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Abstract: In this paper, a robust controller for electrically driven robotic systems is developed. The controller is designed in a

backstepping manner. The main features of the controller are: 1) Control strategy is developed at the voltage level and can deal

with both mechanical and electrical uncertainties. 2) The proposed control law removes the restriction of previous robust methods

on the upper bound of system uncertainties. 3) It also benefits from global asymptotic stability in the Lyapunov sense. It is worth

to mention that the proposed controller can be utilized for constrained and nonconstrained robotic systems. The effectiveness of the

proposed controller is verified by simulations for a two link robot manipulator and a four-bar linkage. In addition to simulation results,

experimental results on a two link serial manipulator are included to demonstrate the performance of the proposed controller in tracking

a given trajectory.
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1 Introduction

System uncertainties arising from errors in system mod-

eling, variation of system parameters and unmodelled phys-

ical phenomena such as unstructured friction, are inevitable

and produce an extra difficulty in the process of controller

design[1, 2].

Various control techniques have been evolved to miti-

gate the effects of uncertainties for decades and have re-

cently reattracted notable attentions from both industry

and academic investigation. Among these methods, robust

and adaptive methods provide appealing and efficient ap-

proaches to handle the control analysis and synthesis of

uncertain and ill-defined complex nonlinear systems.

In the adaptive approach, the controller learns the pa-

rameter uncertainties and gets tuned with the parameter

variations. Hence adaptive method can be used for a wide

range of system uncertainties. Since the controller parame-

ters should be updated with the uncertainty variations, this

method is a time consuming approach[2].

In the past decades, robust control of uncertain nonlin-

ear dynamics has undergone rapid developments and there

have been developed a lot of robust control methods such

as linear-quadratic-Gaussian (LQG), loop transfer recovery

(LTR), H∞ control, sliding mode control and etc. In con-

trast to adaptive controllers, a robust controller has a fixed

structure which yields an acceptable performance for a re-

stricted range of uncertainties. A robust controller does not

need the exact functional nature of the model[3], however it

requires some knowledge about bounding functions on the
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largest possible size of the uncertainties[1].

A systematic framework for tackling a robust output reg-

ulation problem for general uncertain nonlinear systems

was given in [4−6]. It was evolved from the proposed ap-

proach in [1] and deals with a local robust output regula-

tion problem through an output feedback control. In [7],

a constant bound for parametric uncertainties is assumed.

Different uncertainty bounds have been considered for de-

signing robust robot controllers[8−16] . Unstructured uncer-

tainty bound has been usually considered as a constant[8, 9]

or as a function of state variables[10−16] .

Actuator dynamics contemplate as a significant compo-

nent of the entire robot dynamics, particularly in the cases

of high-velocity maneuver and highly varying loads[17].

Contemplating the actuators into the dynamic equations

engenders the system dynamics to be described by a set of

third-order differential equations and complicates the con-

troller design and its stability analysis[18]. Control of rigid

robots including actuator dynamics is still an open forum

in the literature[19−25] .

The main subject of this paper is to deal with trajectory

tracking of electrically driven robotic systems considering

uncertainties in both mechanical and electrical subsystems.

The overall controller is designed through a backstepping

approach.

The main contribution of this paper can be addressed as:

1) Relaxing the restrictive assumption made on the

largest possible size of the system uncertainties. In [16],

we have developed a robust controller for robotic systems.

The proposed method like many conventional methods is

suffering from the restricted range of applications due to

the bound made on the system uncertainties (especially the

inertia matrix). This restriction will be removed through
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the deployment of the new method.

2) The presented method improves the performance of

the system in tracking any given desired trajectories such

that it results in global asymptotic stability of the system.

3) In the majority of the previous researches, the actuator

dynamics is neglected, while in this study actuators dynam-

ics as well as their uncertainties are taken into account in

the development of the controller.

