed on “high dimen-

sion, small samples” data, where the number of genes is

much larger than the number of samples[1, 2]. Hence, one

of the important problems is to identify a small number of

discriminatory biomarker genes[1−4]. Support vector ma-

chine (SVM) is an important statistical learning method,

and has been widely applied to artificial intelligence area,

such as ontology matching[5], classifiction of spectra of emis-

sion line stars[6], multivariate calibration[7], degree predic-

tion of malignancy in brain glioma[8] and so on. Following

the same idea, the machine-learning-based methods for gene

selection and microarray have attracted much attention in

bioinformatics[9−18] .

The standard L2-norm support vector machine[1−3] is

the most typical learning machine for selecting genes be-

fore classification. Since it can make some of the fit-

ted coefficients be exactly zero, the L1-norm penalty

has the advantage of automatically selecting relevant

variables[10−12]. Lasso is the typically L1-norm penal-

ized learning machine[10]. Combining the L1-norm penalty

with the hinge loss, 1-norm support vector machine was

proposed[11]. Combining the L1-norm penalty with the lo-

gistic loss, the sparse logistic regression was proposed[12].

Note that non-convex LP -norm penalty has the similar
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feature for the L1-norm penalty. A new sparse logistic

regression[13] for automatic gene selection was proposed

by combining the logistic loss with non-convex Lp-norm

penalty. To select genes in groups, the elastic net was pro-

posed in [14]. Following the same idea, many elastic net

penalized methods, such as the doubly regularized support

vector machine (DRSVM)[15], the huberized support vec-

tor machine (HSVM)[16], were proposed. In order to adap-

tively control the size of the selected groups, the adaptive

elastic net penalized methods were proposed[17, 18]. Espe-

cially, the partly adaptive elastic net (PAEN)[18] was pro-

posed by introducing the proper data-driven weights to the

penalty terms. Since the same weight is imposed on both

L1-norm penalized coefficient and L2-norm penalized co-

efficient, PAEN can automatically identify the significant

genes within each group and thus encourage an adaptive

grouping effect. Motivated by the properties of gene se-

lection proposed by Li et al.[18] and the idea of the data

driven proposed by Meng et al.[19], this paper proposes an

adaptive logistic regression for identifying the biomarkers

of rat liver regeneration by combining the logistic loss and

the adaptive elastic net penalty. The paper is organized as

follows. Section 2 presents the preliminary of the problem.

Section 3 gives the statistical model and the property of the

adaptive logistic regression. Experimental results obtained

on the microarray data of rat liver regeneration are pre-

sented in Section 4. Finally, Section 5 is a summary about

the work.

2 Problem formulation and prelimi-

nary

Given a training data set for binary microarray classifi-

cation problem, D = {(xi, yi)}n
i=1, where xi(xi = xi1, xi2,

· · · , xip) is a multidimensional input vector with dimension
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p, xip is the expression levels of p genes of the i-th observa-

tion, yi ∈ {+1, −1} represents the class label correspond-

ing to input xi. Similar to [16−18], we define the following

notations:

Y = (y1, · · · , yn)T

X = (x1; x2; · · · ; xn) =
(
x(1), x(2), · · · , x(p)

)

and assume that the response y is centered and xij are stan-

dardized, i.e.,

n∑

i=1

yi = 0,
1

n

n∑

i=1

xij = 0,
n∑

i=1

x2
ij = 1. (1)

In this paper, we focus on fitting the data by using the

regularized linear logistic regression model. Similar to [13],

the logistic regression model represents the class-conditional

probabilities through a linear function of the predictors

Pr(Y = +1|x) =
1

(1 + e−(β0+xTβ))

Pr(Y = −1|x) =
1

(1 + e+(β0+xTβ))
=

1 − Pr(Y = +1|x). (2)

It can be easily obtained that

log

(
Pr(Y = +1|x)

Pr(Y = −1|x)

)
=

β0 + xTβ = logPr(Y = +1|x) − logPr(Y = −1|x). (3)

Let p(xi) = Pr(Y = +1|x) be the probability (2) for obser-

vation i at a particular value for the parameter pairs (β0, β).

The maximized log-likelihood with penalty is as follows

max
(β0,β)∈Rp+1

[
1

n

n∑

i=1

{I(yi = 1)log p(xi)+

I(yi = −1)log(1 − p(xi))} − J(λ, β)

]
(4)

where

I(yi = 1) =

{
1, if yi = 1

0, otherwise

I(yi = −1) =

{
1, if yi = −1

0, otherwise.

