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Abstract: A new approach of adaptive distributed control is proposed for a class of networks with unknown time-varying coupling

weights. The proposed approach ensures that the complex dynamical networks achieve asymptotical synchronization and all the

closed-loop signals are bounded. Furthermore, the coupling matrix is not assumed to be symmetric or irreducible and asymptotical

synchronization can be achieved even when the graph of network is not connected. Finally, a simulation example shows the feasibility

and effectiveness of the approach.
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1 Introduction

Complex dynamical networks (CDNs) are widespread in

nature and human society, such as biological neural net-

work, food web, Internet, world wide web, wireless commu-

nication network, power grid, citation network[1, 2]. Because

of its broad background, CDN has attracted great interest

of scientists in different fields. Since small world networks

and scale-free networks were discovered, many interesting

results have been got[3−15] .

Synchronization is the basic property yet the most im-

portant one of CDN. It can be found everywhere, such as

the phenomenon that fireflies glow at the same time, traf-

fic jams, and network congestion. In the existing litera-

ture, there are many kinds of synchronization schemes for

different needs. Dörfler and Bullo[3] explored different ap-

proaches to phase and frequency synchronization for com-

plex oscillator networks. Cluster synchronization in a com-

plex dynamical network with two-clusters was investigated

in [4]. Also, Guo and Li[5] proposed asymptotic synchro-

nization and synchronization in L2
T norm, respectively.

In the real world, many networks are very large and it

is almost impossible to get their global information. Dis-

tributed control scheme, for the absence of global infor-

mation, has become more popular than centralized control

scheme. Recently, distributed scheme have been widely con-

cerned for synchronization of CDN[6−9]. In [6], the CDN

with system delay and multiple coupling delays was studied

via impulsive distributed control. The distributed consen-
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sus problem was considered in [7] for multi-agent systems

with general continuous time linear dynamics. In [8], the

filtering problem for sensor networks was investigated and

a new type of distributed consensus filters was designed,

where each sensor can communicate with the neighboring

sensors, and filtering can be performed in a distributed

way. General higher order distributed consensus protocols

in multi-agent dynamical systems were studied in [9].

It is well-known that adaptive method can effectively

deal CDN with unknown parameters. For example, syn-

chronization of an uncertain dynamical network with time-

varying delay was investigated by means of adaptive con-

trol schemes in [10]. Adaptive method combines naturally

with distributed scheme for solving practical problems. An

adaptive synchronization controller for distributed systems

was presented in [11]. Yu et al.[12] designed an effective

distributed adaptive strategy to tune the coupling weights

of a network. An adaptive control strategy was developed

in [13] for complex delayed dynamical networks with time-

varying coupling strength and time-varying delays. By ex-

tending the result of [13], an adaptive synchronization was

proposed for a class of nonlinearly parameterized complex

dynamical networks with unknown time-varying parame-

ters in [14]. Further, Shi et al.[15] designed the distributed

adaptive learning laws of network with both periodically

time-varying and constant parameters. This control scheme

ensures synchronization no matter with or without deriva-

tive couplings. However, these results only considered the

case of CDN with unknown time-varying coupling strength.

The CDN with unknown time-varying coupling weights is

not investigated yet.

Motivated by the above results, in this paper, we focus

on the synchronization of a class of CDNs with unknown

time-varying coupling weights. A distributed controller is

proposed and edge-based adaptive update laws are designed

to make the CDN achieve complete synchronization. More-

over, all the closed-loop signals are bounded.



324 International Journal of Automation and Computing 12(3), June 2015

The rest of the paper is organized as follows. The prob-

lem formulation and preliminaries are given in Section 2.

In Section 3, the distributed controller and adaptive update

laws are presented. Main results are displayed in Section

4. Simulation and conclusion are given in Section 5 and

Section 6 respectively.