The remainder of this paper is organized as follows. In

Section 2, dynamical model of electrically driven robots and

its properties are presented. In Section 3, the controller is

designed. Section 4 analyzes the stability of the proposed

model. In Section 5, the proposed controller will be ex-

tended to constrained robotic systems. The numerical and

experimental results for two different case studies; a two link

serial manipulator and a four-bar linkage, are presented in

Section 6. Section 7 concludes the analysis.

2 Dynamic modeling of robotic systems

In this section, initially we present the governing dynamic

equations of an n-link manipulator. Then two useful prop-

erties related to these equations are summarized.

2.1 Equations of motion

Based on the Euler-Lagrange formulation, the motion

equations of an n-link rigid manipulator can be represented

as

M ′(q) q̈ + C′(q, q̇) q̇ + g′(q) + J ′T
f τd + f ′(q̇) = τ (1)

where q ∈ Rn is the generalized coordinates (joint

positions), τ ∈ Rn is the actuating torques vector, M ′(q) ∈
Rn×n is the inertia matrix, C′(q, q̇)q̇ ∈ Rn represents the

centripetal and coriolis torques, g′(q) ∈ Rn is the vec-

tor of gravitational torques, f ′(q̇) ∈ Rn represents friction

terms, τd ∈ Rn represents unknown bounded constant dis-

turbance vector represented in the Cartesian workspace and

J ′
f ∈ Rn×n is the Jacobian matrix calculated by

J ′
f =

∂rf

∂q
(2)

where rf is the foot point of τd, and it is assumed to be

uncertain.

The brushed direct current (BDC) motors dynamics can

be modeled as

Lm İ + Rm I + Kem q̇ = v (3)

where I ∈ Rn is the vector of the armatures current, v ∈
Rn is the vector of armatures voltage, Lm ∈ Rn×n is the

actuators inductance matrix, Rm ∈ Rn×n is the actuators

resistance matrix and Kem ∈ Rn×n is the motors back emf

coefficient matrix.

The correlation between motors current and torque is

defined by

τ = KTm I (4)

where KTm ∈ Rn×n is the motors electromechanical coef-

ficients. Note that Rm, Lm, Kem and KTm are all diagonal

and positive definite constant matrices.

Rewriting (1) with a new notation, one obtains

M(q) q̈ + C(q, q̇) q̇ + g(q) + JT
f τd + f(q̇) = I (5)

where

M(q) = K−1
TmM ′(q)

C(q, q̇) = K−1
TmC′(q, q̇)

g(q) = K−1
Tmg′(q), f(q̇) = K−1

Tmf ′(q̇)

Jf = J ′
f (q)K−T

Tm. (6)

Definition 1. For an arbitrary positive definite or neg-

ative definite symmetric matrix such as B, throughout this

paper, by Bm and BM the authors mean the minimum and

maximum eigenvalues of that matrix. Hence, for any arbi-

trary vector x, we can state,

Bm ‖x‖2 ≤ xTB x ≤ BM ‖x‖2 . (7)

Note that ‖·‖ represents the 2 induced norm for matrices

and Euclidean norm for vectors.

2.2 Properties of the equation of motion

Structure of the equations of motion expressed by (5)

benefits from the following properties which will be used in

the development of the control law.

Property 1. The inertia matrix M(q) is known to be

positive definite and symmetric.

Property 2. A suitable definition of C(q, q̇) makes the

matrix 1
2
Ṁ−C skew symmetric. In particular, the elements

of C(q, q̇) may be defined as

Cij(q, q̇) =
1

2

[
q̇T ∂Mij

∂q
+

n∑
k=1

(
∂Mik

∂qj
− ∂Mjk

∂qi

)
q̇k

]
. (8)

Therefore (9) holds for any arbitrary vector x ∈ Rn:

xT

[
1

2
Ṁ − C(q, q̇)

]
x = 0 . (9)

3 Controller design

Here initially the control law is proposed, and then it is

substituted into the robot dynamic equation represented by

(5) in order to obtain the final closed-loop error dynamics.