Note that

1

n

n∑

i=1

{I(yi = 1)log p(xi) + I(yi = −1)log(1 − p(xi))} =

1

n

n∑

i=1

I(yi = 1)(β0 + xT
i β) + log(1 − p(xi)).

Hence, the log-likelihood part of (4) can be rewritten as

l∗(β0, β) =
1

n

n∑

i=1

[
I(yi = 1)(β0 + xT

i β)−

log(1 + eβ0+xT
i β)

]
. (5)

Let l(β0, β) = −l∗(β0, β). Since l(β0, β) ≥ 0. Hence,

l(β0, β) can be defined as log-likelihood loss function.

According to [20], the elastic net can be represented as

β̂(en) = arg min
β

‖y − Xβ‖2 + λ
(
α‖β‖1 + (1 − α)‖β‖2)

(6)

where ‖β‖2 =
∑p

j=1 β2
j , ‖β‖1 =

p∑

j=1

|βj |, and λ, α > 0 are

the parameters. The advantage of this form is that the

elastic net can be easily solved by using the pathwise coor-

dinate descent algorithm. Hence, the elastic net is used as

the initial estimator in the PAEN[18] to construct the partly

adaptive elastic net penalty.

3 Adaptive logistic regression

3.1 Statistical model

Given a training pairs {(xi, yi)}n
i=1 and a small constant

α0 (usually α0 ≤ 0.05), where xT
i is the input vector, and yi

indicates its class label as aforementioned. Similar to [18],

we let β̂(α0) denote the optimal solution of the elastic net

(6) which gives the smallest cross-validated prediction error.

Since the magnitude of β̂j(α0) implies the contribution of

gene j to the classifier to some extent, we can use |β̂j(α0)|,
j = 1, · · · , p, to rank genes roughly. In the following, we

suppose that the predictors x(1), · · · , x(p) are ranked in the

following way:

|β̂1(α0)| ≥ |β̂2(α0)| ≥ · · · ≥ |β̂p(α0)| ≥ 0.

Let mδ be the largest index number of the data set {j :

|β̂j(α0)| ≥ δ}, without loss of generality, here we still let X

denote the transformed model matrix. The following partly

adaptive elastic net penalty was proposed[18] as

λ((1 − α)‖
√

Wβ‖2 + α‖Wβ‖1) (7)

where W = diag{w1, · · · , wmδ , 1
δ
· · · , 1

δ
}, wj = |β̂j(α0)|−1,

‖√Wβ‖2 =
∑mδ

j=1 wjβ
2
j + 1

δ

∑p
mδ+1 β2

j , ‖Wβ‖1 =
∑mδ

j=1 wj |βj | + 1
δ

∑p
mδ+1 |βj |. Applying the partly adaptive

elastic net penalty (7) to the log-likelihood loss (6), we pro-

pose the following adaptive logistic regression:

β̂ = arg min
(β,β0)

{
− 1

n

n∑

i=1

[
I(yi = 1)(β0 + xT

i β)−

log(1 + eβ0+xT
i β)

]
+ λ

(
(1 − α)‖

√
Wβ‖2+

α‖Wβ‖1

)}
. (8)

3.2 Adaptive grouping effect

In the problem with large p and small n, the grouped

variable selection is particularly important[1, 12, 17−18]. It is

well-known that the elastic net penalized methods can en-

courage the grouped effect in gene selection[14−16] . In the

following, it will be shown that the adaptive logistic regres-

sion can automatically identify the significant genes within

each group, thus encouraging an adaptive grouped effect.
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For the adaptive logistic regression (8), suppose that the

predictors x(j), j = 1, · · · , p, are standardized. If β̂j β̂l > 0

holds for j, l ≤ mδ, then we have

|β̂j − β̂l| ≤
1√

nλ(1 − α)

√
β̂j

2
(α0) + β̂l

2
(α0) ×

√
1 − γρ (9)

where

ρ = cor(x(j), x(l)) = xT
(j)x(l) =

n∑

i=1

xijxil

γ =
2|β̂j(α0)β̂l(α0)|
β̂2

j (α0) + β̂2
l (α0)

.

Proof. Note that

(∂I(yi = 1)(β0 + xT
i β) − log(1 + eβ0+xT

i β))

∂(β0 + xT
i β)

=

I(yi = 1) − 1 +
1

(1 + eβ0+xT
i β)

≤ 1.

