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Abstract: Standard genetic algorithms (SGAs) are investigated to optimise discrete-time proportional-integral-derivative (PID) con-

troller parameters, by three tuning approaches, for a multivariable glass furnace process with loop interaction. Initially, standard

genetic algorithms (SGAs) are used to identify control oriented models of the plant which are subsequently used for controller optimisa-

tion. An individual tuning approach without loop interaction is considered first to categorise the genetic operators, cost functions and

improve searching boundaries to attain the desired performance criteria. The second tuning approach considers controller parameters

optimisation with loop interaction and individual cost functions. While, the third tuning approach utilises a modified cost function

which includes the total effect of both controlled variables, glass temperature and excess oxygen. This modified cost function is shown

to exhibit improved control robustness and disturbance rejection under loop interaction.

Keywords: Genetic algorithms, control optimisation, decentralised control, proportional-integral-derivative (PID) control, modified

cost function, multivariable process, loop interaction.

1 Introduction

Glass manufacturing processes have very long dynamic

response time and are complex processes with high energy

usage. Especially, large furnaces with multiple port burners

cause glass manufacturing industries to consume high ener-

gies in glass production. Most glass industries are operating

at maximum daily throughput to fulfil the market require-

ment. Therefore, glass furnace operations are facing great

challenges in reducing fuel consumption by applying well

tuned control strategies. Apart from high energy consump-

tion, undesirable emissions from glass industries is another

setback to consider as the entire world is greatly concerned

about green house effects. Tight environmental regulations

are now applied to reduce gases and particles that are un-

desirable emissions associated with burning fossil fuels.

Generally, the glass industries are operating within the

emission guideline which is regulated by environmental

agencies[1]. Thus, most glass industries are not emphasising

on continuous monitoring and control strategies for emis-

sions. At maximum operating conditions, the likelihood

of producing undesirable emission is high. If there is any

occurrence of sudden undesirable disturbances, this can re-

sult in more problems for existing furnaces which may be

already operating in poor thermal conditions around the

world. The control of excess oxygen emissions, as well as

glass temperature, is therefore also considered in this paper.

For such a complex multivariable process, a decentralised
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control strategy is generally applied and has always been in

the attention of many researchers for developing a precise

control strategy to enhance the performance of multivari-

able processes. However, difficulties are encountered in de-

signing the decentralised control due to loop interactions.

A literature search reveals that there are several classified

tuning methods suggested to tune decentralised controllers

for multivariable processes such as detuning[2], sequential

design[3], independent design[4] and iterative[5] methods.

These tuning methods have achieved a certain degree of

success in the design approach. However, these tuning

methods do exhibit weaknesses and can suffer in compen-

sating the couplings between loop interactions of a mul-

tivariable system. To improve the compensation of loop

interactions, the effective open-loop (EOL) method was

introduced[6]. The EOL method considers all other loop in-

teractions while adapting the i-th control parameters for the

i-th EOL. But, the EOL method produces model approx-

imation error, due to mathematical complications, as the

model dimensions are increased. Thus, the EOL method

is mainly applicable for low dimension models. Another

successful approach is that of relay auto-tuning, which is

a combination of single loop relay auto-tuning and the se-

quential tuning method[7]. This method appears to perform

well, but a multivariable system with large multiple dead

time exhibits poor performance. In recent years, to im-

prove the entire control performance and robust stability,

a systematical approach based on the generalised internal

model control, proportional-integral-derivative (IMC-PID)

design method[8] and the reduced effective transfer function

(RETF) by inverse response behaviour method[9] have been

introduced for multivariable processes. But, both methods

involve a complex mathematical approach to design the de-
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centralised controllers. In general, a question always arises

about the wellness of control optimisation and the flexi-

bility, due to the application constraints, of these design

methods.

Standard genetic algorithms (SGAs) are global search

methods by genetics evolution with higher performance

in optimisation over traditional methods[10−12]. Due to

their superior self-adjustable ability, SGAs have been ap-

plied extensively in tuning the PID parameters for single-

input single-output (SISO) systems[13−15], curve fitting[16]

and fuzzy optimisation[17] . On the other hand, applica-

tion to multiple-input multiple-output (MIMO) systems is

still an open research topic for optimising control param-

eters by SGAs. A promising decentralised controller by

SGAs was proposed for a multivariable process[18]. The

controller performance was defined by closed-loop response

in terms of time-domain bounds for both reference following

and loop interactions. An integrity theorem with SGAs to

enhance the closed-loop system stability when certain loops

are failing or breaking down was proposed[19]. Recently,

improved convergence of genetic algorithms was achieved

by introducing the multi-objective evolutionary algorithm

(MOEA) which combines two fitness assignment methods

(global rank and dominance rank)[20].

