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Abstract: This paper derives the bounded real lemmas corresponding to L∞ norm and H∞ norm (L-BR and H-BR) of fractional

order systems. The lemmas reduce the original computations of norms into linear matrix inequality (LMI) problems, which can be

performed in a computationally efficient fashion. This convex relaxation is enlightened from the generalized Kalman-Yakubovich-

Popov (KYP) lemma and brings no conservatism to the L-BR. Meanwhile, an H-BR is developed similarly but with some conservatism.

However, it can test the system stability automatically in addition to the norm computation, which is of fundamental importance for

system analysis. From this advantage, we further address the synthesis problem of H∞ control for fractional order systems in the form

of LMI. Three illustrative examples are given to show the effectiveness of our methods.
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1 Introduction

Fractional order systems (FOSs) have attracted exten-

sive attention during the past few years. Numerous in-

vestigations point out that fractional phenomena are en-

countered in many physics and engineering sciences, such

as electromagnetics[1] and quantum mechanics[2]. More-

over, with the theoretical development of fractional dif-

ferential equations[3], fractional controllers have been pro-

posed which possess more flexibilities and robustness, e.g.,

the PIλDu controller[4], the CRONE principle[5], and other

variations[6]. Many fundamentals and applications of frac-

tional order control systems can be found in [7] and the

references therein.

Stability and norms are important system specifications

which are also the research focus in the area of FOSs.

Matignon[8] studied linear time invariant FOSs and laid

the theoretical foundation of the stability analysis in 1998.

Further, it was revealed that linear or nonlinear FOSs have

more general stability type called Mittag-Leffler stability

in contrast to the classical exponential stability[9]. Many

linear matrix inequality (LMI) criteria are available for the

stability and robustness of certain or uncertain FOSs[10−15].

On the other hand, it is well known that H2 and H∞
norms are significant quantities associated with control sys-

tem performance such as robust stability, disturbance re-

jection and measurement noise attenuation. An analytical

computation method for the H2 norm of FOSs was derived

in [16]. Fadiga et al.[17, 18] proposed some LMI-based and

Hamiltonian-matrix-based methods for the H∞ norm com-

putation of FOSs. Similarly, a bounded real lemma for

FOSs was derived in [19]. It is also interesting to men-

tion some recent studies with respect to H∞ controls and
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approximations of FOSs[20−24].

Despite the plentiful achievements, there is room for fur-

ther investigation. Firstly, the norm considered in [17−19]

is actually the L∞ norm rather than H∞ norm, which will

be explained and clarified in Section 2. Since the L∞ norm

is irrelative to system stability, it is insufficient for anal-

ysis and synthesis of control systems. Secondly, the com-

putation method in [18] and the bounded real lemma in

[19] are conservative since the criteria are sufficient but not

necessary. The conservatism will result in over estimation

of the norm, i.e., only its upper bound is obtained. Suffi-

cient and necessary conditions for the exact norm compu-

tation and controller synthesis are proposed respectively in

[17, 20], whereas the conditions are in the form of nonlinear

matrix inequalities. They cannot be directly solved by LMI

technique or any other convex optimization. Tractable so-

lutions of them require employing additional iteration algo-

rithms which aggravate the computational burden. Thirdly,

a bounded real lemma for the H∞ norm of FOSs should be

able to test the system stability and compute the norm si-

multaneously, which is a more difficult task than the L∞
one. To the best of our knowledge, looking for such a kind

of bounded real lemma for FOSs with both theoretical thor-

oughness and computational advantage still remains open.

Motivated by the discussions above, this paper derives

the bounded real lemmas for FOSs. Novel results pos-

sessing computational advantage are obtained by employ-

ing the so-called generalized Kalman-Yakubovich-Popov

(KYP) lemma to transform the problems into LMI forma-

tions that can be efficiently solved. Besides, the theoret-

ical contributions of this work are as follows. Firstly, the

bounded real lemma corresponding to L∞ norm (L-BR) of

FOSs is derived without any conservatism. Secondly, the

bounded real lemma corresponding to H∞ norm (H-BR)

of FOSs is proposed that performs stability test and norm

computation simultaneously. Thirdly, the synthesis prob-

lem of H∞ controller for FOSs is addressed by applying



S. Liang et al. / Bounded Real Lemmas for Fractional Order Systems 193

the H-BR.