2 Formulation and preliminaries

Consider a dynamical network consisting of N identical

nodes with unknown time-varying weights. Each node is an

n dimensional dynamical system, and the state equation of

the i-th node is

ẋi = f
(
xi(t)

)
+

N∑
j=1,j �=i

ηij(t)cijΓ
(
xj(t) − xi(t)

)
, i = 1, 2, · · · , N

(1)

where xi = (xi1, xi2, · · · , xin)T ∈ Rn represents the state

vector of the i-th node, f : Rn → Rn is a smooth nonlinear

vector-valued function, ηij(t) = aij(t) + θij is the unknown

time-varying weight, aij(t) is an unknown time-varying con-

tinuous periodic function that with a known periodic T , and

θij is unknown constant. aij(t) > 0 if there exists a connec-

tion from node i to node j (j �= i), otherwise aij (t) = 0.

cij is the coupling element, cij = 1 if there exists a con-

nection from node i to node j (j �= i), otherwise cij = 0.

Γ = diag{γ1, γ2, · · · , γn} represents the inner coupling ma-

trix with γi > 0.

Definition 1. The network (1) is said to achieve asymp-

totic synchronization if

lim
t→∞

‖xi(t) − s(t)‖ = 0, i = 1, 2, · · · , N (2)

where ‖·‖ stands for the Euclidean vector norm. Let M =

{[xT
1 , xT

2 , · · · , xT
N ]T : x1(t) = x2(t) = · · · = xN(t) = s(t)} be

the synchronization manifold. s(t) satisfies ṡ(t) = f(s(t))

and it can be an equilibrium point, periodic orbit, or even

chaotic attractor.

Assumption 1. Suppose that there exists li > 0, satis-

fying

(
xi(t) − s(t)

)T(
f(xi(t)) − f(s(t))

)
≤

li
(
xi(t) − s(t)

)T(
xi(t) − s(t)

)
(3)

where xi(t) and s(t) are time varying vectors.

Lemma 1 (Young′s inequality). For any vectors

x, y ∈ Rn, and any constant c > 0, the following matrix

inequality holds:

xTy ≤ cxTx +
yTy

4c
. (4)

Lemma 2[16]. If e(t) : [0,∞) → R is square integrable,

i.e., limt→∞
∫ t

0
e2(τ )dτ < ∞, and ė(t) is bounded on [0,∞),

then limt→∞ e(t) = 0.

In this paper, aij(t) is unknown periodic time-varying

nonnegative parameters, the objective is to design a dis-

tributed adaptive controller under which the solutions of

network (1) globally synchronize to s(t).

3 Distributed controller and adaptive

update laws

In order to achieve the synchronization objective, we de-

sign a distributed adaptive controller for nodes in the net-

work (1). Then, the controlled network is given by

ẋi(t) = f
(
xi(t)

)
+

N∑
j=1,j �=i

ηij(t)cijΓ
(
xj(t) − xi(t)

)
+ ui(t)

(5)

where ui(t) =
(
ui1(t), ui2(t), · · · , uin(t)

)T

, i =

1, 2, · · · , N , are the distributed adaptive controllers

to be designed.

A distributed controller is designed as

ui(t) = −ki

(
xi(t) − s(t)

)
+

N∑
j=1,j �=i

cij

(
âij(t) + θ̂ij(t)

)
Γ
(
xi(t) − xj(t)

)
(6)

where i = 1, 2, · · · , N , âij(t) and θ̂ij(t) are the estimation

of aij(t) and θij corresponding to those cij = 1. In other

word, we estimate those weights ηij(t) only when there ex-

ists a connection between nodes i and j (j �= i). âij(t) and

θ̂ij(t) satisfy the update laws as

âij(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

âij(t − T ) + qijcije
T
i (t)Γ

(
ej(t) − ei(t)

)
,

if t ∈ [T,∞), j �= i

qij0(t)cije
T
i (t)Γ

(
ej(t) − ei(t)

)
,

if cij = 1, t ∈ [0, T ), j �= i

0 , if t ∈ [−T, 0)

(7)

˙̂
θij = rijcije

T
i (t)Γ

(
ej(t) − ei(t)

)
, j �= i, cij = 1 (8)

where âij(t) and θ̂ij(t) are the estimation of aij(t) and θij .

rij and qij are positive constants, qij0(t) are monotoni-

cally increasing functions on the interval [0, T ] and satisfy

qij0(T ) = qij .