This paper investigates the potential of SGAs for opti-

mising the discrete-time PID controller parameters in a de-

centralised control scheme for a multivariable glass furnace.

The paper enhances and expands on initial results presented

in [21]. The structure of this paper is as follows. First,

an introduction is given about the considered multivariable

glass furnace process and the models used for the controller

optimisation studies. Second, the approach to optimisation

by SGAs of discrete PID controller parameters is presented,

with considerations to boundary constraints and particular

cost functions. Third, investigations are presented on loop

interaction effects and control robustness for the multivari-

able glass furnace, with controllers optimised by three SGAs

tuning approaches. The proposed methods are developed

and tested in simulations based on Matlab/Simulink mod-

els.

2 Multivariable glass furnace process

and modelling

Fig. 1 illustrates the block diagram of the realistic mul-

tivariable glass furnace considered in this research, which

consists of a state-space furnace model of 24 states with

feedback loop and excess oxygen model. f1 and f2 are al-

gebraic expressions, f1 includes controller output and sat-

uration, f2 includes specific heat Cp and lower heat value

(LHV) for determining the combustion energy, TSET is the

primary temperature setting, AFR is air-fuel ratio, Tamb

is ambient temperature, ṁ is fuel flow in mass, Tg is glass

temperature, and EO2 is excess oxygen.

The realistic glass furnace model that is identified and

applied for further research here is representing a real

plant combustion chamber from Fenton Art Glass Com-

pany, USA[22]. The furnace model is an extended research

work by Holladay[23] using a radiative zone method to de-

velop the 24 state space variables (zones) model. The lin-

earised energy balance equations are applied and modified

with respect to the 24 state variables for each zone corre-

sponding to temperatures. For example, the energy balance

equation of combustion zone α1 can be written as

Caα1
dTaα1

dt
= Qaα1 =

Qbwα1 + Qcα1 + Qswα1 + Qaα2+

Qgβ1 + Qgβ2 + Qgχ1 + Qgχ2+

Qgδ1 + Qgδ2 + Qin. (1)

Fig. 1 Block diagram of realistic multivariable glass furnace pro-

cess model

A literature survey reveals that there is no EO2 realis-

tic model for a glass furnace available for research. The

realistic EO2 model designed for research here was devel-

oped using collected data from an industrial furnace by an

open-loop step response technique. SGAs were applied for

identification of a higher order transfer function (3rd order)

as a realistic model for EO2, and control oriented models for

both Tg and EO2 for control optimisation. The identified

transfer functions by SGAs are as follows:

For EO2 realistic model,

ΔEO2(s)

ΔAFR(s)
=

1.613

50.3s3 + 149.6s2 + 142.7s + 1
e−173s. (2)

For EO2 control oriented model,

ΔEO2(s)

ΔAFR(s)
= GEO2(s) =

1.6

150s + 1
e−174s. (3)

For glass furnace temperature control oriented model,

ΔTg(s) = GTg1(s)Δṁ(s) + GTg2(s)ΔTSET (s) =

4 488.4

1.992 × 105s + 1
Δṁ(s)+

−0.983 4

1.992 × 105s + 1
ΔTSET (s). (4)

According to the collected data of EO2, the model is de-

signed based on a step input of air-fuel ratio (AFR ratio is

17.2:1 in mass). Changes in fuel flow ṁ cause corresponding

changes in air flow through the AFR. Since ṁ does not al-

ter the AFR and it is the AFR that affects EO2, there will

be no effect on the EO2 when ṁ is changed. However, any
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variation in air-fuel ratio will affect the outputs of f1 and

f2 (Fig. 1) which leads directly to changes in ṁ and hence,

Tg. Therefore, the multivariable glass furnace process has

single loop interaction from AFR to Tg under closed-loop

influences. The identified control oriented model of the in-

teraction was

ΔTg(s)