The rest of this paper is organized as follows. Section 2

provides some preliminaries for FOSs and the correspond-

ing norms. In Section 3, the L-BR and H-BR are proposed.

In Section 4, the synthesis problem of H∞ controller for

FOSs is addressed. In Section 5, three illustrative examples

are given. Finally, Section 6 concludes the paper.

Notations. For matrix X, the transpose and complex

conjugate transpose are denoted by XT and X∗, respec-

tively. Sym(X) is short for X + X∗, and σmax(X) repre-

sents the maximum singular value of X. Expression X > 0

(X < 0) indicates that X is positive (negative) definite.

Symbols Cn×m and Rn×m stand for sets of n×m complex

and real matrices, respectively. Symbol Hn represents the

set of n×n complex Hermitian matrices, and In stands for

an n × n unit matrix. The operator ⊗ is the Kronecker′s
product. Finally, the real part of a complex number s is

denoted by Re(s).

2 Preliminaries

Consider the following FOS{
Dαx(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(1)

where α is the fractional commensurate order, x(t) ∈ Rn,

u(t) ∈ Rm and y(t) ∈ Rp denote the pseudo state, con-

trol vector and output vector, respectively. The Caputo′s
definition is adopted for fractional order derivative as

aDγ
t f(t)

Δ
=

1

Γ(k − γ)

∫ t

a

f (k)(τ )

(t − τ )γ+1−k
dτ (2)

where k is a positive integer and k − 1 ≤ γ < k. If the FOS

(1) is relaxed at t = 0, it can be equivalently represented

by the transfer function matrix

G(s) = C(sαI − A)B + D. (3)

To avoid conceptual confusion for the norms of FOSs,

we introduce the following definitions which are consistent

with the traditional ones as in [25].

Definition 1. The L∞ norm of G(s) is defined as

‖G(s)‖L∞ � sup
ω∈R

σmax(G(jω)). (4)

Definition 2. The H∞ norm of G(s) is defined as

‖G(s)‖H∞ � sup
Re(s)≥0

σmax(G(s)). (5)

It should be noted that the norm concerned in [17−19] is

in accordance with (4). Therefore, those previous results

actually correspond to the L∞ norm rather than the H∞
norm.

Several useful lemmas are given as follows.

Lemma 1[26]. Let matrices A ∈ Rn×n, B ∈ Rn×m,

Θ ∈ H(n+m), Φ ∈ H2 and Ψ ∈ H2. Set Λ is defined as

Λ(Φ, Ψ) �
{

λ ∈ C|
[
λ

1

]∗
Φ

[
λ

1

]
= 0,

[
λ

1

]∗
Ψ

[
λ

1

]
≥ 0

}
. (6)

Consider the following two statements:

1) For H(λ) � (λIn − A)−1B, there holds

[
H(λ)

Im

]∗
Θ

[
H(λ)

Im

]
< 0, ∀λ ∈ Λ. (7)

2) There exist P, Q ∈ Hn and Q > 0 such that

[
A B

In 0

]∗
(Φ ⊗ P + Ψ ⊗ Q)

[
A B

In 0

]
+ Θ < 0. (8)

Then “2) ⇒ 1)” always holds. Moreover, if Λ represents a

curve in the complex plane, there holds “2) ⇔ 1)”.

Lemma 2. Let set Λ(Φ, Ψ) in Lemma 1 be replaced by

Υ(Φ, Ψ), which is defined as

Υ(Φ, Ψ) �
{

λ ∈ C|
[
λ

1

]∗
Φ

[
λ

1

]
≥ 0,

[
λ

1

]∗
Ψ

[
λ

1

]
≥ 0

}
. (9)

Then, LMI of (7) holds for ∀λ ∈ Υ if there exist matrices

P > 0 and Q > 0 such that LMI of (8) holds.

Proof. Please see the Appendix. �
Lemma 3[8]. The fractional order system G(s) in (3) is

stable if and only if ‖G(s)‖H∞ is bounded.

Lemma 4[11]. The fractional order system Dαx(t) =

Ax(t) is stable if and only if either one of the following two

statements holds:

1) |arg(spec(A))| > π
2
α, where spec(A) is the spectrum

(set of eigenvalues) of A.

