
International Journal of Automation and Computing 12(4), August 2015, 432-439

DOI: 10.1007/s11633-014-0855-9

Global Stability Analysis of Switched Nonlinear Observers
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Abstract: This paper considers the problem of simultaneous estimation of the system states and the strategy of commutation for

a larger class of nonlinear switched systems. First, a hybrid high gain observer is considered to get the exact estimation of the

continuous states where the strategy of switching is previously known. Then, an extension to a larger class of nonlinear hybrid systems

with arbitrary switching is made. Stability analysis is widely discussed for the two cases to provide a finite-time convergence of the

estimation errors. The effectiveness of the proposed hybrid high gain observer has been proved by applying it to a quadruple tank

process.
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1 Introduction

Nowadays, several physical processes, such as chemical,

electrical and mechanical engineering systems, cannot be

modeled considering exclusively continuous or discrete dy-

namics. Many efforts have been made to describe the in-

teraction between continuous and discrete behaviors which

involve the hybrid dynamics of the systems[1−3]. Switched

systems are a particular class of systems that constitute a

set of continuous subsystems and a switching signal orches-

trating the commutation between them[4−6].

During the last decades, the state estimation problem

for switched hybrid systems has attracted a lot of atten-

tion. In the linear case, several hybrid state estimation

methods have been proposed in the literature depending

on the knowledge of the active mode. Thus, an approach of

Luenberger observers has been presented when the mode lo-

cation is known. The related stabilizing gains calculation as

a linear matrix inequality approach by using multiple Lya-

punov functions are considered[7, 8]. With the same condi-

tions, Juloski et al.[9] proposed two types of linear observers,

based on the prediction errors. An estimation structure for

the class of piecewise system has been proposed in [10]. A

study of an observer-based stabilization of switching linear

systems where the dynamics of each mode are known a pri-

ori is addressed in [11, 12]. In particular case, when the

active mode is unknown, the design of continuous-discrete

linear observer for hybrid systems has been presented in

[13, 14].

In the nonlinear case, the solution to the problem of how

to combine established techniques for discrete and continu-

ous nonlinear systems to develop different methods of obser-

vation has became a necessity. Hence, some recent results

of research are obtained for the synthesis of observers for

hybrid systems. A step by step sliding mode observer has
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been considered in [15] to estimate continuous and discrete

states without jump and excluding the Zeno phenomena.

Saadaoui et al.[16, 17] used a nonlinear observer for the class

of switched Lagrangian system that can be described in the

observer canonical form with fixed switching strategy.

The purpose of the present work is to design an ob-

server for a large class of uniformly observable hybrid sys-

tems by extending the results of the frameworks based on

continuous[18−20] and discrete systems[21]. According to our

first case, we will design an algorithm of full order high gain

observer for simple continuous state estimation supposing

that the switching strategy, also called discrete location,

is previously known. In another case, we will propose a

discrete-continuous observer for the presented class of sys-

tems. Therefore, the discrete mode design is identified ac-

cording to the estimated switching strategy law and the

continuous state is then estimated. The main contribution

of this paper concerns the global stability analysis for the

two cases: studied and proved by means of multiple Lya-

punov functions.

In such class of systems, the choice of initial conditions

of the states for every subsystem is an obligation to avoid

the chattering phenomena during the transient period.

This paper is organized as follows. Section 2 is dedi-

cated to introduce the problem statement and the class of

the switched multiple-input multiple-output (MIMO) non-

linear hybrid systems. In Section 3, the hybrid observer

with known switching strategy is developed and stability

analysis is carried out. Then, an extension to a discrete-

continuous observer design is made and a global stability

analysis is detailed. In Section 4, an illustrative example

is treated to show the effectiveness of design methodology.

Simulation results are carried out to evaluate the robust-

ness of the proposed observer. Finally, some conclusions

are presented in the last section.
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2 Problem statement

In this study, our aim is to address the problem of MIMO

uniformly observable hybrid systems. The dynamical be-

havior of such class of systems can be described by the

state representation as

∑
σ

{
ẋ(t) = Ax(t) + ϕσ(u(t), x(t))

yσ(t) = Cx(t) = x1.
(1)

A set of admissible switching strategy of the system

is defined by a piecewise constant function: σ(t) ∈ ∏

= {1, 2, · · · , M}. It is represented by σ = {τi, σ(τi)}M
i=1 and

indicates the instant of the switching system from subsys-

tem σ(τi−1) to subsystem σ(τi). During the time interval

[τi, τi+1], the subsystem σ(τi) is active. We assume that

each subsystem is uniformly observable.