ΔAFR(s)
= GAF R(s) =

−61.5

2 × 105s + 1
. (5)

The dynamics of the glass furnace process are therefore,

represented by the following low order 2 × 3 transfer func-

tion matrix which is used for controller optimisation.[
ΔTg(s)

ΔEO2(s)

]
=

[
GTg1 GTg2 GAF R

0 0 GEO2

]
×

⎡
⎢⎣ Δṁ(s)

ΔTSET (s)

ΔAFR(s)

⎤
⎥⎦ . (6)

For a more complete control realisation of the EO2 pro-

cess, the realistic model transfer function (2) is associated

with an AFR conversion model and EO2 look-up table as

illustrated in Fig. 2. The AFR conversion model was partic-

ularly designed to convert the real value of AFR(mass) to

respective AFR(volumetric) based on the methane gas law.

The transfer function (2) and AFR conversion model are lin-

ear. But, the EO2 look-up table exhibits some nonlinear ef-

fects due to the methane chemical relationship between the

stoichiometric AFR(volumetric) input and EO2(%) output.

Fig. 2 Block diagram of complete realised EO2 model

3 Discrete PID parameters optimisa-

tion by SGAs

In general, a classical PID controller can be described as

an input–output relation expressed as

u(t) = Kc

(
e(t) +

1

Ti

∫
e(t) dt + Td

de(t)

dt

)
(7)

where u is the control signal, e is the error signal, and Kc,

Ti and Td denote the proportional gain, the integral gain

and derivative gain, respectively. By using finite difference

approximations, (7) is expressed as its discrete equivalent

in positional form. For more accurate approximations, the

trapezoidal and backward rules are applied here to develop

discrete expressions for the integral and derivative terms,

respectively (KI = 1
Ti

),

Gc(z) =
U(z)

E(z)
=

Kc

(
1 + KI

T

2
× z + 1

z − 1
+ Td

1

T
× z − 1

z

)
. (8)

3.1 Performance criterion formulation

The performance criteria for both Tg and EO2 are for-

mulated individually under closed-loop SISO control based

on the following desired response characteristics.

1) For Tg, overshoot ≤ 2%, settling time (ts) ≈ 5 h.

2) For EO2, overshoot ≤ 2%, settling time (ts) ≈ 7min.

3) For both variables, zero steady state error to a con-

stant set point.

3.2 SGAs configuration

The SGAs approach used for optimisation of the PID

controller parameters is shown in Fig. 3. As illustrated in

the flowchart of the SGAs, at initial state, the chromosomes

of an array of variable values to be optimised are defined as

Chromosome =
{(Kc KI T d)︸ ︷︷ ︸ , (Kc KI Td)︸ ︷︷ ︸}.

Tg EO2

(9)

Binary coding was selected to encode the discrete con-

troller parameters into binary strings to generate the initial

population randomly in the beginning. The length of each

chromosome (Lind) is determined based on the binary pre-

cision or resolution:

resj =
bj − aj

2mj − 1
(10)

where mj is the number of bits, bj is the upper bound-

ary, and aj is the lower boundary of each individual

chromosome′s searching parameter. Each chromosome′s bi-

nary string is converted into an associated real value of PID

parameter to propagate to the discrete PID controller. The

decoding process into a real value is done as

xj = aj + Dec × bj − aj

2mj − 1
(11)

where xj is the respective real value of the chromosome′s
search parameter and Dec is the decimal value of the respec-

tive binary string. A complete simulated system response

of each PID set and its initial fitness value is evaluated by

using a defined objective function.

According to the chromosome′s fitness value by a defined

objective function, a new generation (offspring) is produced

by the process of genetic operators. The genetic operators

manipulate the binary strings of the chromosomes directly,

by means of selection rate (Srate), crossover rate (Xrate)

and mutation rate Mrate to produce fitter chromosomes for

the next generation. After completion of the genetic oper-

ator process, the new set of binary strings for each chro-

mosome in the population is required to be decoded into

real values and propagated again to the discrete PID con-

troller to evaluate the new fitness values. This process is

sequentially repeated until a maximum number of genera-

tions is reached, where the optimal fitness is attained. Due

to no previous information available for genetic operator

values for both Tg and EO2 control optimisation, several

experiments were conducted where variations of the genetic

operator values were tested individually for enhancing the

searching mechanism. Table 1 illustrates the selected ge-

netic operator parameters for both Tg and EO2.