The state error and the parameter estimation error are

denoted by

ei(t) = xi(t) − s(t)

ãij(t) = aij(t) − âij(t)

θ̃ij = θij − θ̂ij(t).

Then, we have the error system as

ėi(t) = −kiei(t) + f
(
xi(t)

)
− f

(
s(t)

)
+

N∑
j=1,j �=i

cij

(
ãij(t) + θ̃ij(t)

)
Γ
(
ej(t) − ei(t)

)
. (9)
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4 Main result

Theorem 1. Under Assumption 1, the distributed con-

trol law (6) with periodic adaptive law (7) and update law

(8), guarantee the asymptotic synchronization of the con-

trolled network (5), i.e.,

lim
t→∞

‖xi(t) − s(t)‖ = 0, i = 1, 2, · · · , N. (10)

Moreover, all closed-loop signals are bounded.

Proof. We choose a Lyapunov-Krasovskii function as

V (t) =
1

2

N∑
i=1

eT
i (t)ei(t) +

1

2

N∑
i=1

N∑
j=1,j �=i

t∫

t−T

q−1
ij ã2

ij(τ )dτ+

1

2

N∑
i=1

N∑
j=1,j �=i

r−1
ij θ̃2

ij(t), t ∈ [0,∞). (11)

The proof process consists of two parts. Firstly, we prove

the boundedness of V (t) on [0, T ]. Secondly, the asymptotic

synchronization will be achieved according to Lemma 2, and

boundedness of all closed-loop signals will be proved.

At first, because âij(t) has different expressions on [0, T ]

and [T,∞), the proof procedure of the boundedness of V (t)

is divided into two phases. When t ∈ [0, T ], âij(t) and

θ̂ij(t) are continuous. From (6)–(8), one can obtain that

the right-hand side of (9) is continuous. According to the

existence theorem of solutions of differential equations, (9)

has unique solution in interval [0, T1] ⊂ [0, T ], with 0 <

T1 ≤ T . Therefore, the boundedness of V (t) over [0, T1]

can be guaranteed and we need only focus on the interval

[T1, T ).

The time derivative of V (t) on [T1, T ] is given by

V̇ (t) =
N∑

i=1

eT
i (t)ėi(t) +

1

2

N∑
i=1

N∑
j=1,j �=i

q−1
ij ×

(
ã2

ij(t) − ã2
ij(t − T )

)
−

N∑
i=1

N∑
j=1,j �=i

r−1
ij θ̃ij(t)

˙̂
θij(t). (12)

Combining with (9) and Assumption 1, the first term on

the right-hand side of (12) is

N∑
i=1

eT
i (t)ėi(t) =

N∑
i=1

eT
i (t)

[
f
(
xi(t)

)
− f

(
s(t)

)
− ki

(
xi(t) − s(t)

)]
+

N∑
i=1

eT
i (t)

N∑
j=1,j �=i

cij

(
ãij(t) + θ̃ij(t)

)
Γ
(
xj(t) − xi(t)

)
≤

N∑
i=1

(li − ki)e
T
i (t)ei(t)+

N∑
i=1

N∑
j=1,j �=i

cij

(
ãij(t) + θ̃ij(t)

)
eT

i (t)Γ
(
ej(t) − ei(t)

)
=

N∑
i=1

(li − ki)e
T
i (t)ei(t)+

N∑
i=1

N∑
j=1,j �=i

cij ãij(t)e
T
i (t)Γ

(
ej(t) − ei(t)

)
+

N∑
i=1

N∑
j=1,j �=i

cij θ̃ij(t)e
T
i (t)Γ

(
ej(t) − ei(t)

)
.