This closed loop dynamics is then used in the Lyapunov

analysis to show that this control law is appropriate to push

the robotic system to track the desired trajectory.

3.1 Error dynamics

Introducing the desired joint positions and velocities by

qd and q̇d, and defining the modified error by

r = Λ e + ė (10)

where e = q − qd, ė = q̇ − q̇d and Λ =

diag {λ1, · · · , λn} , λi > 0. Equation (5) can be written
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as

M ṙ = M(Λ ė − q̈d) − C(q, q̇) (r − Λ e + q̇d)−
g(q) − f(q̇) − JT

f τd + I . (11)

Since the robot equation is linear in parameters[26], we can

define the right side of (11) in the regression form as

Y1(q, q̇, t) Φ1 = M(Λ ė − q̈d) − g(q) − f(q̇)−
C(q, q̇)(−Λ e + q̇d) − JT

f τd (12)

where Y1(·) ∈ Rn×m is the robot regressor matrix, Φ1 ∈
Rm represents uncertain mechanical parameters, is a con-

stant vector, and m is the number of uncertain parameters.

Hence, (11) can be written as

M ṙ = Y1(q, q̇, t)Φ1 − C(q, q̇) r + I . (13)

3.2 Trajectory tracking control

A backstepping-like approach is used to design the con-

troller for the system modeled by (5).

In the first step using the mechanical subsystem dynam-

ics, a desired current signal Id is calculated such that the

trajectory tracking control is performed. Then in the sec-

ond step, in order to enforce I tracks its desired values, Id,

the required voltage input, is determined using the electri-

cal subsystem dynamics.

Let us define the desired current calculated by

Id = −Kv r − Y1(·) Φ̄1 + u1 (14)

where Kv ∈ Rn×n is a positive definite symmetric gain

matrix, Φ̄1 represents the nominal values of the uncertain

parameters, and u1 is defined by

u1 = − ρ2
1 r

ρ1 ‖r‖ + ε2
. (15)

Since Φ1 and Φ̄1 are bounded constant vectors, hence

we can assume that
∥∥∥Φ̃1

∥∥∥ ≤ α1, where Φ̃1 = Φ1 − Φ̄1 and

no restriction exists on the magnitude of α1. In (14), the

term −Y1(·) Φ̄1 represents the nonlinearity of robot (but

calculated by nominal magnitudes of parameters) and the

term −Kv r + u1 is used to relieve the mismatch resulted

from calculating the nonlinearities of robot with the nomi-

nal magnitude of uncertainties.

Now let us introduce ρ1 and ε through the following

equations:

ρ1 = α1 ‖Y1(·)‖ (16)

ε̇ = −Kε ε . (17)

where Kε is a positive constant. Clearly ε is a continuously

decaying positive function once ε(0) > 0.

Therefore, from the above equations, it can be concluded

that ∥∥∥İd

∥∥∥ ≤ χ(‖e‖ , ‖ė‖ , ‖ë‖ , ‖...q d‖) . (18)

where χ is a bounded function for bounded variables.

Equation (18) implies that if the system tracking errors be

bounded, an upper bound can be considered for the first

derivative of the desired current as∥∥∥İd

∥∥∥ ≤ α3 . (19)

If we define the desired current tracking error by

η = I − Id (20)

and substitute I = Id + η in (13), we obtain

M ṙ = Y1(·) Φ̃1 − C(q, q̇) r − Kv r + u1 + η . (21)

Hence, the electrical dynamics represented by (3) can be

written in terms of the current error:

Lm η̇ = −Rm η − Kem q̇ − Lm İd − Rm Id + v . (22)

Similar to the mechanical subsystem, we introduce

Y2(q, q̇, η, t)Φ2 = −Rm η − Kem q̇ − Rm Id (23)

where Y2(·) ∈ Rn×p is the electrical regressor matrix, Φ2 ∈
Rp is the vector of uncertain electrical parameters, and p

represents the number of these parameters. Therefore (22)

can be written as

Lm η̇ = Y2(·) Φ2 − Lm İd + v . (24)