K. Rajarathinam et al. / PID Controller Tuning for a Multivariable Glass Furnace Process by Genetic Algorithm 67

Fig. 3 Flow chart of control optimisation by SGAs

Table 1 Genetic operators of Tg and EO2

Genetic operators Tg (K) EO2 (%)

Number of individuals 50 50

Maximum number of generation 30 50

Generation gap 0.6 0.7

Precision of binary representation 6 6

Selection SUS SUS

Crossover Single point, 0.6 Single point, 0.7

Mutation Binary representation, 0.6/Lind Binary representation, 0.6/Lind

3.3 Objective function and boundary con-
straint formulation

The control oriented models of both Tg and EO2 were

used individually to identify the optimum objective func-

tion and searching boundaries to achieve the performance

criteria. In the first attempt, initial guesses were made for

the search boundaries in the SGAs. Improved boundary

constraints were subsequently introduced. For better se-

lection of improved boundary values, conventional tuning

methods (Ziegler-Nichols and direct synthesis) were anal-

ysed to identify PID values. With these identified PID

values, bj and aj were adjusted accordingly to ensure an

optimal solution for the desired response characteristics.

Two objective functions, integral absolute error (IAE)

and integral squared error (ISE),

Ji (IAE) =
max∑
k=0

|e(k)| (12)

Ji (ISE) =

max∑
k=0

e2(k) (13)

were used to compare and improve the set-point error for

EO2. Fig. 4 and Table 2 illustrates that the SGAs with pa-

rameter vectors of improved bound PID, Kc ∈ [0, 1], KI ∈
[0, 0.01], Td ∈ [0, 50], for EO2 have better dynamic re-

sponse and higher degree of accuracy while reducing the

performance criterion by adapting the fitness value. Initial

optimisation of PID parameters by conventional techniques

provides a better suggestion of improved bound ranges than

assigning the ranges randomly or arbitrarily. By limiting bj

of Kc, the SGA consolidates well within the boundary con-

straints for KI and Td to converge to the global minimum.

However, Fig. 5 and Table 3 illustrate an overshoot of

10% (1 555 K) occurred in the transient response with a

long settling time of 30 h for Tg with improved boundaries.

SGAs optimised close to the bj to attain the desired re-

sponse characteristics, but failed to achieve a global mini-

mum. To enhance the searching mechanism for the control
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parameters and achieve a global minimum, a modified cost

function is applied. A weighting factor λ applied to the

integral squared process input (controller output) term u

(ISU) is added to the cost function to reduce the fast rising

effect of the transient response. The modified cost function

applied for Tg is given by the relation,

Ji (IAE + λISU) =
max∑
k=0

|Tg(k) − 1 550| + λu2(k) (14)

where k is the sampling number and u is the controller out-

put. The selection of an optimal value of λ is done by trial

and error technique by varying λ in the range [100, 1 000].

The weighting factor associated with the desired response

characteristics was set to λ = 400 to give more emphasis to

the set point tracking objectives.

Fig. 4 Responses of EO2 for conventional techniques and SGAs

with random and improved boundaries

The simulation results in Fig. 5 and Table 3 illustrate

that the SGA with modified cost function, IAE + λISU

(14), has a higher level of optimisation mechanism and bet-

ter dynamic response than the improved searching bound

alone. Application of λ with ISU has suppressed the

larger overshoot behaviour of the glass temperature re-

sponse by smoothing the controller output. Overall desired

response characteristics, which are reduction of set-point

error, overshoot and settling time, are achieved for Tg with

the IAE + λISU cost function.

Fig. 5 Responses of Tg for a conventional technique and SGAs

with improved boundaries and weighting factor

4 Simulation results of decentralised

control strategies by SGAs

The optimisation of discrete decentralised control strate-

gies is analysed by three SGAs tuning approaches, asso-

ciated with the 2× 2 control oriented multivariable glass

furnace model as illustrated in Fig. 6. The three SGAs tun-

ing approaches are applied in closed-loop step input tests.

The three tuning approaches are:

SGAs-1: The discrete PID values of both Tg and EO2

are optimised individually with their respective closed-loop

control oriented model (independently) without loop inter-

actions as discussed in Section 3.3.