By the periodic adaptive law (7), we have

N∑
i=1

eT
i (t)ėi(t) =

N∑
i=1

(li − ki)e
T
i (t)ei(t) +

N∑
i=1

N∑
j=1,j �=i

ãij(t)
âij(t)

qij0(t)
+

N∑
i=1

N∑
j=1,j �=i

cij θ̃ij(t)e
T
i (t)Γ

(
ej(t) − ei(t)

)
=

N∑
i=1

(li − ki)e
T
i (t)ei(t)+

N∑
i=1

N∑
j=1,j �=i

ãij(t)
âij(t) − aij(t) + aij(t)

qij0(t)
+

N∑
i=1

N∑
j=1,j �=i

cij θ̃ij(t)e
T
i (t)Γ

(
ej(t) − ei(t)

)
=

N∑
i=1

(li − ki)e
T
i (t)ei(t) −

N∑
i=1

N∑
j=1,j �=i

ã2
ij(t)

qij0(t)
+

N∑
i=1

N∑
j=1,j �=i

ãij(t)aij(t)

qij0(t)
+

N∑
i=1

N∑
j=1,j �=i

cij θ̃ij(t)e
T
i (t)Γ

(
ej(t) − ei(t)

)
.

Then apply Lemma 1, for positive constant c and ε, ε is

the lower bound of qij0(t) on interval [T1, T ], we get

ãij(t)aij(t)

qij0(t)
≤ 1

qij0(t)
[cã2

ij(t) +
1

4c
a2

ij(t)] ≤
c

ε
ã2

ij(t) +
1

4cε
a2

ij(t)

and

N∑
i=1

eT
i (t)ėi(t) ≤

N∑
i=1

(li − ki)e
T
i (t)ei(t) −

N∑
i=1

N∑
j=1,j �=i

ã2
ij(t)

qij0(t)
+

N∑
i=1

N∑
j=1,j �=i

c

ε
ã2

ij(t) +
N∑

i=1

N∑
j=1,j �=i

1

4cε
a2

ij(t)+

N∑
i=1

N∑
j=1,j �=i

cij θ̃ij(t)e
T
i (t)Γ

(
ej(t) − ei(t)

)
. (13)
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By (12) and (13), we have

V̇ (t) ≤
N∑

i=1

(li − ki)e
T
i (t)ei(t) −

N∑
i=1

N∑
j=1,j �=i

ã2
ij(t)

qij0(t)
+

N∑
i=1

N∑
j=1,j �=i

c

ε
ã2

ij(t) +
N∑

i=1

N∑
j=1,j �=i

1

4cε
a2

ij(t)+

N∑
i=1

N∑
j=1,j �=i

cij θ̃ij(t)e
T
i (t)Γ

(
ej(t) − ei(t)

)
+

1

2

N∑
i=1

N∑
j=1,j �=i

q−1
ij ã2

ij(t)−
N∑

i=1

N∑
j=1,j �=i

r−1
ij θ̃ij(t)

˙̂
θij(t).

Substituting (8) into the above inequality, we have

V̇ (t) ≤
N∑

i=1

(li − ki)e
T
i (t)ei(t)+

N∑
i=1

N∑
j=1,j �=i

( 1

2qij
− 1

qij0
(t) +

c

ε

)
ã2

ij(t)+

N∑
i=1

N∑
j=1,j �=i

1

4cε
a2

ij(t). (14)

We chose ki and c such that li−ki < 0, 1
2qij

− 1
qij0

(t) + c
ε

<

0 for i, j = 1, 2, · · · , N, i �= j, then

V̇ (t) ≤
N∑

i=1

N∑
j=1,j �=i

1

4cε
a2

ij(t). (15)

As aij(t) is continuous periodic function, we can see that

aij(t) is bounded. Therefore, V̇ (t) is bounded in [T1, T ],

and V (t) is bounded in interval [0, T ].

When t ∈ [T,∞], the derivative of V (t) is

V̇ (t) =

N∑
i=1

eT
i (t)ėi(t)+

1

2

N∑
i=1

N∑
j=1,j �=i

[ã2
ij(t) − ã2

ij(t − T )]q−1
ij +

N∑
i=1

N∑
j=1,j �=i

r−1
ij θ̃ij(t)

˙̃
θij(t) =

N∑
i=1

(li − ki)e
T
i (t)ei(t)+

N∑
i=1

N∑
j=1,j �=i

cij̃ ij(t)e
T
i (t)Γ

(
ej(t) − ei(t)

)
+

1

2

N∑
i=1

N∑
j=1,j �=i

[ã2
ij(t) − ã2

ij(t − T )]q−1
ij =

N∑
i=1

(li − ki)e
T
i (t)ei(t)+

N∑
i=1

N∑
j=1,j �=i

cij ãij(t)e
T
i (t)Γ

(
ej(t) − ei(t)