3.3 Desired current control

The second step in the controller design is introducing a

control law for the input voltage such that the motor current

tracks the calculated desired current. Let us introduce the

following control law for the motor voltage

v = −Y2(·) Φ̄2 − r + u2 (25)

where u2 is similarly given by

u2 = − ρ2
2 η

ρ2 ‖η‖ + μ2
. (26)

Similar to Φ̃1, it can be assumed that
∥∥∥Φ̃2

∥∥∥ ≤ α2 where

Φ̃2 = Φ2 − Φ̄2 and no restriction exists on the magnitude of

α2.

In the above equation, ρ2 is defined by

ρ2 = α2 ‖Y2(·)‖ + l α3 (27)

where l is a constant greater than the maximum eigenvalue

of matrix L and again similar to ε, μ is an augmented state

with the following dynamics as

μ̇ = −Kμ μ . (28)

μ is also a continuously decaying positive function once μ(0)

and Kμ are positive constants.

Substituting (25) and (26) in (24), it can be deduced that

Lm η̇ = −Lm İd + Y2(·) Φ̃2 − ρ2
2 η

ρ2 ‖η‖ + μ2
− r . (29)
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4 Stability analysis

Stability and performance of the whole control system in

the trajectory tracking is analyzed by the following theo-

rem. The Theorem 1 is developed based on the Lyapunov

arguments where a positive definite Lyapunov function is

shown to have a negative definite time derivative starting

from a bounded initial state vector γ = [eT, ėT]T.

Theorem 1. The input control voltage calculated by

(25) results in semi-globally asymptotic stability of position

and velocity tracking error, i.e.,

lim
t→∞

e = 0, lim
t→∞

ė = 0 (30)

provided that the desired trajectory tracking and the initial

system errors γ being bounded.

Proof. Consider a so called positive definite Lyapunov

function defined by

V (E) =
1

2
ETP E (31)

where E = [rT, ηT, ε, μ]T is the augmented state vector and

P = diag
{
M, Lm, K−1

ε , K−1
μ

}
. (32)

Differentiating (31) with respect to time, we obtain

V̇ = rTMṙ + ηTLm η̇ +
1

2
rTṀr − ε2 − μ2 . (33)

Substituting (21) and (24), it can be concluded that

V̇ = rT

[
Y (·) Φ̃1 − Kv r − ρ2

1 r

ρ1 ‖r‖ + ε2

]
+

rT

[
1

2
Ṁ − C(q, q̇)

]
r + ηT

[
− Lm İd + Y2(·) Φ̃2−

ρ2
2 η

ρ2 ‖η‖ + μ2

]
− ε2 − μ2 . (34)

Utilizing Property 2 and considering (7) and the facts

that for any arbitrary vectors such as a and b, we have

aTb ≤ ‖a‖ ‖b‖ and aTa = ‖a‖2, we can simplify (34) to

obtain

V̇ ≤‖Y1(·)‖
∥∥∥Φ̃1

∥∥∥ ‖r‖ − Kvm ‖r‖2 − ρ2
1 ‖r‖2

ρ1 ‖r‖ + ε2
+

‖Y2(·)‖
∥∥∥Φ̃2

∥∥∥ ‖η‖ + ‖Lm‖
∥∥∥İd

∥∥∥ ‖η‖−
ρ2
2 ‖η‖2

ρ2 ‖η‖ + ε2
− ε2 − μ2 . (35)

Consider two bounded sets such as Ω1 =

{E(t)| ‖E(t)‖ ≤ �} , Ω2 = {E(0)| ‖E(0)‖ ≤
√

Pm
PM

�}
where � is a selected positive scalar which defines the

boundary of the sets. For any trajectory in Ω1, since e and

ė are bounded (21) results in bounded ë, too. Utilizing

(16), (19) and (27) in (35), for any trajectory in Ω1 it can

be stated that

V̇ ≤− Kvm ‖r‖2 + ρ1 ‖r‖ − ρ2
1 ‖r‖2

ρ1 ‖r‖ + ε2
+

ρ2 ‖η‖ − ρ2
2 ‖η‖2

ρ2 ‖η‖ + ε2
− ε2 − μ2 ≤

− Kvm ‖r‖2 − ε4

ρ1 ‖r‖ + ε2
− μ4

ρ2 ‖η‖ + ε2
(36)

and consequently

V̇ ≤ −Kvm ‖r‖2 . (37)