SGAs-2: The discrete PID values of both Tg and EO2

are optimised individually with their respective closed-loop

control oriented model with loop interaction. (C1(z) is

Table 2 PID parameters for EO2 by different tuning methods

Tuning method Kc KI Td ISE IAE ts (2%)

Ziegler-Nichols 1.38 0.003 8 65.88 103.8 268.6 14min

Direct synthesis 1.137 0.003 4 74 92.84 231.7 14.5min

Random bound SGAs 2 0 36.67 119.8 355.6 35.8min

Improved bound SGAs 0.768 5 0.004 3 32.27 83.26 187.7 7.1min

Table 3 PID parameters for Tg by different tuning methods

Tuning method Kc KI Td Set-point error ts(2%)

Direct synthesis 2.235×10−3 5.15×10−5 3.563 1.981×105 40 h

Improved bound SGA 3.675×10−3 2.54×10−5 6.322 8.438×104 30 h

Weighting factor SGA 9.863×10−3 9.46×10−6 7.358 7.029×104 4.9 h
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optimised with respective cost function, TSET = 1500 K

→ 1 550 K, EO2(Ref) is constant (2.45%), C2(z) = default

value from SGAs-1 result, C2(z) is optimised with respec-

tive cost function, TSET is constant (1 500K), EO2(Ref) =

2.45% → 3%, C1(z) = default value from SGAs-1 result.)

SGAs-3: The discrete PID value of both Tg and EO2

are optimised together by multivariable closed-loop control

oriented model with loop interaction. The optimised cost

function is modified to include the total effect of Tg and

EO2 by adding the individual cost functions for both vari-

ables for each test as shown in (15). (C1(z) and C2(z) are

optimised with modified cost function: TSET = 1500 K →
1 550 K at EO2 = steady-state, EO2(ref) = 2.45% → 3% at

TSET = steady-state (1 550K)).

Ji(Tg) = (IAE + λISU)Tg
+ IAEEO2

Ji(EO2) = 0 + IAEEO2. (15)

Fig. 6 2-input, 2-output multivariable control oriented model

under closed-loop discrete decentralised PID control

Tables 4 and 5 compare the optimised PID parameters

by the respective SGA tuning approaches of Tg and EO2,

respectively. As discussed in Section 2, any variation in ṁ

caused by TSET and EO2(Ref) step inputs does not affect

EO2. Thus, Fig. 7 reveals that there is no change in EO2

responses by SGAs-1 and SGAs-2. This can also be no-

ticed in Table 5, where the PID parameters for these two

approaches barely have a change.

On the other hand, Fig. 8 reveals that the optimised PID

parameters by SGAs-1 are inadequate to achieve the de-

sired performance criteria for Tg under loop interaction.

As a result of the GAF R(s)′s long dynamic time constant

(2 × 105 s), the Tg response rise time (tr) is lagged about

24 min, hence the settling time (ts) has increased to 7 h

and produced a steady-state temperature error of 1K. In

contrast, the SGAs-2 method consolidated better with loop

interaction and GAF R(s)′s dynamic time constant to main-

tain the desired performance criteria by increasing the Kc

and KI parameters accordingly.

Fig. 7 EO2 responses by three SGAs tuning approaches under

loop interaction

The SGAs-3 tuning approach is tested by applying step

inputs on both set points (Tg and EO2) at two different time

periods in one simulation with the modified (combined) cost

function (15). Thus, the total simulation time has increased

to optimise both sets of PID parameters. The simulation

results of SGAs-3 for Tg are shown in Fig. 9. At t1 = 0 h,

TSET = 1 500 K → 1 550 K, EO2 = 2.45 % (constant). At

t2= 61.1 h, TSET = 1550 K (constant), EO2 = 2.45 % →
3%. From t1 to t2, technically the cost function of Tg (IAE

+ λISU) is optimising the PID parameters of C1(z) indi-

vidually without any effect of the EO2 cost function (IAE).

Such a long time, gap between t1 and t2 is required in the

optimisation considering the effect of GAF R(s)′s long dy-

namic time constant (2× 105 s). Up to t1, there is no effect

on EO2 as this loop interaction is cancelled by the AFR

relationship inherent in the process.