)
+

1

2

N∑
i=1

N∑
j=1,j �=i

q−1
ij

(
âij(t − T ) − âij(t)

)(
2(aij(t)−

âij(t)) + âij(t) − âij(t − T )
)

=

N∑
i=1

(li − ki)e
T
i (t)ei(t)+

N∑
i=1

N∑
j=1,j �=i

cij ãij(t)e
T
i (t)Γ

(
ej(t) − ei(t)

)
−

N∑
i=1

N∑
j=1,j �=i

cij ãij(t)e
T
i (t)Γ

(
ej(t) − ei(t)

)
−

1

2

N∑
i=1

N∑
j=1,j �=i

q−1
ij

(
âij(t − T ) − âij(t)

)2

=

N∑
i=1

(li − ki)e
T
i (t)ei(t)−

1

2

N∑
i=1

N∑
j=1,j �=i

q−1
ij

(
âij(t − T ) − âij(t)

)2

≤

N∑
i=1

(li − ki)e
T
i (t)ei(t). (16)

By the above equation, we have

V (t) − V (T ) ≤
N∑

i=1

t∫

T

(li − ki)e
T
i (τ )ei(τ )dτ ≤ 0. (17)

It can be derived naturally that V (t) ≤ V (T ), i.e., V (t) is

bounded in [T,∞), so we get that V (t) is bounded in [0,∞).

Secondly, we shall prove the asymptotical synchroniza-

tion. For the sake of simplicity, the boundedness of all

closed-loop signals is shown firstly, then the asymptotical

synchronization is shown. By the boundedness of V (t), we

can obtain that ei(t), ãij(t) and θ̃ij(t) are all bounded,

and with the boundedness of aij(t) and θij(t), we can

see that âij(t) and θ̂ij(t) are bounded too. Therefore,

ui(t) and ėi(t) are bounded, respectively. By (17), we get

limt→∞
∫ t

0
eT

i (τ )ei(τ )dτ < ∞.

According to Lemma 2, we have limt→∞ ei(t) = 0, i =

1, 2 , · · · , N, i.e., the controlled network (5) achieves

asymptotic synchronization and all the closed-loop signals

are bounded. �
Remark 1. Generally speaking, the design of a dis-

tributed controller for network will use the coupling weights.

That is why we use the adaptive method to estimate aij(t).

Remark 2. Notice that the coupling matrix is not as-

sumed to be symmetric or irreducible as compared to the

assumptions in [9, 12], and the graph of network is not re-

quired to be connected. So our result is more general.

Remark 3. The control gain ki should be chosen as

large as possible so that it can satisfy ki > li to guarantee

the boundedness of V (t). The initial states of nodes can be
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selected randomly from the whole Euclidean space noting

that Assumption 1 is a globally Lipchitz condition.

Remark 4. In this paper, the distributed adaptive syn-

chronization strategy can be seen as an edge-based version,

which is different with the node-based one that has been

discussed in many literatures[7, 13−15] . Authors in [7] pro-

posed two distributed adaptive dynamic consensus proto-

cols: One protocol assigns an adaptive coupling weight to

each edge in the communication graph while the other uses

an adaptive coupling strength for each node. Both of them

guarantee consensus under the assumption that the com-

munication graph G is connected, which can be omitted in

our result. In [13], synchronization of complex delayed dy-

namical networks with time-varying coupling strength and

time-varying delayed was investigated via adaptive control

strategy. A new adaptive learning control approach is pro-

posed for a class of nonlinearly parameterized complex dy-

namical networks with unknown time-varying parameters

in [14]. Complex dynamical network model with both non-

derivative and derivative couplings was considered in [15].

At the same time, the distributed adaptive learning laws of

periodically time-varying parameters and constant parame-

ters along with distributed adaptive control were designed.

However, all the adaptive update laws in [13−15] are node-

based and the synchronization in [14, 15] are both under L2
T

norm sense, while our adaptive update law is edge-based

and we achieve an asymptotic synchronization.