Hence, the log-likelihood loss function is Lipschitz continu-

ous, i.e., for any (β̂0, β̂) and (β̂∗
0 , β̂∗), the following inequal-

ity

|l(β̂0, β̂) − l(β̂∗
0 , β̂∗)| ≤

1

n

n∑

i=1

∣
∣∣(β̂0 + xT

i β̂) − (β̂∗
0 + xT

i β̂∗)
∣
∣∣ (10)

holds. Denote (β̂0, β̂) be the solution of the adaptive logistic

regression (8). Consider another set of coefficients

β̂∗
0 = β̂0

β̂∗
j′ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

β̂jwj

(wj + wl)
+

β̂lwl

(wj + wl)
,

if j′ = j or j′ = l

β̂j′ , otherwise.

Note that adaptive logistic regression (8) is a minimization

problem. Hence, we have

− 1

n

n∑

i=1

[
I(yi = 1)(β̂∗

0 + xT
i β̂∗) − log(eβ̂∗

0+xT
i β̂ + 1)

]
+

λ

(
(1 − α)‖

√
Wβ̂∗‖2 + α‖Wβ̂∗‖1

)
−

{
− 1

n

n∑

i=1

[
I(yi = 1)(β̂0 + xT

i β̂) − log(eβ̂0+xT
i β̂ + 1)

]
+

λ

(
(1 − α)‖

√
Wβ̂‖2 + α‖Wβ̂‖1

)}
≥ 0. (11)

Following the similar procedure in [18], we have

− 1

n

n∑

i=1

{
I(yi = 1)(β̂∗

0 + xT
i β̂∗) − log(eβ̂∗

0+xT
i β̂ + 1)−

I(yi = 1)(β̂0 + xT
i β̂) + log(eβ̂0+xT

i β̂ + 1)

}
=

1

(n(wj + wl))
|β̂j − β̂l|× ‖ wlx(j) − wjx(l) ‖1. (12)

For j, l ≤ mδ, it can be easily obtained that

‖
√

Wβ̂∗‖2 − ‖
√

Wβ̂‖2 =

− wjwl

(wj + wl)(β̂j − β̂l)2
(13)

‖Wβ̂∗ ‖1 −‖Wβ̂ ‖1=

|wj β̂j + wlβ̂l| − wj β̂j − wlβ̂l ≤ 0. (14)

Substituting (12)−(14) into (11) yields

|β̂j − β̂l|
n(wj + wl)

‖wlx(j) − wjx(l)‖1−

λ(1 − α)(β̂j − β̂l)
2 wjwl

(wj + wl)
≥ 0. (15)

It follows from (15) that

|β̂j − β̂l| ≤ ‖wlx(j) − wjx(l)‖1

(nwjwlλ(1 − α))
. (16)

Note that

‖ wlxj − wjxl ‖1≤
√

n

√√
√√

n∑

i=1

(wlxij − wjxil)2 =

√
n
√

w2
j + w2

l

√
1 − γρ. (17)

Hence, substituting (17) into (16) yields (9). �
It should be noted that Theorem 1 still holds for j ≥ mδ

and l ≤ mδ. The only difference is to substitute δ for β̂l(α0).

Hence, for j ≥ mδ and l ≥ mδ, the following Corollary 1

holds.

Corollary 1. Suppose that the predictors x(j), j =

1, · · · , p are standardized. If β̂j β̂l > 0 holds for j, l ≥ mδ,

then we have

|β̂j − β̂l| ≤
√

2(1 − ρ)δ√
nλ(1 − α)

. (18)

This is a special situation of (9), when wj = wl = 1
δ
.

Remark 1. Similar to [18], the adaptive logistic regres-

sion will assign similar coefficients to the predictors only

when ρ = 1 and |β̂j(α0)| = |β̂l(α0)|. Hence, the more genes

with similar ranking significance (|β̃i| ≈ |β̃j |), the bigger

size of the selected gene groups. This implies that the adap-

tive logistic regression can adaptively control the size of the

selected groups and therefore automatically identify the sig-

nificant genes within each group.

3.3 Algorithm

Note that the traditional convex optimization methods

cannot be used to solve the adaptive logistic regression due

to involving the concave function of the parameters. Mo-

tivated by [20], the Newton algorithm was used to solve

it. Suppose that (β̃0, β̃) are the current estimates of the

parameters. Similar to [20], the following quadratic ap-

proximation to the log-likelihood (Taylor expansion about

current estimates) was used

lQ = − 1

2n

n∑

i=1

ηi(γi − β0 − xT
i β)2 + C(β̃0, β̃)2
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where

γi =
β̃0 + xT

i β̃ + (I(yi = 1) − p̃(xi))

(p̃(xi)(1 − p̃(xi)))
(19)

ηi = p̃(xi)(1 − p̃(xi)) (20)

and p̃(xi) is evaluated at current parameters. The Newton

update is obtained by minimizing lQ. For each value of

λ, an outer loop which computes the quadratic approxima-

tion lQ about the current parameters (β̃0, β̃) was created

in [20]. We can get the solving algorithm of the weighted

least-squares with partly adaptive elastic net penalty

min
(β0,β)∈Rp+1

[
−lQ + λ

(
(1 − α)‖

√
Wβ‖2 + α‖Wβ‖1

)]
.