Table 4 Optimised PID parameters for Tg by decentralised techniques

Tuning approach Kc KI Td IAE+λISU ts (2%)

SGAs-1 9.863×10−3 9.461×10−6 7.358 7.029×104 4.9 h

SGAs-2 1.052×10−2 1.371×10−5 7.211 7.017×104 4.86 h

SGAs-3 1.108×10−2 1.311×10−5 7.892 7.007×104 4.84 h

Table 5 Optimised PID parameters for EO2 by decentralised techniques

Tuning approach Kc KI Td IAE ts (2%)

SGAs-1 0.768 5 0.004 3 32.27 187.7 7.1min

SGAs-2 0.767 9 0.004 27 32.84 188.9 7.1min

SGAs-3 0.785 7 0.004 313 32.18 178.53 6.9min
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Fig. 8 Tg responses by three SGAs tuning approaches under

loop interaction

Fig. 9 Tg responses by SGAs-3 with modified (combined) cost

function

From t2, the total effect of Tg and EO2 cost functions

(Ji(Tg)) are compounded together in further optimisation of

the C1(z) and C2(z) PID parameters. According to Fig. 9,

Tg is reduced approximately to 1 549.2 K under loop inter-

action for the increase in EO2 at t2. To maintain the Tg

response, the Kc parameter by SGAs-3 is increased about

5.31% from SGAs-2 (Table 4). But, the KI parameter by

SGAs-3 is reduced about 4.58% from SGAs-2. The effect of

an increment and reduction of Kc and KI is noticeable in

Fig. 7 where both gain parameters are consolidating well to

achieve a desirable response. Also, the EO2 response and

PID parameters vary by a smaller amount with the modi-

fied (combined) cost function (Ji(Tg)) as illustrated in Fig. 8

and Table 5. In the control of both variables, the SGAs-3

method achieves the smallest values of the cost functions

and settling times (Tables 4 and 5).

The total set-point error of Ji(Tg) is 7.024 9×104. Techni-

cally, as there is no loop interaction from ṁ to EO2, the cost

function of Ji(EO2) (15) is applied to identify the set-point

error of EO2. As a result, the set-point error of Ji(EO2) is

178.53. Also, the optimised PID parameters by Ji(Tg) for

EO2 are very much similar to Ji(EO2). Thus, the set-point

error of IAE + λISU (Tg) is 7.007 × 104 by calculation.

As discussed in Section 2, a nonlinearity effect may ap-

pear in step input variations due to the methane chemical

relationship between stoichiometric AFR (volumetric) and

EO2(%). Thus, the loop stability and control robustness

are investigated further. Fig. 10 illustrates the robust re-

sponses of Tg for the three sets of optimised PID param-

eters (SGAs-1 to SGAs-3) under loop interaction for two

EO2 step input tests. The simulations of the two EO2 step

input tests are elaborated as follows:

1) EO2, 2.45% → 3.45%: Initial steady state of

Tg =1550 K causes an initial reduction in Tg, 1 550 K →
1 548.7 K (approximately).

2) EO2, 2.45% → 1.45%: Initial steady state of Tg =

1550 K causes an initial increase in Tg, 1 550 K → 1 551 K

(approximately).

The observed disturbances in Tg are caused by the chang-

ing AFR as a result of the EO2 set points. To compensate

the feedback error, controller C1(z) varies ṁ accordingly to

sustain Tg. In overall, the SGAs-2 method has 17.4% better

control robustness than SGAs-1 (as measured by the IAE

between Tg and the temperature set point). While, the

SGAs-3 method has 4.36% better control robustness than

SGAs-2.

Fig. 10 Loop interaction of multivariable process under closed-

loop discrete decentralised control strategy. Effect of EO2(ref)

(Δ1%) on Tg

5 Conclusions

SGAs were applied successfully to identify low order, con-

trol oriented models of the plant to be used for subsequent

controller optimisation. According to the desired response

characteristics, the control parameters optimisation by ge-

netic algorithms was enhanced with an improved cost func-

tion and improved searching boundaries. The loop interac-

tion and control robustness within the realistic multivari-

able glass furnace model were compensated with well opti-

mised PID parameters by SGAs in a decentralised PID con-

trol scheme. Lower values of the optimised cost functions

and improved robustness to loop interactions were achieved

when the controllers were optimised together.
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