The states are x(t) ∈ Rn, xk ∈ Rnk ,
∑p

k=1 nk = n, k =

1, · · · , q, the input u ∈ U ⊂ Rm with m ≥ p. A, C, x and

ϕσ are such that

A =

⎡

⎢⎢⎢⎢⎢⎣

0 Ip 0 · · · 0

0 · · · Ip · · · · · ·
· · · · · · · · · · · · 0

· · · · · · · · · · · · Ip

0 · · · · · · 0 0

⎤

⎥⎥⎥⎥⎥⎦
, C = (Ip 0p · · · 0p)

(2)

x =

⎛

⎜⎜⎝

x1

...

xq

⎞

⎟⎟⎠ , xk =

⎛

⎜⎜⎜⎜⎝

xk
1,σ

xk
2,σ

...

xk
p,σ

⎞

⎟⎟⎟⎟⎠

ϕσ(x) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ϕσ
1(u, x1)

ϕσ
2(u, x1, x2)

...

ϕσ
q−1(u, x1, · · · , xq−1)

ϕq
σ(x)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(3)

The following assumptions will be made.

Assumption 1. ϕσ(u, x) is a globally Lipschitz nonlin-

ear function with respect to x uniformly in uσ.

Assumption 2. There exists a positive real number τmin

defined by

τi+1 − τi ≥ τmin > 0, i ∈ Π = {1, 2, · · · , M} (4)

where τi+1− τi defines the dwell time between two switches

which is supposed to be sufficient to allow the exponential

convergence of the observer to the real system before a new

switch. In fact, the Zeno phenomena in the interval [t0, tf ]

is excluded.

Assumption 3. There exists a positive constant ρ such

that |ϕσ̂(xσ) − ϕσ(xσ)| ≤ ρ is bounded for all (σ, σ̂) ∈ Π,

x ∈ Rn.

3 Observer synthesis

3.1 Observer design with fixed switching
strategy

The continuous observer for the nonlinear switched hy-

brid systems class (1) is given by

˙̂x(t) = Ax̂(t) + ϕσ(x̂(t), u) − θσΔ−1
θσ

S−1CT(Cx̂(t) − y(t))

(5)

where A and C are given by (2). θσ ≥ 0 is a real number.

Let Δθσ be the block diagonal matrix defined by

Δθσ = diag
[

Ip
Ip

θσ
· · · Ip

θn
σ

]
. (6)

Let S be the unique positive definite solution of the alge-

braic Lyapunov equation as

S + ATS + SA − CTC = 0. (7)

The solution of (7) is

S−1CT =
(
C1

q Ip, · · · , Cq
q Ip

)

with Ci
q = q!

i!(q−1)!
for i = 1, · · · , q.

Theorem 1. If the nonlinear switched hybrid system

defined by (1) satisfies the Assumptions 1 and 2, then the

observer described by (5) leads to a global exponential con-

vergence of the estimation error for fixed σ.

Proof. In this case, we define the exponential conver-

gence problem of the whole switched hybrid system sup-

posing that the switching strategies σ to be known. We set

eσ(t) = x̂σ(t) − xσ(t) to be the vector of the error between

the real state vector and its estimation. We have

ėσ(t) = Aeσ(t) − θσΔ−1
θσ

S−1CT(Cx̂(t) − y(t))+

ϕσ(x̂(t), u) − ϕσ(x(t), u). (8)

We can easily verify the following identities: Δθσ AΔ−1
θσ

=

θσA and CΔθσ = C.

We consider the following change of variable ēσ = Δθσ eσ.
.
ēσ = θσAēσ − θσS−1CTCēσ + Δθσ (ϕσ(x̂, u) − ϕσ(x, u)).

(9)

Vσ is the Lyapunov function candidate with Vσ = ēT
σ Sēσ.

V̇σ = 2ēT
σ S

.
ēσ =

2θσ ēT
σ SAēσ − 2θσ ēT

σ CTCēσ+

2ēσ
TSΔθσ (ϕσ(x̂, u) − ϕσ(x, u)).

Using (7), we can show that S is symmetric and positive

definite where A and C are respectively given by (2). We

have 2SA = CTC − S.