(21)

The algorithm solving the adaptive logistic regression

proceeds as follows:

Algorithm 1.

Compute the adaptive weight matrix W .

1) Select α0 (0.02 ≤ α0 ≤ 0.05), scalars k1 and k2.

2) Compute the entire regularization solution path

β̂(α0, λ) by using pathwise coordinate descent algo-

rithm in [20].

3) Determine the optimal model by cross-validation and

give its solution β̂(α0).

4) Determine δ, mδ according to β̂(α0), k1 and k2.

5) Compute the weight matrix W .

Solve the adaptive logistic regression.

1) Let the weighting coefficients be penalty factor. Select

new α(α ≥ 0.5) and lambda sequence.

2) Solve (21) by using pathwise coordinate descent algo-

rithm.

Outer loop: Decrement λ.

Middle loop: Update the quadratic approximation lQ
using the current parameters (β̃0, β̃).

Inner loop: Run the coordinate descent algorithm on

the weighted least-squares with partly adaptive elastic

net penalty (21).

3) Determine the optimal model by cross-validation.

Extract the non-zero coefficients and determine their cor-

responding genes.

Remark 2. α0 is the model parameter of the initial

elastic net and its value determines the nonzero coefficients

whose reciprocals are used to construct the weights. To

guarantee the enough valid weights, the initial α0 should

be smaller. So, we let α0 ≤ 0.05. If α0 is too small, all

of the nonzero coefficients tend to the same value and the

constructed weights are meaningless. So, we let α0 ≥ 0.02.

4 Experiments on microarray data

To illustrate the effectiveness of the proposed method,

we use the gene expression data of rat liver regeneration to

perform our experiments. The gene expression data of rat

liver regeneration are successfully produced in the cell dif-

ferentiation regulation and control of Henan provincial and

ministerial jointly built State-Class Key Lab. This microar-

ray data have not been published. The brief description of

the data is provided as follows.

Adult male Sprague-Dawley rats (12-weeks old), each

weighted 230±20 g, were obtained from animal center of

Henan Normal University. A total of 114 rats were ran-

domly divided into 9 groups for two-third hepatectomy

(PH), 9 groups for sham operation (SO) and one con-

trol group with 6 rats per group. Rats in PH groups

were subjected to PH following the method of Higgins and

Anderson[21]. Isolation and identification of hepatocytes

(HCs) from rat regenerating liver were obtained according

to the method previously described by Xu et al.[22]. To-

tal RNA was extracted, purified[23] and detected by Rat

Genome 230 2.0 microarray following the protocols pre-

viously described. To minimize the technical errors from

microarray experiments, isolated hepatocytes from control

groups and PH groups were detected by Rat Genome 230

2.0 Array for at least three times[24−26] .

Each chip contained 31 099 genes. After removal of the

duplicate data, 24 618 genes are left. In our experiments,

we let the label of the samples (chips) from partial hepate-

ctomy be 1, and the label of the samples (chips) from sham

operation be −1. We randomly select two-third samples for

the training, and the rest for testing. We compute the reg-

ularization solution path of the adaptive logistic regression

and select the corresponding genes according to the algo-

rithm in the above section. The entire process is repeated

10 times and the genes which could be selected in common

are considered to be the correlated genes for liver regener-

ation. Table 1 lists the top 10 genes which are believed to

be highly relevant to the rat liver regeneration. we com-

pare the partly adaptive elastic net[18] with the adaptive

logistic regression. The test accuracy and the number of

the selected genes are summarized in Table 2. Compared

with the adaptive logistic regression, the partly adaptive

elastic net (PAEN) method[18] could not perform well. In

addition, we do not find the regulatory relations among the

genes selected by the partly adaptive elastic net. The prob-

able reason why the adaptive logistic regression is superior

to the partly adaptive elastic net is the former represents

the class-conditional probabilities through a linear function

of the predictors which fits better such data.