Since Ω2 is a subset of Ω1, for any trajectory initialized

in Ω2 one can integrate (37) to obtain

V (t) − V (0) ≤ −Kvm

∫ t

0

‖r‖2 dt . (38)

Using (7) in the above equation, we can write

1

2
Pm ‖E(t)‖2 ≤ V (t) ≤ V (0) − Kvm

∫ t

0

‖r‖2 dt ≤

1

2
PM ‖E(0)‖2 − Kvm

∫ t

0

‖r‖2 dt (39)

or

‖E(t)‖ ≤
√

PM

Pm
‖E(0)‖ ≤ � . (40)

Therefore, from the definition of Ω2 for any trajectory ini-

tialized in Ω2, it can be stated that

‖E(t)‖ ≤ �, ∀t > 0 (41)

which concludes that any trajectory starting in Ω2 will re-

main in Ω1.

Also from (39) we can conclude that

lim
t→∞

‖E(t)‖2 ≤ PM

Pm
‖E(0)‖2 − Kvm

Pm

∫ ∞

0

‖r‖2 dt . (42)

Hence it can be stated that

lim
t→∞

‖r‖ = 0 . (43)

Note that (10) is a stable first-order differential equation

driven by the input r. Therefore, by standard linear control

arguments and (10), we can state

lim
t→∞

e = 0 and lim
t→∞

ė = 0 . (44)

The above results state that the tracking errors e and ė

are asymptotically stable. �

5 Applications to robotic systems in-

teracting with environment

In Section 3, a robust controller is designed for

nonconstrained serial manipulators. In many indus-

trial/manufacturing applications such as welding, forming,

assembling, and grinding, a robot manipulator is required to

come into a planned contact with the environment. In these
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applications, the environment somehow imposes some con-

straints on the trajectories that the robot must follow. In

this section, the proposed control method will be extended

to the case of nonredundant constrained robotic systems.

5.1 Constrained robot dynamics

Dynamic motion of constrained robotic systems interact-

ing with rigid environment is described by [27]:

M ′(q) q̈ + C′(q, q̇) q̇ + g′(q) + JT
e fn+

J ′T
f τd + f ′(q̇) = τ (45)

where q, M ′, C′, g′, τd, J ′
f , f ′, τ have the same definitions

as serial robot manipulators. fn ∈ Rn denotes the end-

effector normal forces of contact described in the task space

and Je ∈ Rn×n represents the Jacobian matrix of the sys-

tem.

Here we assume that the manipulator operates away from

any singularity and that the manipulator motion is holo-

nomically constrained by m algebraic equations. These con-

straints in the velocity space are expressed by

D Ẋ = D Je(q) q̇ = 0 (46)

where Ẋ represents the task space velocity of the end effec-

tor and D ∈ Rm×n is a full row rank matrix.

The normal contact force can be represented by

fn = DT λ (47)

where λ denotes the generalized Lagrangian multiplier.

Consider the matrix De denoted by

De = D(q) Je(q). (48)

As mentioned in [27], without loss of generality one can

partition the columns of the matrix De as

De = [Dml|Dm] (49)

where Dm ∈ Rm×m is an m squared nonsingular matrix

and Dml ∈ Rm×l, l = n − m.