V̇σ = −θσVσ + θσ ēT
σ CTCēσ − 2θσ ēT

σ CTCēσ+

2ēT
σ SΔθσ (ϕσ(x̂, u) − ϕσ(x, u))

V̇σ = −θσVσ + 2θσ(
1

2
ēT

σ CTCē − ēT
σ CTCēσ)+

2ēT
σ SΔθσ (ϕσ(x̂, u) − ϕσ(x, u)) ≤

− θσVσ + 2ēT
σ SΔθσ (ϕσ(x̂, u) − ϕσ(x, u)). (10)
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Let δ = max
σ∈Π

{δσ} and θσ ≥ 1. Based on the

Assumption 1, we can deduce

‖Δθσ (ϕσ(x̂, u) − ϕσ(x, u))‖ ≤ δσ ‖ēσ‖ ≤ δ ‖ēσ‖ (11)

where λmax(S) and λmin(S) are the maximal and minimal

eigenvalues of S, respectively. We obtain

V̇σ(ēσ) ≤ −θσVσ + 2λmax(S) ‖ēσ‖ δ ‖ēσ‖ ≤

− θσVσ + 2
δλmax(S)

λmin(S)
Vσ (12)

Supposing that α = 2 δλmax(S)
λmin(S)

, we find

V̇σ ≤ −(θσ − α)Vσ ≤ −μσVσ ≤ −μVσ

where μ = inf
σ∈Π

(θσ − α) > 0 and α < min(θσ).

Therefore,

Vσ(ēσ) ≤ e−(θσ−α)(t−t0)Vσ(ēσ(0)) ≤
e−μ(t−t0)Vσ(ēσ(0)). (13)

For t ∈ [τi−1, τi] and satisfying the Assumption 2, we get

V
σ(τ−

i
)
≤ e−μ(τi−τi−1)V

σ(τ+
i−1)

. (14)

For t ∈ [τi, τi+1],

V
σ(τ−

i+1)
≤ e−μ(τi+1−τi)V

σ(τ+
i

)
. (15)

We have to ensure the global stability of the error dynam-

ics during the switching from one subsystem to another. It

is assumed, then, that eσ(τ+
i ) = Γeσ(τ−

i ). Γ is a positive

definite n-dimensional matrix. In a particular case, Γ = I

which means that we have no jumps. Hence, we get

V
σ(τ+

i
)
= ēT

σ S̄ēσ = (Δθσ eσ)TS̄(Δθσ eσ) =

eT
σ (τ+

i )ΔT
θσ

S̄Δθσ eσ(τ+
i ).

We take

H1,σ = θ̄max

{
ΔT

θσ
S̄Δθσ

}
, H1 = max

σ∈Π
{H1,σ}

H2,σ = θ̄min

{
ΔT

θσ
S̄Δθσ

}
, H2 = min

σ∈Π
{H2,σ} .

It can easily be shown that

V
σ(τ+

i
)
≤

H1e
T
σ (τ+

i )eσ(τ+
i ) ≤

H1(Γeσ(τ−
i ))TΓeσ(τ−

i )

Γ = I ≤
H1

H2
eT

σ (τ−
i )ΔT

θσ
S̄Δθσ eσ(τ−

i ) ≤
H1

H2
ēT

σ (τ−
i )S̄eσ(τ−

i ) ≤
HēT

σ (τ−
i )S̄eσ(τ−

i )

where H > 1.

V
σ(τ+

i
)
≤ HV

σ(τ−
i

)
. (16)

Alternatively,

V
σ(τ+

i+1)
≤ HV

σ(τ−
i+1)

≤ He−μ(τi+1−τi)V
σ(τ+

i
)
.

Iterating from 0 to M , we find

Vσ ≤ HMe−μ(t−t0)V
σ(τ+

0 )
. (17)

Finally, for M → ∞, Vσ → 0, which includes the global

convergence of the error estimation and the stability of the

proposed observer. �

3.2 Observer design with arbitrary switch-
ing strategy

In this part of work, we extend the previous methodology

to estimate the unknown states and the discrete dynamics

as explained in Fig. 1. In fact, we have to design a con-

tinuous hybrid high gain observer and a decision function

which allow the estimation of the suitable mode location

which ensures a better performance of the estimation error.

Fig. 1 The scheme of hybrid observer with recoverable switching

strategy

The role of the decision function is to detect any fault

during the switching from one subsystem to another. Ac-

cording to the information taken from a decision function,

a mode location is responsible to organize the switching

strategies.