In our experiment, Genes (in this case, gene means the

gene symbol) M6PR, IGF2 and IGF2R are selected as a

group, and genes MCM5 and STAT1 are selected as another

group. To demonstrate the rationality of the obtained gene

groups, we also construct gene regulatory networks among

the selected genes by using the business software Pathway

studio 8.0. Fig. 1 shows that the 23 genes selected by adap-

tive logistic regression have the regulatory relations (direct

regulation or promoter binding). Fig. 2 shows the two path-

ways related to cell proliferation.
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Table 1 Some genes selected via the adaptive logistic regression

Gene symbol Gene title Possible function

STAT1

Signal transducer
STAT1 regulates cell proliferation and survival. It also suppresses liver regeneration and

and activator of
hepatocyte proliferation in mice[27−29].

transcription 1

MCM5
Minichromosome The MCM5 protein is essential for the induction of Stat1 target gene expression in response

maintenance complex to IFN-γ stimulation, and it is important in cell cycle and DNA replication[30].

component 5

HSPD1
Heat shock 60kDa HSP60 is crucial for cell survival, and whole-body Hsp60 deficiency leads to

protein 1 cellular apoptosis and early embryonic death[31].

Mannose-6-phosphate
M6P/IGF2R may enhance activation of TGF-β to regulate cell proliferation and cell growth.

M6PR/IGF2R Receptor/insulin-like
And M6PR plays an important role in the intracellular transport of lysosomal enzymes[32−34].

growth factor-II receptor

IGF2
Insulin-like

The insulin-like growth factors possess growth-promoting activity.
growth factor-II

Low density lipoprotein
LRP1 mediates the endocytotic clearance of a multitude of extracellular ligands and regulates

LRP1
Receptor-related Protein 1

diverse signaling processes such as growth factor signaling, inflammatory signaling pathways, a

poptosis, and phagocytosis in liver[35].

Stress-induced-
STIP1 mediates the association of the molecular chaperones HSC70 and HSP90 (HSPCA and

STIP1
Phosphoprotein 1

HSPCB). And the STI1-PrP(C) complex may play a critical role in neural progenitor/stem cells

self-renewal via the modulation of cell proliferation[36].

Notch1 is one member of notch ligands, and the notch pathway is important for cell fate deter-

NOTCH1 Notch 1 mination, tissue patterning and morphogenesis, and cell differentiation, proliferation and

death[37].

CDKN1A
Cyclin-dependent Kinase p21(Cip1) protein can play a vital role in cell cycle progression, pro-proliferative and survival[38].

Inhibitor 1A (P21, Cip1)

Table 2 Comparison of the test error and the selected genes

Method Test error Number of the selected genes

Partly adaptive elastic net 69.35% 309

Adaptive logistic regression 76.23% 321

Fig. 1 The regulatory relations of the selected genes Fig. 2 Two pathways related to cell proliferation
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The first pathway is M6PR→IGF2R. This pathway

is insulin-like growth factor receptor signaling pathway.

Insulin-like growth factors (IGFs) family includes IGF1,

IGF2, IGF1R, IGF2/M6PR, and IGF binding proteins

(IGFBPs). IGFs are synthesized and secreted mainly by

liver from endocrine pathway and play important roles in

growth, development and metabolism processes, whereas

most other tissues of body can also secrete IGFs by

autocrine or paracrine. Down-regulated expression of

IGF2/M6PR results in up-regulated expression of the IGF2

in early liver cancer, which implies that IGFs system may

play a crucial role in regulating hepatocyte proliferation in

rat liver regeneration.

The second pathway is MCM5→STAT1. DNA replica-

tion licensing factor MCM5 is a protein involved in the ini-

tiation of DNA replication. The expression level of MCM5

has been considered as a criterion to reflect cell prolifer-

ation. MCM5 is up-regulated in the transition from the

G0 to G1/S phase and may actively participate in cell cy-

cle regulation. MCM5 is essential for Stat1-mediated tran-

scriptional activation. Signal transducer and activator of

transcription 1 (STAT1) is a member of the signal trans-

ducers and activators of transcription family. Literature

[27] shows that STAT1 can regulate liver cells proliferation

by INF-gamma.

It should be noted that the genes in the two pathway

are in accord with the genes selected as groups by adaptive

logistic regression. These genes are known as the key genes

for liver regeneration since they are highly correlated to the

physiological activity of cell proliferation in the process of

liver regeneration. This successfully illustrates not only the

effectiveness of the adaptive logistic regression but also the

biological rationality of the selected genes. Hence, these

genes are regarded as the biomarkers of rat liver regenera-

tion.

5 Conclusions and future works

The adaptive logistic regression is proposed for identify-

ing the biomarkers of rat liver regeneration. It has been

shown that the adaptive logistic regression can encourage

an adaptive grouping effect in the process of automatic gene

selection. Particularly, the selected genes are verified to be

highly correlated to the physiological activity of cell pro-

liferation. It is important to compare the adaptive logistic

regression with other existing methods, to find the regula-

tory relations among the selected genes and then to build

the gene regulatory network. We leave these issues for fu-

ture research.
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