2) Let θ � π
2
(1 − α). For the case 1 ≤ α < 2, there

exists P > 0 such that Sym(ejθAP ) < 0. For the case

0 < α < 1, there exist P > 0 and Q > 0 such that

Sym(ejθAP + e−jθAQ) < 0.

Lemma 5. For a fractional order system G(s), there

holds

‖G(s)‖L∞ = sup
ω≥0

σmax(G(jω)).

Proof. Please see the Appendix. �
Remark 1. Lemma 1 is the well-known generalized KYP

lemma which can be regarded as a kind of convex relaxation.

The relaxed LMI condition is always sufficient for the corre-

sponding counterpart. This is also true for Lemma 2 in the

same way. These two lemmas are key tools for relaxations

of the original norm computations. Lemma 3 reveals that

H∞ norm is capable of ascertaining the stability of FOS,

which is the theoretical foundation of H∞ control strategy

for FOS. Lemma 5 indicates that one needs only to consider

the positive half imaginary axis for the L∞ norm computa-

tion, which will simplify its convex relaxation as well.

3 Bounded real lemmas for FOS

Now we are ready to present the L-BR and H-BR for

FOSs.

Theorem 1 (L-BR). Consider an FOS with its transfer

function G(s) in (3). Then ‖G(s)‖L∞ < γ if and only if
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there exist P, Q ∈ Hn and Q > 0 such that⎡
⎢⎣ Sym(AX) (CX)∗ B

CX −γIp D

BT DT −γIm

⎤
⎥⎦ < 0 (10)

where X � ejθP + (1 − α)Q and θ � π
2
(1 − α).

Proof. Let λ(ω) � e−j π
2 αωα, we have (jω)α = ej π

2 αωα =

λ∗(ω), ∀ω ≥ 0. Then it follows from Lemma 5 that

‖G(s)‖L∞ = supω≥0 σmax(C(λ∗(ω)In−A)−1B+D). Mean-

while, when ω ranges from 0 to +∞, λ(ω) varies along a

ray in the complex plane. This ray can be represented by

Λ(Φ, Ψ) in (6) with

Φ =

[
0 ejθ

e−jθ 0

]
, Ψ =

[
0 1 − α

1 − α 0

]
.

By some basic matrix calculations, we have

‖G(s)‖L∞ < γ ⇔ G(jω)G∗(jω) − γ2I < 0, ∀ω ≥ 0

⇔
[

H(λ)

Ip

]∗
Θ

[
H(λ)

Ip

]
< 0, ∀λ ∈ Λ(Φ, Ψ) (11)

where H(λ) � (λIn − AT)−1CT and

Θ �
[
BBT BDT

DBT DDT − γ2Ip

]
.

According to Lemma 1, the last part of (11) is also equiva-

lent to the statement that ∃P, Q ∈ Hn and Q > 0 such that

the following LMI holds[
AT CT

In 0

]T

(Φ ⊗ P + Ψ ⊗ Q)

[
AT CT

In 0

]
+ Θ < 0. (12)

The above LMI can be further simplified as[
Sym(AX) (CX)∗

CX −γ2Ip

]
+

[
B

D

] [
B

D

]T

< 0 (13)

where X = ejθP + (1 − α)Q. Rescaling X and utilizing

the Schur complement theorem, we obtain that LMI (13) is

equivalent to LMI (10). �
Remark 2. Theorem 1 provides a sufficient and neces-

sary LMI condition of the L∞ norm, which can be efficiently

solved and is free of any conservatism. Therefore, this L-BR

is superior to the existing results in [17−19].

Theorem 2 (H-BR). Consider the FOS with its trans-

fer function G(s) in (3). Then ‖G(s)‖H∞ < γ if there exist

P > 0 and Q > 0 such that the following LMI holds⎡
⎢⎣Sym(AX) (CX)∗ B

CX −γIp D

BT DT −γIm

⎤
⎥⎦ < 0 (14)

where

X =

{
ejθP + e−jθQ, if 0 < α < 1

ejθP, if 1 ≤ α < 2
, θ =

π

2
(1 − α).

Moreover, in the case 1 ≤ α < 2, the LMI condition (14) is

also necessary.