Due to m holonomic constraints, the joint space of the

robot has only l independent variables and one can always

partition the joint position vector to ql ∈ Rl and qm ∈ Rm

as

q =

[
ql

qm

]
. (50)

Due to m holonomic constraints, it can be mentioned

that q = Ω(ql) where Ω is a nonlinear mapping function

which is bounded for bounded state variable ql. It then

follows that

q̇ = Jl(q) q̇l (51)

where

Jl(q) =

[
Il

−D−1
m Dml

]
(52)

and Il ∈ Rl×l is an identity matrix. It is not difficult to see

that

JT
l DT

e = 0. (53)

Equation (53) is very useful in the controller design and

stability analysis of the system.

By the following change of variables, one can decouple

the robot dynamic into two individual blocks: a reduced

position block and a reduced force block. It is worth to

mention that the constrained force does not appear in the

reduced position model. Considering (4), (51) and (53), the

reduced position block can be represented by

Ml(q) q̈l + Cl(q, q̇l) q̇l + Gl(q)+

JT
l (JT

f τd + f(q̇)) = Il (54)

where

Ml(q) = K−1
Tm JT

l M ′(q)Jl

Cl(q, q̇l) = K−1
Tm JT

l

(
M ′(q) J̇l + C′(q, q̇l)

)
Gl(q) = K−1

Tm JT
l g′(q)

Jf = J ′
f K−T

Tm, f(q̇) = K−1
Tm f ′(q̇)

Il = JT
l I. (55)

The brushed DC (BDC) motors dynamics can be mod-

eled as

Lm İl = Lm J̇T
l I − JT

l Rm I − JT
l Kem q̇ + vl (56)

where vl = JT
l v, I and v represent the motor current and

motor voltage, respectively. And Lm, Rm, Kem represent

the actuators inductance matrix, the actuators resistance

matrix and the motors back emf coefficient matrix, respec-

tively.

It is worth to mention that the matrix Ml(q) is posi-

tive definite, and that the matrix 1
2
Ṁl(q)−Cl(q, q̇l) is skew

symmetric.

5.2 Controller design

Let us define the filtered tracking error by

rl = ėl + Λ el (57)

where ėl = q̇l − q̇ld, el = ql − qld and qld, q̇ld are the desired

values of reduced position and velocity vectors, respectively.

Also, let us define

Yl1(q, q̇, t)Φl1 = Ml (Λ ėl − q̈ld) − gl(q)−
Cl(q, q̇) (−Λ el + q̇ld) − JT

l (JT
f τd + f(q̇))

Yl2(q, q̇, I, t)Φl2 = Lm J̇T
L I − JT

L (Rm I + Kem q̇) (58)

where Yl1(·) is the mechanical regressor matrix, Yl2(·) is

the electrical regressor matrix, Φl1 represents uncertain me-

chanical parameters and Φl2 represents uncertain electrical

parameters.

Consider the current tracking error defined by

ηl = Il − Ild (59)
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where Ild represents the desired current trajectory calcu-

lated by

Ild = −Kv rl − Yl1(·) Φ̄l1 − ρ2
l1 rl

ρl1 ‖rl‖ + ε2
(60)

where

ρl1 = αl1 ‖Yl1(·)‖ (61)

ε̇ = −Kε ε . (62)

Φ̄l1 represents the nominal values of the uncertain mechani-

cal parameters and we can assume that
∥∥∥Φ̃l1

∥∥∥ ≤ αl1, where

Φ̃l1 = Φl1 − Φ̄l1 and no restriction exists on the magni-

tude of αl1. Let us introduce the control law for the motor

voltage as

vl = −Yl2(·) Φ̄l2 − rl − ρ2
l2 ηl

ρl2 ‖ηl‖ + μ2
(63)

where

ρl2 = αl2 ‖Yl2(·)‖ + lαl3 (64)

μ̇ = −Kμ μ . (65)

Similar to Φl1, it can be assumed that
∥∥∥Φ̃l2

∥∥∥ ≤ αl2 where

Φ̃l2 = Φl2 − Φ̄l2 and no restriction exists on the magnitude

of αl2. αl3 is defined similar to α3, i.e.,
∥∥∥İld

∥∥∥ ≤ αl3 .

