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Abstract: In this paper, we consider the problem of unknown parameter estimation using a set of nodes that are deployed over an

area. The recently proposed distributed adaptive estimation algorithms (also known as adaptive networks) are appealing solutions

to the mentioned problem when the statistical information of the underlying process is not available or it varies over time. In this

paper, our goal is to develop a new incremental least-mean square (LMS) adaptive network that considers the quality of measurements

collected by the nodes. Thus, we use an adaptive combination strategy which assigns each node a step size according to its quality

of measurement. The adaptive combination strategy improves the robustness of the proposed algorithm to the spatial variations of

signal-to-noise ratio (SNR). The performance of our algorithm is more remarkable in inhomogeneous environments when there are some

nodes with low SNRs in the network. The simulation results indicate the efficiency of the proposed algorithm.
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1 Introduction

Consider a set of nodes that are deployed to estimate

an unknown parameter using the data collected at nodes.

Such an estimation problem (known as distributed esti-

mation problem) arises in several applications, e.g., en-

vironment monitoring, target localization and sensor net-

work application[1−4]. Different distributed estimation al-

gorithms have been proposed in [5–10]. In general, the avail-

able algorithms can be categorized based on the presence or

absence of a fusion center (FC) for data processing (see for

example [5] and references therein). In many applications,

we need to perform estimation when the statistical informa-

tion of the underlying processes of interest is not available

or it varies over time. This issue motivated the development

of novel distributed estimation algorithms that are known

as adaptive networks.

We adopt the term adaptive networks from [6, 7] to refer

to a collection of nodes that interact with each other and

function as a single adaptive entity that is able to track

statistical variations of data in real-time. In fact, in an

adaptive network, each node collects local observations and

at the same time, interacts with its immediate neighbors.

At every instant, the local observation is combined with in-

formation from the neighboring nodes in order to improve

the estimate at the local node. By repeating this process

of simultaneous observation and consultation, the nodes are

constantly exhibiting updated estimates that respond to ob-

servations in real time[7].

Based on the mode of cooperation between nodes, dis-

tributed adaptive estimation algorithms may be referred

to as incremental algorithms or diffusion algorithms (see
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Fig. 1). The distributed incremental least-mean square

(DILMS)[8], distributed recursive least square (DRLS)

algorithm[9], affine projection algorithm[10] and parallel

projections[11] are examples of distributed adaptive estima-

tion algorithms that use incremental cooperation. In these

algorithms, there is a Hamiltonian cycle through which the

estimates are sequentially circulated from node to node.

Fig. 1 Different types of cooperation mode in adaptive net-

works: incremental (left), diffusion (right)

On the other hand, in the diffusion cooperative mode

each node updates its estimate using all available estimates

from its neighbors as well as data and its own past esti-

mate. Both least-mean square (LMS)-based and recursive

least square (RLS)-based diffusion algorithms have been

considered in [12, 13]. In [13], a multi-level diffusion al-

gorithm was proposed, where a network running a diffusion

algorithm is enhanced by adding special nodes that can

perform different processing. In [14], an efficient adaptive

combination strategy for diffusion algorithms over adaptive

networks was proposed in order to improve the robustness

against the spatial variation of signal-to-noise ratio (SNR)

over the network.

In the previous incremental adaptive estimation

algorithms[7−11] , the node profile has not been considered

in the algorithm structure. Therefore, the performance of

such algorithms will deteriorate if the SNR at some nodes

is lower than others, because the noisy estimates of such

nodes pervade the entire network by incremental coopera-
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tion among the nodes. To address this issue, Panigrahi and

Panda have proposed an efficient step size assignment for

every node in the incremental least mean squares (ILMS)

adaptive learning algorithm[14] . The aim in [14] is to im-

prove the robustness of the ILMS algorithm against the

spatial variation of observation noise statistics over the net-

work. The algorithm provides improved steady-state per-

formance in comparison with ILMS algorithm with static

step-sizes. However, it needs the noise variance informa-

tion of all the nodes. In [15], the authors have proposed an

efficient step size assignment for every node in the ILMS al-

gorithm so that the convergence of the proposed algorithm

is the same as the ILMS algorithm with static step-sizes.