Proof. Basically, the proof follows the procedure that

1) specifying a proper region corresponding to H∞ norm,

2) representing the region by LMI descriptions in (9), 3)

relaxing the norm condition into LMI by using Lemma 2.

Firstly, it is a fact that for any subregion Ω in the com-

plex plane satisfying Ω ∪ Ω̄ = {sα|s ∈ C, Re(s) ≥ 0}, where

Ω̄ is the symmetrical region of Ω with respect to the real

axis, there must hold ‖G(s)‖H∞ = supRe(s)≥0 σmax(G(s)) =

sups∈Ω σmax(G(s)). This just follows from the maximum

modulus principle and the complex conjugate symmetry of

G(s).

Secondly, it is easy to verify that {sα|s ∈ C, Re(s) ≥
0} = Υ∪ Ῡ, where Υ is defined in (9) with its detailed data

as

Υ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Υ

(⎡
⎢⎣ 0 ejθ

e−jθ 0

⎤
⎥⎦ ,

⎡
⎢⎣ 0 e−jθ

ejθ 0

⎤
⎥⎦
)

, if 0 < α < 1

Υ

(⎡
⎢⎣ 0 ejθ

e−jθ 0

⎤
⎥⎦ , 0

)
, if 1 ≤ α < 2.

Thirdly, from the previous two steps, the sufficiency of

LMI (14) can be proved by using Lemma 2 in a similar way

to Theorem 1. Thus, it is omitted here. Then the remaining

proof is the necessity of LMI (14) for the case 1 ≤ α < 2.

Suppose that 1 ≤ α < 2 and ‖G(s)‖H∞ < γ. Noting

that the curve Λ1 � Λ

( ⎡
⎢⎣ 0 ejθ

e−jθ 0

⎤
⎥⎦ , 0

)
in (6) belongs

to {sα|s ∈ C, Re(s) ≥ 0}, we have sups∈Λ1
σmax(G(s)) ≤

‖G(s)‖H∞ < γ. It implies that according to Lemma 1,

there exists P ∈ Hn such that

[
AT CT

In 0

]T([
0 ejθ

e−jθ 0

]
⊗ P

)[
AT CT

In 0

]
+

[
BBT BDT

DBT DDT − γ2Ip

]
< 0.

(15)

Further, it follows from the Schur complement theorem

that LMI (15) is equivalent to LMI (14) with X = ejθP .

Then the only remaining is to prove that matrix P is pos-

itive definite. To prove this, we notice that LMI (14) im-

plies Sym(AX) < 0. Thus, there exists M > 0 such that

ejθAP +P (ejθA)∗ = −M . On the other hand, ‖G(s)‖H∞ <

γ implies that G(s) is stable. Then according to Lemma

4, we have arg(spec(A)) > π
2
α, i.e., all the eigenvalues of

ejθA are in the left half complex plane. Therefore, we have

P =
∫ +∞
0

eejθAtMe(ejθA)∗tdt > 0. �
Remark 3. In the case of 1 ≤ α < 2, an exactly same

result was obtained in [21].

Remark 4. The feasibility of LMI (14) implies

Sym(AX) < 0, which is exactly the necessary and suffi-

cient LMI condition for the stability of FOSs according to

Lemma 4.
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4 H∞H∞H∞ controller synthesis for FOS

As mentioned in the previous section, the H-BR can as-

certain the system stability. Thus, it can be applied to the

controller synthesis. Since the results involve complex ma-

trices in LMI (14) whereas the control gain must be real, a

further treatment is proposed as follows.

Consider the following FOS

{
Dαx(t) = Ax(t) + Bu(t) + B1w

z(t) = Cx(t) + Du(t) + D1w
(16)

where x(t) ∈ Rn and u(t) ∈ Rm, z(t) ∈ Rp and w ∈ Rq

are the regulated output and the exogenous input, respec-

tively. With static state feedback u(t) = Kx(t), the closed

loop system has the transfer function from w to z in the

following

Gwz(s) = (C + DK)(sαIn − (A + BK))−1B1 + D1. (17)

Theorem 3 (H∞ controller synthesis). Consider the

FOS (16) with transfer function Gwz(s) in (17), and the

following LMI

⎡
⎢⎣Sym(AX + BY ) (CX + DY )∗ B1

(CX + DY ) −γIp D1

BT
1 DT

1 −γIq

⎤
⎥⎦ < 0. (18)

Let θ = π
2
(1 − α), then there holds ‖Gwz(s)‖H∞ < γ if

1) for the case 0 < α < 1: There exist P ∈ Rn×n,

Q ∈ Rn×n and Y ∈ Rm×n such that P + jQ > 0 and

X = cos(θ)P + sin(θ)Q satisfying LMI (18).