Consequently, the position and current error dynamics

can be represented by

Mlṙl = Yl1(·) Φ̃l1 − Cl(q, q̇l) rl − Kv r−
ρ2

l1 rl

ρl1 ‖rl‖ + ε2
+ ηl (66)

Lmη̇l = −Lmİld + Yl2(·)Φ̃l2 − ρ2
l2ηl

ρl2 ‖ηl‖ + μ2
− rl.

The stability and performance of the whole control sys-

tem in trajectory tracking is analyzed by Theorem 2.

Theorem 2. The input control voltage calculated by

(63), results in semi-global asymptotic stability of position

and velocity tracking error, i.e.,

lim
t→∞

el = 0, lim
t→∞

ėl = 0 (67)

provided that the desired trajectory tracking and the initial

system errors being bounded.

The stability of the system can be proved by the same

procedure presented in Section 4, utilizing the following

Lyapunov function:

V (El) =
1

2
ET

l P El (68)

where El = [rT
l , ηT

l , ε, μ]T is the augmented state vector and

P = diag
{
Ml, Lm, K−1

ε , K−1
μ

}
. (69)

6 Experimental and numerical imple-

mentation

In order to validate the proposed method, in this section

experimental and numerical results are presented for two

different systems: A two link serial manipulator and a four-

bar linkage system.

6.1 Experimental setup

The developed controller is implemented experimentally

on a two link planar manipulator shown in Fig. 1 and the

experimental results are compared with those of the simu-

lation results for the same system parameters. Each axis

is driven by a Maxon servomotor set consisting of a BDC,

an encoder and a gear reduction unit. The mass and the

length of the links, without considering the mass of the mo-

tors, are approximately about 0.54 kg and 43 cm for the first

link and 0.24 kg and 47 cm for the second one. The mass of

the first and the second motors sets are 0.45 kg and 0.32 kg,

respectively.

Fig. 1 The two link planar manipulator employed for experi-

mental results

The base and elbow joints have the capability of mak-

ing up to 0.85 and 1.6 revolutions per second and each one

has maximum position feedback resolution of up to 14 400

counts per revolution. The base motor is capable of gen-

erating up to 16.7 N·m torque and the elbow motor up to

2.2 N·m. The effective torque constant at the joint ends are

6.1 N·m/A for the first axis and 1.95 N·m/A for the second

one.

Real-time control is performed with a host computer

(Pentium IV 2.0GHz dual-core) and a servo 400 MHz DSP.

Each motor is mounted on two ball bearings after gearbox.

The gearboxes have planar clearance of approximately up

to 1 deg. This leads to a resultant clearance of 1.5 cm at

the end-effecter point. For the velocity feedback, a one step

numerical differentiation of the joint position measurements

with a sampling period of 4ms has been used.

6.2 Experimental and numerical results
for a two link manipulator

Using the above mentioned numerical values of system

parameters and employing the proposed algorithm, the con-

troller is developed. The following are used as the control
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gains:

Kv = diag {100, 100}
Kε = Kμ = 0.001

ε(0) = μ(0) = 100

Λ = diag {10, 10} .

(70)

The robot is assumed to track a harmonic desired trajec-

tory defined by (71), while the electrical and mechanical

parameters are in fact uncertain.

q1d = q2d = 0.5 sin
2π

5
t . (71)

The position and velocity tracking errors, both for the

experimental results and numerical simulation are given in

Figs. 2 and 3.

(a) Simulation results

(b) Experimental results

Fig. 2 Time history of position tracking errors

Fig. 2 shows that the absolute maximum position track-

ing error for joint 1 is about 0.06 rad (3.43 deg) and it is

about 0.02 rad (1.14 deg) for joint 2 in the experimental

case, once the initial errors get settled down. These values

are 0.003 rad (0.17 deg) for link 1 and 0.001 rad (0.05 deg)

for link 2 in the simulation results, once the initial errors

get settled down.

The velocity tracking errors are given in Fig. 3. There

is an initial spike in the velocity tracking error at t = 0.