In this paper, we propose a new incremental LMS algo-

rithm with an adaptive combination strategy, which assigns

each node a suitable weight according to its reliability of

measurement. We formulate the weight assignment as a

constrained optimization problem and then recast it into a

distributed form and give finally an adaptive solution to the

problem. Simulation results are also provided to show the

performance of the proposed algorithm.

Notations. We adopt boldface letters for random quan-

tities and normal font for nonrandom (deterministic) quan-

tities. The symbol ∗ denotes conjugation for scalars and

Hermitian transpose for matrices. The notation ‖x‖2Σ =

x∗Σx stands for the weighted square norm of x. The exact

meaning of this notation will be clear from the context.

2 Estimation problem and the adaptive

distributed solution

2.1 Incremental LMS solution

Consider a network composed of N distributed nodes as

shown in Fig. 2. The purpose is to estimate an unknown pa-

rameter M × 1 vector wo from multiple spatially indepen-

dent but possibly time-correlated measurements collected

at N nodes in a network. Each node k has access to time-

realizations {dk(i), uk,i} of zero-mean spatial data {dddk,uuuk}
where each dddk is a scalar measurement and each uuuk is a

1×M row regression vector that are related via

dk(i) = uk,iw
o + vk(i) (1)

where wo is the M×1 unknown vector parameter and vk(i)

is the observation noise term with zero-mean and variance

of σ2
v,k. In practice, wo may represent different physical

quantities, e.g., location of a target, parameter of an auto-

regressive (AR) model taps of a communication channel, or

the location of food sources[16]. Collecting regression and

measurement data into global matrices results in

UUU �

⎡
⎢⎢⎢⎢⎣

uuu1

uuu2

...

uuuN

⎤
⎥⎥⎥⎥⎦

N×M

, ddd �

⎡
⎢⎢⎢⎢⎣

ddd1

ddd2

...

dddN

⎤
⎥⎥⎥⎥⎦

N×1

. (2)

Fig. 2 A distributed network with N nodes. Note to our def-

inition for the neighborhood of a node Nk in the incremental

cooperation

The objective is to estimate the M × 1 vector w that

solves

min
w

J(w) where J(w) = E{‖ddd −UUUw‖2}. (3)

The optimal solution wo satisfies the normal equations[6]

Rdu = Ruw
o (4)

where

Rdu = E{UUU∗ddd} =

N∑
k=1

Rdu,k (5)

Ru = E{UUU∗UUU} =
N∑

k=1

Ru,k. (6)

Note that in order to use (4) to compute wo, each

node must have access to the global statistical information

{Ru, Rdu} which, in turn, needs a lot of communication

and computational resources. Moreover, such an approach,

does not enable the network to response to the changes in

statistical properties of data.

2.2 Incremental LMS solution

In [6, 8], a fully distributed adaptive estimation algo-

rithm, known as DILMS algorithm has been proposed. To

develop our proposed algorithm, we introduce the DILMS

algorithm first. To this end, we first consider the gradient-

descent method. The standard gradient-descent implemen-

tation to solve the normal equation (4) is

wi = wi−1 + μk [∇J (wi−1)]
∗ (7)

where μk is a suitably chosen step-size parameter, wi is an

estimate of wo at iteration i and ∇J(·) denotes the gradi-

ent vector of J(w) evaluated at wi−1. In order to obtain a

distributed solution, first the cost function J(w) is decom-

posed as follows:

J(w) =
N∑

k=1

Jk(w) (8)

where

Jk � E{|dk − ukw|2}. (9)

Using (8) and (9) the standard gradient-descent imple-

mentation of (7) can be rewritten as (8)

wi = wi−1 − μk

[
N∑

k=1

∇Jk (wi−1)

]∗

. (10)
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By defining ψ
(i)
k as the local estimate of wo at node k

and time i, wi can be evaluated as[6, 8]