2) for the case 1 ≤ α < 2: There exist P ∈ Rn×n,

Q ∈ Rm×n such that P > 0, X = ejθP , Y = ejθQ satisfy-

ing LMI (18).

Moreover, the static state feedback gain matrix can be

obtained by K = Y X−1.

Proof. The case 1 ≤ α < 2 can be straightforwardly

proved by utilizing Theorem 2 and is omitted here.

For the case 0 < α < 1, let P̃ � P + jQ and Q̃ � P − jQ.

Then we have P̃ > 0 and Q̃T > 0 (the transposition does

not change the eigenvalues of a matrix). It follows from

some basic calculation that X = cos(θ)P + sin(θ)Q =

ejθP̃ + e−jθQ̃. According to Theorem 2, the feasibility of

LMI (18) implies ‖Gwz(s)‖H∞ < γ.

Finally, in order to illustrate that the derived gain ma-

trix K is real and available, we first notice that matrix X is

real since P and Q are real matrices. Moreover, X is non-

singular because P̃ , Q̃ > 0 implies vTXv = ejθ(vTP̃ v) +

e−jθ(vTQ̃v) = cos θ((vTP̃ v) + (vTQ̃v)) > 0, ∀v ∈ Rn.

Therefore, a real static state feedback gain matrix is avail-

able by K = Y X−1. �
Remark 5. The decision matrices in Theorem 3 are cast

as real matrices in comparison with Theorem 2. This will

bring some conservatism of the controller.

5 Numerical examples

Example 1. Consider the following FOS

G(s) =
s0.5 + 1

s + 2s0.5 + 5
.

The pseudo state space realization is⎧⎪⎪⎨
⎪⎪⎩

D0.5x =

[
−1 2

−2 −1

]
x +

[
1

0

]
w

z =
[
1 0

]
x.

Using the L-BR and H-BR, we obtain ‖G(s)‖H∞ < 0.2817

and ‖G(s)‖L∞ = 0.2774. It follows from ‖G(s)‖H∞ < +∞
that G(s) is stable. Therefore, we have

‖G(s)‖H∞ = ‖G(s)‖L∞ = 0.2774.

To illustrate the correctness, we consider

G (jω) =
(jω)0.5 + 1

((jω)0.5 + 1)
2

+ 4
.

For its L∞ norm, we need only to consider the ω ≥ 0 part.

Then, it follows from the bijection x = ωα : [0, +∞) →
[0, +∞) that G(jω) = G̃(x), where

G̃ (x) =
ej π

4 x + 1

(ej π
4 x + 1)

2
+ 4

.

Then, it can be obtained that ‖G(s)‖L∞ =

maxx≥0 |G(x)| = 0.2774, as shown in the image of |G(x)|
in Fig. 1.

Fig. 1 Modulus of transformed function G̃(x) in Example 1,

where the maximal value of the x ≥ 0 part corresponds to the

L∞ norm of the original FOS G(s)

Remark 6. According to Fig. 1, the maximum peak

point of |G̃(x)| for −∞ < x < +∞ is at x = −2.282 and

max−∞<x<+∞ |G̃(x)| = 0.6495. However, it is an upper

bound rather than the exact value of the L∞ norm of G(s).

Therefore, constraint x ≥ 0 is necessary. In fact, it reveals

that the matrix item Q in X = ejθP +(1−α)Q of the L-BR

is necessary and eliminates the conservatism.

Example 2. Consider the following FOS

G(s) =
s1.5 + 1

s3 + 2s1.5 + 5
.
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The pseudo state space realization is

⎧⎪⎪⎨
⎪⎪⎩

D1.5x =

[
−1 2

−2 −1

]
x +

[
1

0

]
w

z =
[
1 0

]
x.