The discrete estimation is done based on a multiple Lya-

punov function Vσ̂ which must decrease with time for an

active subsystem. The Lyapunov function equation is ob-

tained as

Vσ̂ = ēTSē = (Δθ(x̂σ̂ − xσ))TS(Δθ(x̂σ̂ − xσ)). (18)

The continuous observer for the nonlinear switched hy-

brid system class (1) is given by

∑
σ̂

{
˙̂xσ̂ = Ax̂σ̂ + ϕσ̂(x̂σ̂, u) − θσ̂Δ−1

θσ̂
S−1CT(Cx̂σ̂ − y)

σ̂ = σ, if rσσ̂ = |yσ − Cx̂σ̂| ≤ K

(19)

where σ̂(t) ∈ ∏
, the states x̂(t) ∈ Rn, x̂k ∈ Rnk ,∑p

k=1 nk = n, k = 1, · · · , q and θσ̂ ≥ 0 is a real number.
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Δθσ̂
is the block diagonal matrix defined by

Δθσ̂
= diag

[
Ip

θσ̂

Ip

θ2
σ̂

· · · Ip

θn
σ̂

]
. (20)

Indeed, we can establish the main fundamental result.

Theorem 2. If the nonlinear switched hybrid system

defined by (1) satisfies the Assumptions 1–3, then, the esti-

mation error is globally exponentially stable for σ = σ̂ and

asymptotically stable for σ 	= σ̂.

Proof. It is trivial that for t = 0, the system (
∑

σ̂)

converges exponentially to (
∑

σ), and we have just to select

the observer (
∑

σ̂0
). We assume that at time t = τ1, the

system (
∑

σ) jumps from σ0 to mode σ. In this case, we set

eσσ̂(t) = x̂σ̂(t)−xσ(t) to be the vector of the error between

the real state vector and its estimation. We have

ėσσ̂ = Aeσσ̂ + Λσσ̂(x̂σ̂, xσ) − θσ̂Δ−1
θσ̂

S−1CT(Cx̂σ̂ − y) =

(A − θσ̂Δ−1
θσ̂

S−1CTC)eσσ̂ + Λσσ̂(x̂σ̂, xσ)

with

Λσσ̂(x̂σ̂, xσ) = ϕσ̂(x̂σ̂) − ϕσ(xσ) =

(ϕσ̂(x̂σ̂) − ϕσ̂(xσ)) + (ϕσ̂(xσ) − ϕσ(xσ)) =

ϕ̃xx̂ + ϕ̃σσ̂.

We can easily verify the following identities: Δθσ̂
AΔ−1

θσ̂
=

θσ̂A and CΔθσ̂
= C.

Considering the following change of variable ēσσ̂ =

Δθσ̂
eσσ̂, we get

.
ēσσ̂ =(Δθσ̂

AΔ−1
θσ̂

−θσ̂S−1CTCΔ−1
θσ̂

)ēσσ̂+Δθσ̂
Λσσ̂(x̂σ̂, xσ) =

θσ̂(A − S−1CTC)ēσσ̂ + Δθσ̂
Λσσ̂(x̂σ̂, xσ).

There is a symmetric positive definite matrix S defined

by

(A − S−1CTC)TS + S(A − S−1CTC) = −In. (21)

Vσ is the Lyapunov function candidate with Vσ(ēσσ̂) =

ēT
σσ̂Sēσσ̂.

V̇σ(ēσσ̂) = 2ēT
σσ̂S

.
ēσσ̂ =

− θσ̂ēT
σσ̂ēσσ̂ + 2ēT

σσ̂SΔθσ̂
(ϕ̃xx̂ + ϕ̃σσ̂). (22)

ϕσ is Lipschitzian, then we can show that ‖Δθσ̂
ϕ̃xx̂‖ ≤

δσ ‖ēσσ̂‖, where δσ ≥ 0.
∥∥∥ēT

σσ̂SΔθσ̂
ϕ̃xx̂

∥∥∥ ≤ λmax(S)δσ‖ēσσ̂‖2. (23)

λmax(S) is the largest eigenvalue of S. Then we can get

V̇σ(ēσσ̂)≤−(θσ̂ − 2δσλmax(S))‖ēσσ̂‖2 + 2ēT
σσ̂SΔθσ̂

ϕ̃σσ̂ ≤

− μσ̂Vσ(ēσσ̂) +
2β

θσ̂

√
λmax(S)

√
Vσ(ēσσ̂) ‖ϕ̃σσ̂‖ (24)

where β1 is a positive constant and μσ̂ = (θσ̂−2δσλmax(S))
λmin(S)

>

0, i.e., θσ̂ > 2δσλmax(S).