ψ
(i)
k = ψ

(i)
k−1 − μk [∇Jk (wi−1)]

∗ , k = 1, 2, · · · , N. (11)

This scheme still requires all nodes to share the global

information wi−1. The fully distributed solution can be

achieved by using the local estimate ψ
(i)
k−1 at each node k

instead of wi−1
[6]:

ψ
(i)
k = ψ

(i)
k−1 − μk

[
∇Jk

(
ψ

(i)
k−1

)]∗
, k = 1, 2, · · · , N. (12)

Now, we need to determine the gradient of J and replace

it in (10). To do this, the following approximations are used

Rdu,k ≈ dk(i)u∗
k,i

Ru,k ≈ u∗
k,iuk,i. (13)

The resulting DILMS algorithm is as[6, 8]

⎧⎪⎪⎨
⎪⎪⎩

ψ
(i)
0 ← wi−1

ψ
(i)
k = ψ

(i)
k−1 + μk

k=1,2,··· ,N

u∗
k,i

[
dk(i)− uk,iψ

(i)
k−1

]

wi ← ψ
(i)
N .

(14)

The block diagram of the distributed incremental least-

mean square (DILMS) algorithm is shown in Fig. 3.

Fig. 3 The block diagram of the DILMS algorithm

3 Effect of noisy nodes

Suppose that we have a network so that the SNR at some

nodes is lower than others (noisy nodes). The performance

of DILMS algorithm in such a network deteriorates because

the noisy estimate of such a node pervades the entire net-

work by incremental cooperation among the nodes. To see

this, let us consider a network with N = 20 nodes and

assume M = 5, μ = 0.01, and wo = 1M/
√
M . The regres-

sion vectors uk,i are considered to be independent Gaussian

where their eigenvalue spread is ρ = 31. We assume that

there are 5 noisy nodes with σ2
v,k ∈ (0, 2) in the network

while for other nodes we consider σ2
v,k ∈ (0, 0.1). Fig. 4

shows the node profile for our set up. Fig. 5 shows the

global average excess mean-square error (ESME) in differ-

ent conditions when noisy nodes are included and excluded

from the network. The global average EMSE is defined as

ζg(i) =
1

N

N∑
k=1

E
{
|uk,i(w

o − ψk−1,i)|2
}

1Note that each Ru,k is a diagonal matrix where its minimum
eigenvalue is set to 1 and its maximum eigenvalue is set to 3. The
mean of regression vectors is zero. For more information about re-
gression vectors, please see [17].

Fig. 4 The node profile, σ2
v,k and tr{Ru,k}

We can see from Fig. 5 that the noisy nodes strongly af-

fect the performance of DILMS algorithm. More precisely,

the performance of DILMS algorithm (in terms of steady-

state EMSE) is reduced by about 9 dB because of noisy

nodes.

Fig. 5 The global average EMSE for DILMS algorithm in dif-

ferent conditions

4 Proposed algorithm

The block diagram of the proposed algorithm is shown in

Fig. 6. As we can see, at the first step, we need to modify

the DILMS algorithm (14) as

{
φk,i = ck,k−1ψk−1,i + ck,kψk,i−1

ψk,i = φk,i + μku
∗
k,i(dk(i)− uk,iφk,i)

(15)

where {ck,k−1, ck,k} ∈ R are combination coefficients used

at node k. Thus, in the modified DILMS, each node updates

its local estimate by combing the local estimate of previous

node (i.e., ψk−1,i) and its previous time local estimate (i.e.,

ψk,i−1). It must be noted that at node k = 1, due to

incremental cooperation in the DILMS algorithm, we have

c1,0 = c1,N .
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Fig. 6 The block diagram of the proposed algorithm

To formulate the problem of finding combination

coefficients, we define the N × 1 vector ck =

[ck,1, ck,2, · · · , ck,N ]T ∈ RN for every node k, where we have

ck,� = 0, � �= {k − 1, k}. Now, suppose that for each node

k, the local estimates {ψk,i, i = 0, 1, · · · } are realizations

of some random vector ψk. Then, we would like to find

a vector of coefficients ck ∈ RN that solves the following

problem

⎧⎪⎨
⎪⎩

min
{c1,··· ,cN}∈RN

N∑
k=1

E{‖Ψck − wo‖2}

subject to ck,� = 0 for � /∈ Nk, Nk = {k − 1, k}
(16)

where Ψ = [ψ1, ψ2, · · · , ψN ] is an M × N random matrix.