5 Numerical simulation

To demonstrate the theoretical result obtained in Section

4, the Chua′s chaotic circuit[14] is used as a dynamical node

of the network.

Chua′s chaotic circuit is described by

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = p
(
− x1 + x2 − g(x1)

)

ẋ2 = x1 − x2 + x3

ẋ3 = −qx2

(18)

where g(x1) = m0x1 + 1
2
(m1 −m0)(|x1 +1|− |x1 − 1|), p =

10, q = 14.7, m0 = −0.68, and m1 = −1.27.

The whole network is given by

⎛
⎜⎝

ẋi1

ẋi2

ẋi3

⎞
⎟⎠ =

⎛
⎜⎜⎝

p
(
− xi1 + xi2 − g(xi1)

)

xi1 − xi2 + xi3

−qxi2

⎞
⎟⎟⎠ +

N∑
j=1,j �=i

(
aij(t) + θij

)
cijΓ

(
xj(t) − xi(t)

)
+ ui(t),

i = 1, 2, 3, 4, 5. (19)

The parameters are selected as

r12 = 0.4, r14 = 0.02, r25 = 0.05, r35 = 0.06, r21 = 0.1,

r41 = 0.2, r52 = 0.12, r53 = 0.32, q12 = 0.06, q14 = 0.08,

q25 = 0.09, q35 = 0.08, q21 = 0.06, q41 = 0.02, q52 = 0.04,

q53 = 0.06, k1 = k2 = k3 = k4 = k5 = 0.9,

qij0(t) =
tqij

6
, i = 1, 2, · · · , 5, j = 1, 2, · · · , 5.

The initial states are chosen as

x1(0) = (2, 0,−1)T, x2(0) = (3, 1,−2)T

x3(0) = (−3,−2, 1)T, x4(0) = (−1, 0,−2)T

x5(0) = (−1, 1, 0)T, s(0) = (−0.2, 0.2, 0.5)T

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0

1 0 0 0 1

0 0 0 0 1

1 0 0 0 0

0 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

Ξ=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 3 0 2 0

3 0 0 0 0.7

0 0 0 0 1.2

2 0 0 0 0

0 0.7 1.2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

Γ=diag{1,1,1}

A12(t) = sin2( 2πt
6

), A14(t) =
∣∣0.3 sin( 2πt

3
)
∣∣

A21(t) =
∣∣sin( 2πt

6
)
∣∣ , A25(t) =

(
0.7 cos( 2πt

6
)
)2

A35(t) =
∣∣cos( 2πt

3
)
∣∣ , A41(t) =

(
0.3 sin( 2πt

3
)
)2

A52(t) =
∣∣0.7 cos( 2πt

6
)
∣∣ , A53(t) = cos2( 2πt

3
).

The first, second and third component of errors (inputs)

are shown in the diagrams Fig. 1 (a) (Fig. 2 (a)), Fig. 1 (b)

(Fig. 2 (b)) and Fig.1(c) (Fig. 2 (c)), respectively. From

Fig. 1 we can see clearly that network (19) achieves asymp-

totic synchronization (for the sake of brevity, we only paste

a part of figures here).

(a) First component error
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(b) Second component error

(c) Third component error

Fig. 1 The evolution of error over time

Fig. 3 and Fig. 4 show that the estimations of both peri-

odic parameters and constant parameters are bounded.

(a) First component of control

(b) Second component of control

(c) Third component of control

Fig. 2 The response of control inputs

6 Conclusions and Prospects

In this paper, we proposed a distributed adaptive con-

trol method to synchronize the complex dynamical network

with unknown time-varying parameters. This method is

applicable to more general cases, where the coupling ma-

trix may be not symmetric or irreducible and the graph of

network may be disconnected. To the best of our knowl-

edge, both edge-based distributed adaptive synchronization

strategy and node-based version are based on the known

structure of topology of the complex dynamical network,

the work about complex dynamical network with unknown

structure of topology has not been reported as yet. It is

an interesting and challenging problem about how to syn-

chronize a network when its structure of topology cannot

be achieved, and this is one problem for us to consider in

the future.
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Fig. 3 The evolution of estimation of periodic parameter

Fig. 4 The evolution of estimation of constant parameter
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