Using the L-BR and H-BR, we obtain ‖G(s)‖L∞ = 0.6495

and find that the LMI condition of H-BR is infeasible, i.e.,

‖G(s)‖H∞ = +∞. In fact, this system is not stable because

the eigenvalues of the system matrix are −1±2j, which sat-

isfy |arg(−1 ± 2j)| < 1.5× π
2
. It verifies that the H-BR tests

the system stability automatically whereas the L-BR does

not.

Example 3. Consider the system

⎧⎪⎪⎨
⎪⎪⎩

D0.5x =

[
−0.2 0.4

−0.4 −0.2

]
x +

[
1

1

]
u +

[
1

0

]
w

z =
[
1 0

]
x.

The open loop transfer function, i.e., with u = 0, is

Gowz(s) =
s0.5 + 0.2

s + 0.4s0.5 + 0.2
.

For a desired weighting function W (s) = 1
s+1

, an aug-

mented model of W (s)Gowz(s) can be formulated as

{
D0.5x̃(t) = Ax̃(t) + Bu(t) + B1w

z(t) = Cx̃(t)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

−1 0 1 0

0 0 −0.2 0.4

0 0 −0.4 −0.2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, B1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

.

It can be obtained that ‖W (s)Gowz(s)‖H∞ = 1.382. For

the requirement that the weighted H∞ norm of the closed

loop system be less than γ = 1, by using LMI method

given in Theorem 3 we obtain the control gain matrix

K = [−4.977,−2.374, 0.0157,−0.359]. Then, the transfer

function of the closed loop system is

Gcwz (s) =
s0.5 + 0.559

s2 + 0.7431s1.5 + 3.492s + 7.145s0.5 + 3.105

with the weighted norm ‖W (s)Gcwz(s)‖H∞ = 0.18. The

improvement for H∞ performance of the control system

is also shown by the Bode diagram of W (s)Gowz(s) and

W (s)Gcwz(s) in Fig. 2.

Fig. 2 Bode diagrams of the weighted open and closed loop sys-

tems in Example 3, i.e., W (s)Gowz(s) and W (s)Gcwz(s), respec-

tively

6 Conclusions

This paper has derived the bounded real lemmas cor-

responding to L∞ norm and H∞ norm of fractional order

systems. Both of them convert the original computations of

norms into LMI problems, which can be efficiently solved.

The L-BR has no conservatism and yields the exact value

of L∞ norm. The H-BR is conservative for H∞ norm com-

putation but can test the stability of FOSs automatically.

The synthesis problem of H∞ controller for FOSs has been

solved based on the proposed H-BR. Future research sub-

jects will include how to reduce or overcome the existing

conservatism in the H∞ norm computation and the H∞
controller synthesis.

Appendix

Proof for Lemma 2. Suppose that there exist matrices

P, Q > 0 such that LMI (8) holds. Then, it follows from

some matrix calculations that

0 >

[
H(λ)

Im

]∗[
A B

In 0

]∗
(Φ ⊗ P + Ψ ⊗ Q)

[
A B

In 0

] [
H(λ)

Im

]
+

[
H(λ)

Im

]∗
Θ

[
H(λ)

Im

]
=

([
λ

1

]∗
Φ

[
λ

1

])
H∗(λ)PH(λ) +

([
λ

1

]∗
Φ

[
λ

1

])
×

H∗(λ)QH(λ) +

[
H(λ)

Im

]∗
Θ

[
H(λ)

Im

]
. (19)

Noting that for any γ ∈ Υ, there hold

[
λ

1

]∗
Φ

[
λ

1

]
≥ 0 and[

λ

1

]∗
Ψ

[
λ

1

]
≥ 0 . In addition, since P, Q > 0, we also have
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H∗(λ)PH(λ) > 0 and H∗(λ)PH(λ) > 0. Therefore, it fol-

lows from these inequalities together with (19) that LMI

(7) holds for ∀λ ∈ Υ. �
Proof for Lemma 5. Noting that the conjugate trans-

pose does not change the eigenvalues of any matrix, we

have σmax(G(s)) = σmax(G
∗(s)) for any s ∈ C. Meanwhile,

since G(s) is the matrix transfer function with real coef-

ficients, there holds G∗(s) = G(s∗). Therefore, we have

sup
ω≥0

σmax(G(jω)) = sup
ω≥0

σmax(G(−jω)) = sup
ω≤0

σmax(G(jω)).
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