To have a distributed solution we use the fact that the opti-

mization problem (16) can be decomposed into N subprob-

lems for each k = {1, · · · , N} as

⎧⎨
⎩

min
ck∈RN

J(ck) = E{‖Ψck − wo‖2}
subject to ck,� = 0 for � /∈ Nk, Nk = {k − 1, k}.

(17)

There is a difficulty to use the optimization problem (17):

due to the presence of the unknown quantity wo the opti-

mization problem (17) cannot be solved directly. To address

this issue, we can assume that every local estimate ψk is un-

biased, i.e., E{ψk} = wo for all k = 1, · · · , N . Now we can

use this assumption to say E{Ψ} = wo1T
N . Then, we apply

the bias-variance decomposition[18, 19]

J(ck) = cTkQΨck +
∥∥∥(1T

Nck − 1)wo
∥∥∥

2

(18)

where QΨ is an N ×N matrix defined as

QΨ
Δ
= E{(Ψ − E{Ψ})∗(Ψ− E{Ψ})}. (19)

Therefore, by imposing 1T
Nck = 1, the second term in-

volving the unknown quantity wo is eliminated and we ar-

rive at the following problem

⎧⎨
⎩

min
ck∈RN

cTkQΨck

subject to 1T
Nck = 1 and ck� = 0 for � /∈ Nk.

(20)

As it is shown in [18], the dimension of the problem like

(20) can be reduced from N unknowns to the cardinality

of Nk, say 2, by introducing the following N × 2 auxiliary

variable

Pk = [τk−1, τk]N×2 (21)

where τk is the N×1 vector whose components are all zeros

except k, for example τ2 = [0 1 0 · · · 0]T. Note that due to

incremental cooperation we define P1 as P1 = [τ1τN ].

Then, any vector ck that satisfies ck� = 0 for � ∈ Nk can

be represented as[18, 19]

ck = Pkak with some ak ∈ R2. (22)

Therefore, substituting (22) into (20) we get

⎧⎨
⎩

min
ck∈RN

fk(ak)
Δ
= aT

kQΨ,kak

subject to ak ∈ VN
Δ
= {a ∈ R2|1T

2 a = 1}
(23)

where QΨ,k is the 2× 2 matrix which is defined as

QΨ,k
Δ
= PT

k QΨPk (24)

and 12
Δ
= PT

k 1N is the vector whose components are all

unity. The solution to (23) is well-known to be[18, 19]

ao
k

Δ
=

Q−1
Ψ,k12

1T
2Q

−1
Ψ,k12

. (25)

To have an adaptive distributed solution, we need to elim-

inate the constraint Vk from the constrained optimization

problem in (23). By applying a similar technique intro-

duced in [18, 19], we finally arrive at the following iterative

solution
{

bk,i = bk,i−1 − λk(i)ΛQΨ,kbk,i−1

ck = Pkbk,i

(26)

where λk(i) is the step-size and Λ is the following matrix

Λ =

[
0.5 −0.5

−0.5 0.5

]
. (27)

To derive an adaptive solution, we replace QΨ,k by its

instantaneous approximation as

QΨ,k ≈ (Δφ)∗(Δφ) (28)

where Δφ is an M × 2 matrix as

Δφ = [ψk−1,i − ψk−1,i−1 ψk,i−1 − ψk,i−2]. (29)
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Now by substituting (28) into (26) and using the mod-

ified DILMS algorithm (10), our proposed algorithm with

adaptive combination algorithm yields

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

gk,i = Λ(Δφ)∗(Δφ)bk,i−1

bk,i = bk,i−1 − λk(i)gk,i

ck = Pkbk,i

φk,i = ck,k−1ψk−1,i + ck,k(i)ψk,i−1

ψk,i = φk,i + μk u
∗
k,i(dk(i)− uk,iφk,i).