This can be seen again in experimental and simulation re-

sults. It is due to the initial condition errors. This figure

shows that in the experimental case the velocity tracking

errors are bounded within 0.15 rad/s for both links, once

the initial errors get settled down. However, in the simula-

tion case they are bounded to 0.006 rad/s and 0.003 rad/s,

respectively.

(a) Simulation results

(b) Experimental results

Fig. 3 Time history of velocity tracking errors

Fig. 4 shows time history of the motors input voltage. Ex-

cept for noisy behavior of the experimental results, similar-

ity and closeness of the experimental results and simulation

results can be clearly observed.

(a) Simulation results

(b) Experimental results

Fig. 4 Time history of input voltage
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6.3 Numerical results for a four-bar link-
age system

In this section, the validity of the theorem presented in

Section 5 is verified by the numerical simulation executed

on a four-bar linkage, as an example of constrained robotic

systems. The schematic of the system is shown in Fig. 5

which is driven by a motor installed on the first link.

Fig. 5 Schematic of a four-bar linkage

The dynamics of the system is calculated by (54) and

(56), and the inertia and Coriolis and gravity terms are

calculated for a three link robotic arm utilizing the Maple

software.

A four-bar linkage has two constraint equations defined

by

l1c1 + l2c12 + l3c123 = a

l1s1 + l2s12 + l3s123 = 0.
(72)

Also D(q) and Je(q) are defined by

D =

[
1 0

0 1

]
, Je =

[
−l1s1 −l2s12 −l3s123

l1c1 l2c12 l3c123

]
.

(73)

Considering ql = q1 and qm = [q2, q3]
T and utilizing the

Maple software, the reduced order dynamics of the system

in the form of (45) is computed. The electromechanical

parameters of the system are selected by

m1 = 1 kg, m2 = 1kg, m3 = 1kg,

l1 = 1m, l2 = 1m, l3 = 1m, a = 2m,

KT = 1, Lm = 0.1 H, Kem = 0.2 V · s/rad, Rm = 5Ω.

(74)

The uncertain mechanical parameter vector is Φ1 =

[m1, m2, m3]
T and the uncertain electrical parameter vec-

tor is Φ2 = [Lm, Kem, Rm]T. The desired trajectory for q1

is described by

qld = sin t . (75)

The nominal values of the uncertain parameters are as-

sumed to be Φ̄1 = [6, 6, 6]T , Φ̄2 = [2, 2, 8]T. The nominal

magnitude of parameters are selected far from their actual

values to show the effectiveness of the method against great

degrees of uncertainties.

Here, for the convenience of simulation, the entire initial

conditions are assumed to be zero and the controller gains

for the proposed method are chosen to be

Kv = 100, Λ = 3

Kε = Kμ = 0.001

ε(0) = μ(0) = 100.

(76)

The simulation results are presented in Figs. 6–8. The

angular position tracking error, el, is represented in Fig. 6.

The angular velocity tracking error, ėl, is shown in Fig. 7.

The motor voltage is plotted in Fig. 8.

Fig. 6 Time history of position tracking error

Fig. 7 Time history of velocity tracking error

Fig. 8 Time history of input voltage

From this comparative simulation, it can be concluded

that the joint position and velocity of the robot system

converge towards the desired trajectories.
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7 Conclusions

In this paper, a robust control law has been presented to

ensure trajectory tracking for electrically driven robotic sys-

tems considering both the robot and actuators uncertain-

ties. In the presented method, no statistical information

about the uncertain elements is assumed. The proposed ro-

bust control law has two advantages over the previous ones.

First, the proposed control law results in asymptotic stabil-

ity while the majority of the robust methods guarantee the

boundedness of the tracking error. The second advantage

comes from considering both robot and actuators uncertain-

ties. The method is employed to control two different case

studies; a two link serial manipulator and a four-bar linkage

system. Both numerical and experimental results show the

effectiveness of the method in controlling the system.
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