Considering V̇σ(ēσσ̂) = 2
√

Vσ(ēσσ̂)
.√

Vσ(ēσσ̂), we find

.√
Vσ(ēσσ̂) ≤ −μσ̂

√
Vσ(ēσσ̂) +

2β1

θσ̂

√
λmax(S) ‖ϕ̃σσ̂‖ (25)

If σ̂ = σ, then ϕ̃σσ̂ = 0,
√

Vσ(ēσσ(t)) ≤ e−μσ(t−t0)
√

Vσ(ēσσ(t0)). (26)

Supposing that λ =

√
λmax(S)√
λmin(S)

, we have

‖ēσσ(t)‖ ≤
√

λmax(S)√
λmin(S)

e−μσ(t−t0) ‖ēσσ(t0)‖

‖Δθσ eσσ(t)‖ ≤ λe−μσ(t−t0) ‖eσσ(t0)‖ .

For the residual rσσ, we can get

rσσ(t) = |Ceσσ| = |e1,σσ| ≤ ‖Δθσ eσσ(t)‖ .

It is easily shown that there exists a time t = τ verifying

rσσ(τ ) = λe−μσ(τ−t0) ‖eσσ(t0)‖ ≤ K. (27)

On the other hand, if σ̂ 	= σ , we have

.√
Vσ(ēσσ̂(t)) ≤ μσ̂

√
Vσ(ēσσ(t0) +

β2

θσ̂
(28)

where β2 = 2ρβ1

√
λmax(S) and ρ is the upper bound of

ϕ̃σσ̂.
√

Vσ(ēσσ̂(t)) ≤

e−μσ̂(t−t0)
√

Vσ(ēσσ̂(t0) +
β2

θσ̂
e−μσ̂t

∫ t

t0

e−μσ̂sds ≤

e−μσ̂(t−t0)
√

Vσ(ēσσ̂(t0)) +
β2

θσ̂μσ̂

[
1 − e−μσ̂(t−t0)

]
.

In the same manner as before, we get

‖ēσσ̂(t)‖ ≤
√

λmax(S)√
λmin(S)

e−μσ̂(t−t0) ‖ēσσ̂(t0)‖+

β2

θσ̂μσ̂

[
1 − e−μσ̂(t−t0)

]

‖Δθσ̂
eσσ̂(t)‖ ≤ λe−μσ̂(t−t0) ‖eσσ̂(t0)‖+

β2

θσ̂μσ̂

[
1 − e−μσ̂(t−t0)

]
. (29)

Since θσ̂ > 1, we get

rσσ̂(t) = |e1,σσ̂| ≤ ‖Δθσ̂
eσσ̂(t)‖ ≤

λe−μσ̂(t−t0) ‖eσσ̂(t0)‖ +
β2

μσ̂

[
1 − e−μσ̂(t−t0)

]
. (30)

We want to ensure that if t ≥ τ , we have rσσ̂(t) ≥ K.

When t → +∞, we can verify that rσσ̂(t) ≤ β2
μσ̂

. We must

choose K as

K <
β2

μσ̂
.

As before, it is assumed that eσ̂σ̂(τ+
i ) = Γeσσ(τ−

i ) sup-

posing that Γ = I , then we have no jumps.

For t ∈ [τi−1, τi], we have

Vσ(ēσσ(τ−
i )) ≤ e−μ(τi−τi−1)Vσ(ēσσ(τ+

i−1)). (31)

For [τi, τi+1],

Vσ̂(ēσ̂σ̂(τ−
i+1)) ≤ e−μ(τi+1−τi)Vσ̂(ēσ̂σ̂(τ+

i )). (32)
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Supposing that eσ̂σ̂(τ+
i ) = Γeσσ(τ−

i ), then ēσ̂σ̂ = Δθσ̂
eσ̂σ̂

Vσ̂(ēσ̂σ̂(τ−
i+1)) ≤ e−μ(τi+1−τi)Vσ̂(ēσ̂σ̂(τ+

i )) ≤
e−μ(τi+1−τi)Δθσ̂

eσ̂σ̂(τ+
i )TSΔθσ̂

eσ̂σ̂(τ+
i ) ≤

e−μ(τi+1−τi)λmax(S)
∥∥eσ̂σ̂(τ+

i )
∥∥2

. (33)