(30)

A possible choice for λk(i) is the normalized step-

size[18, 19]

λk(i) = γ
min{bk,i−1(1), bk,i−1(2)}

‖ gk,i‖∞ + ε
(31)

where γ ∈ (0, 1) and ε are constants, ‖ · ‖∞ denotes the

maximum norm, and bk,i−1(m) is the m-th component of

bk,i−1. The pseudo code of the proposed algorithm is shown

in sequel.

Algorithm 1. The pseudo code of the proposed algo-

rithm

Initialize ψk,0 = 0

for k = 1, 2, · · · , N
for i = 1, 2, · · ·

compute Δφ using (29)

gk,i = Λ(Δφ)∗(Δφ)bk,i−1

bk,i = bk,i−1 − λk(i)gk,i

ck = Pkbk,i

φk,i = ck,k−1ψk−1,i + ck,k(i)ψk,i−1

ψk,i = φk,i + μk u
∗
k,i(dk(i)− uk,iφk,i)

end for

end for

5 Simulation results

In this section, we present the simulation results to eval-

uate the performance of our proposed algorithm. To this

aim, we consider again the set up in Section 3. We further

choose γ = 0.01 and ε = 10−5. We examine the network

performance by the global average mean-square deviation

(MSD) and global average EMSE. Note that global average

MSD is defined as

ηg(i) =
1

N

N∑
k=1

E
{
‖wo − ψk−1,i‖2

}
. (32)

The curves are generated by averaging over 100 indepen-

dent experiments. In Fig. 7, we have shown the global av-

erage MSD and global average EMSE for the DILMS with

noisy nodes, the proposed algorithm, and DILMS without

noisy nodes. As it is clear from Fig. 7, the proposed al-

gorithm outperforms the DILMS algorithm in a sense of

steady-state performance. In fact, in this special set up,

the performance of the proposed algorithm is increased by

about 7 dB in comparison with the DILMS algorithm. The

main disadvantage of the proposed algorithm is its conver-

gence rate, as it is obvious from Fig. 8. In Fig. 8, we have

plotted the EMSE learning curves for the DILMS with noisy

nodes and the proposed algorithm by manipulating the step

size so that both the algorithms have the same convergence

Fig. 7 The global average MSD and ESME for DILMS and our

proposed algorithm

Fig. 8 The EMSE learning curves for the DILMS with noisy

nodes and the proposed algorithm. Note that we have manipu-

lated the step size so that both the algorithm have same conver-

gence speed
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speed. The approximation of QΨ,k in (28) is the main rea-

son for low convergence speed of the proposed algorithm,

which needs time to know the exact variance of a node. The

smaller convergence rate in adaptive networks means that

the algorithm needs more iterations to converge, which in

turn increases the required power, and reduces the network

life. The convergence rate of the proposed algorithm can

be improved by using a variable step-size LMS algorithm.

It is possible to use the block adaptive algorithm concept

to minimize the communication overhead involved in the

algorithm[20, 21].

6 Conclusions and future work

In this paper, we proposed a new incremental LMS al-

gorithm with adaptive combination strategy. The adaptive

combination strategy improves the robustness of the pro-

posed algorithm to the spatial variation of SNR. We formu-

lated the weight assignment as a constrained optimization

problem and then changed it into a distributed form and

finally derived an adaptive solution to the problem. The

simulation results showed the effectiveness of our proposed

algorithm. In this paper, we assumed ideal links between

nodes in the networks. As we have shown in [22, 23], the

performance of incremental adaptive networks deteriorates

in the presence of noisy links. Moreover, the performance

of adaptive networks can vary significantly when they are

implemented in finite-precision arithmetic, which makes it

vital to analyze their performance in a quantized environ-

ment. In the future work, we will consider these issues to

modify the structure of our proposed algorithm.
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