Since θσ̂ > 1 and Γ = I , we get

Vσ̂(ēσ̂σ̂(τ−
i+1)) ≤ e−μ(τi+1−τi) λmax(S)

θσ̂

∥∥eσ̂σ̂(τ+
i )
∥∥2 ≤

e−μ(τi+1−τi) λmax(S)

θσ̂

∥∥Γeσσ(τ−
i )
∥∥2

.

Alternatively,

Vσ̂(ēσ̂σ̂(τ−
i+1)) ≤ e−μ(τi+1−τi) θ2n

σ̂ λmax(S)

θσ̂

∥∥Δθσ eσσ(τ−
i )
∥∥ ≤

e−μ(τi+1−τi) θ2n
σ̂ λmax(S)

θσ̂λmin(S)
Vσ(ēσσ(τ−

i )) ≤

He−μ(τi+1−τi)Vσ(ēσσ(τ−
i ))

with H > 1, we have

Vσ̂(ēσ̂σ̂(τ−
i+1)) ≤ He−μ(τi+1−τi)e−μ(τi−τi−1)Vσ(eσσ(τ+

i−1)).

Iterating from i = 1, · · · , M , we conclude

Vσ̂(ēσ̂σ̂(τ−
i+1)) ≤ HMe−μ(τi+1−τ0)Vσ0(eσ0σ0(τ

+
0 )). (34)

�

4 Simulation example

4.1 Description of a quadruple tank pro-
cess

In this section, we present a real process which can be

described as a nonlinear switched system (1). The system

is a multivariable process which consists of four intercon-

nected water tanks as shown in Fig. 2[22]. This system is

considered as a suitable model that shows the applicability

of our results.

Fig. 2 The quadruple tank process

The flows of the independent pumps (P1, P2) are the two

inputs (Q1, Q2) of the quadruple tank process and the levels

in the four tanks (h1, h2, h3, h4) are the outputs. The two

pumps are used to transfer liquid from a basin into tanks

3 and 4, respectively. They drain freely into tanks 1 and

2, respectively. Only the liquid levels in the bottom two

tanks are measured using ultrasonic sensors which involve

the necessity of the observers to estimate the unknown liq-

uid levels in the upper tanks 3 and 4.

The differential equations that describe the hybrid sys-

tem dynamics are given by

∑
1

⎛

⎜⎜⎜⎝

ẋ1 = −C1
√

x1 + C2
√

x3 + C3
√

x4

ẋ2 = −C4
√

x2 + C5
√

x3 + C6
√

x4

ẋ3 = −C7
√

x3 + C8u1

ẋ4 = −C9
√

x4 + C10u2

⎞

⎟⎟⎟⎠ (35)

∑
2

⎛

⎜⎜⎜⎝

ẋ1 = −C1
√

x1 + C2
√

x3

ẋ2 = −C4
√

x2 + C6
√

x4

ẋ3 = −C7
√

x3 + C8u1

ẋ4 = −C9
√

x4 + C10u2

⎞

⎟⎟⎟⎠ (36)

∑
3

⎛

⎜⎜⎜⎝

ẋ1 = −C1
√

x1 + C3
√

x4

ẋ2 = −C4
√

x2 + C5
√

x3

ẋ3 = −C7
√

x3 + C8u1

ẋ4 = −C9
√

x4 + C10u2

⎞

⎟⎟⎟⎠ (37)

where y(t) = (x1(t) x2(t))
T ∈ R2 is the output vector for

all subsystems, the state vector x(t) ∈ R4 represents the

liquid levels in different tanks for every subsystem, u(t) =

(u1(t) u2(t))
T ∈ R2 denotes the flow of every pump and

the constants of the system are Ci, i = 1, · · · , 10.

To put the models of the quadruple tank process (35)–

(37) under the nonlinear system class (1), one shall apply

the following changes of coordinates for the models with

p = 2 and q = 2.

For model 1,

⎛

⎜⎜⎜⎝

X1 = x1

X2 = x2

X3 = C2
√

x3 + C3
√

x4

X4 = C5
√

x3 + C6
√

x4

⎞

⎟⎟⎟⎠

For model 2,

⎛

⎜⎜⎜⎝

X1 = x1

X2 = x2

X4 = C2
√

x3

X4 = C6
√

x4

⎞

⎟⎟⎟⎠

For model 3,

⎛

⎜⎜⎜⎝

X1 = x1

X2 = x2

X3 = C3
√

x4

X4 = C5
√

x3

⎞

⎟⎟⎟⎠.

We can deduce the models of the quadruple tank process

in the new representations with Ẋj =
∂Xj

∂t
, j = 1, · · · , 4.
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∑
1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ1 = X3 − C1

√
X1

Ẋ2 = X4 − C4

√
X2

Ẋ3 = −C2C7 + C3C9

2
+

C2C6 − C3C5

2
×

[
C2C8

C6X3 − C3X4
u1 − C3C10

C5X3 − C2X4
u2]

Ẋ4 = −C5C7 + C6C9

2
+

C2C6 − C3C5

2
×

[
C5C8

C6X3 − C3X4
u1 − C6C10

C5X3 − C2X4
u2]

(38)

∑
2

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ1 = X3 − C1

√
X1

Ẋ2 = X4 − C4

√
X2

Ẋ3 = −C2
2

2
+

C2
2C8u1

2X3

Ẋ4 = −C2
6

2
+

C2
6C10u2

2X4

(39)

∑
3

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ1 = X3 − C1

√
X1

Ẋ2 = X4 − C4

√
X2

Ẋ3 = −C2
3

2
+

C2
3C10u2

2X3

Ẋ4 = −C2
5

2
+

C2
5C8u1

2X4
.

(40)

The system output vector is y(t) = (X1(t) X2(t))
T.

4.2 Simulation results

We apply the discrete-continuous observers previously

described to estimate the unknown states (X3, X4). For

comparison purposes, we consider the function of the

switching strategy σ(t) to be fixed, and then it must be

estimated. The initial conditions of the real and esti-

mated states are X(0) = [10−3; 10−3; 10; 12] and X̂(0) =

[10−3; 10−3; 5; 4], respectively. The inputs are bounded by

umax = 15 ml/s. We have to choose the optimal values of

the design parameters for different mode locations {1, 2, 3}.
To check the robustness of the presented observers, all

subsystem outputs are assumed corrupted with uniform

white Gaussian noise signal of magnitude 4 × 10−3. The

actual mode location σ(t) and the discrete estimation σ̂(t)

are drawn in Fig. 3 which show a satisfactory estimation

of the commutation strategy. The evolution of the actual

and estimated states (X3, X4) and their errors are depicted

in Figs. 4 and 5, respectively. In fact, the error dynamics

given in Figs. 4 (b) and 5 (b) show the convergence of ei,σ

and ei,σ̂, i = 3, 4, towards zero in finite time.

Fig. 3 The actual mode location σ and its estimate σ̂

The performance of the observers with respect to the

white Gaussian noise is fairly good despite that such high

gain type of observer will generally amplify the noise. Be-

sides, the choice of θσ̂ ensures the fast convergence and the

good speed of the observers. The simulation of the hybrid

switched observer proves the effectiveness of such observer

to estimate the continuous state of the system so as to give

a satisfactory convergence of the transient value estimation.

Fig. 4 Reconstruction of the state X3 with relative error and its

error observation
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Fig. 5 Reconstruction of the state X4 with relative error and its

error observation

Remark 1. Fig. 3 shows the similarity of the results of

fixed and variable switching strategies. That explains the

same speed of the trajectories of X̂i,σ and X̂i,σ̂, i = 3, 4.

5 Conclusions

In this paper, the problem of the estimation of hybrid

states for a large class of MIMO uniformly observable non-

linear switched systems is considered. In the first case, a

hybrid observer is designed considering that the switching

strategy is fixed previously. Then, a discrete estimation

is made taking into account the discrete dynamics of the

system. Once the active mode is obtained, the continu-

ous state is estimated. The estimation technique proposed

is composed of a discrete and a continuous observer in in-

teraction. The stability analysis is provided for the two

cases using Lyapunov functions to guarantee the conver-

gence of the estimation errors. The observers are applied

to a quadruple tank process that is modeled as a nonlinear

hybrid system. The simulation results show a satisfactory

discrete-continuous estimation, which prove the efficiency

of the designed observer in spite of the presence of noise.
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