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Abstract: Advances in the technology of astronomical spectra acquisition have resulted in an enormous amount of data available
in world-wide telescope archives. It is no longer feasible to analyze them using classical approaches, so a new astronomical discipline,
astroinformatics, has emerged. We describe the initial experiments in the investigation of spectral line profiles of emission line stars
using machine learning with attempt to automatically identify Be and B[e] stars spectra in large archives and classify their types in
an automatic manner. Due to the size of spectra collections, the dimension reduction techniques based on wavelet transformation are
studied as well. The result clearly justifies that machine learning is able to distinguish different shapes of line profiles even after drastic
dimension reduction.
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1 Introduction

The research in almost all natural sciences is facing the
“data avalanche” represented by exponential growth of in-
formation produced by big digital detectors and large-scale
multi-dimensional computer simulations. The effective re-
trieval of scientific knowledge from petabyte-scale databases
requires the qualitatively new kind of scientific discipline
called e-science, allowing the global collaboration of virtual
communities sharing the enormous resources and power of
supercomputing grids[1, 2].

The emerging new kind of research methodology of con-
temporary astronomy —astroinformatics — is based on sys-
tematic application of modern informatics and advanced
statistics on huge astronomical data sets. Such an ap-
proach, involving machine learning, classification, cluster-
ing and data mining, yields new discoveries and better un-
derstanding of nature of astronomical objects. It is some-
times presented as a new way of doing astronomy[3], rep-
resenting the example of working e-Science in astronomy.
The application of methods of working e-science in some
common astronomical tasks may lead to new interesting re-
sults and a different view of the investigated problem. We
present a project that focuses on using machine learning of
large spectral data archives in the investigation of emission
line profiles of Be and B[e] stars in order to find new such
objects.
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1.1 Emission line stars

There are a lot of stellar objects that may show some
important spectral lines in emission. The physical parame-
ters may differ considerably, however, there seems to be the
common origin of their emission — the gaseous circumstel-
lar envelope in the shape of sphere or rotating disk. Among
the most common types, they are Be stars, B[e] stars, pre-
main-sequence stars (e.g. T Tau and Herbig stars), stars
with strong stellar winds (like P Cyg or eta Carinae), Wolf-
Rayet stars, Novae and Symbiotic stars.

1.2 Be and B[e] stars

The classical Be stars[4] are non-supergiant B type stars
whose spectra have or had at some time, one or more
emission lines in the Balmer series. In particular, the Hα

emission is the dominant feature in the spectra of these
objects. The emission lines are commonly understood to
originate in the flattened circumstellar disk, probably to be
of secretion origin (i.e., created from the material of central
star), however the exact mechanism is still unsolved. The
Be stars are not rare in the universe: They represent nearly
one fifth of all B stars and almost one third of B1 stars[5].

The emission and absorption profiles of Be stars vary
with the time scales, from years to fraction of a day, and
they seem to switch between emission state and the state of
pure absorption spectrum indistinguishable from normal B
stars. This variability may be caused by the evolution and
disappearing of disk[4].

Similar strong emission features in Hα show the B[e]
stars[6]. However, they present as well forbidden lines of
low excitation elements (e.g., iron, carbon, oxygen, nitro-
gen) and infrared excess (pointing to the presence of dusty
envelope). The B[e] stars are very rare, mostly unclassified,
so the new yet unknown members of this interesting group
are highly desirable.
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1.3 Be stars spectra archives

The spectra of Be and B[e] stars are dispersed world-
wide in many archives of individual telescopes and space
missions, and most of them are still not yet made available
for public (namely archives of smaller observatories). The
largest publicly available collection of about ninety thou-
sand spectra of more than 900 different stars represents
the BeSS database1. The disadvantage of such archives
for machine learning purposes is its large inhomogeneity as
it contains randomly uploaded spectra from different tele-
scopes, various kinds of spectrographs (both single order
and Echelle) with different spectral resolutions and various
processings applied by both amateurs and professional ob-
servers.

That is why we use spectra from Ondřejov 2m Perek tele-
scope of the Astronomical Institute of the Academy of Sci-
ences of the Czech Republic obtained by its 700 mm camera
in coudè spectrograph, which uses the same optical setup for
more than 15 years. It contains about ten thousand spectra
of different stars in the same configuration processed and
calibrated according to the same recipe. Most of them are
spectra of about 300 Be and B[e] stars. So it represents the
largest homogeneous sample of spectra.

1.4 Motivation

By defining a typical property of spectra (shape of con-
tinuum or presence of a type-specific spectral line), we will
be able to classify the observed samples. The appropriate
choice of classification criterion will give us a powerful tool
for searching of new candidates of interesting kind.

As the Be stars show a number of different shapes of
emission lines like double-peaked profiles with or without
narrow absorption (called shell line) or single peak profiles
with various wing deformations (e.g., “wine-bottle”[7]), it is
very difficult to construct a simple criterion to identify the
Be lines in an automatic manner as required by the amount
of spectra considered for processing. However, even a simple
criterion of combination of three attributes (width, height
of Gaussian fit through spectral line and the medium abso-
lute deviation of noise) was sufficient to identify interesting
emission line objects among nearly two hundred thousand
of SDSS SEGUE spectra[8].

To distinguish different types of emission line profiles
(which is impossible using only Gaussian fit), we propose
a completely new methodology, which seems to be not yet
used (according to our knowledge) in astronomy, although
it has been successfully applied in recent five years to many
similar problems like detection of particular EEG activity.
It is based on supervised machine learning of the set of
positively identified objects. This will give some kind of
classifier rules, which are then applied to a larger inves-
tigated sample set of unclassified objects. In fact, it is a
kind of transformation of data from the basis of observed
variables to another basis in a different parameter space,
hoping that in this new space, the different classes will be
easily distinguishable. As the number of independent input
parameters has to be kept low, we cannot directly use all
points of each spectrum but we have to find a concise de-
scription of the spectral features, which conserves most of

the original information content.
One of the quite common approaches is to make the

principal components analysis (PCA) to get a small basis
of input vectors for machine training. However, the most
promising method is the wavelet decomposition (or multi-
resolution analysis) using the pre-filtered set of largest co-
efficients or power spectrum of the wavelet transformation
of input stellar spectra in the role of feature vectors. This
method has been already successfully applied to many prob-
lems related to recognition of given patterns in input sig-
nal, as is the identification of epilepsy in EEG data[9]. The
wavelet transformation is often used for general knowledge
mining[10] or a number of other applications. A nice review
was given by Li et al.[11] . In astronomy, the wavelet trans-
formation was used recently for estimating stellar physical
parameters from Gaia radial velocity spectrometer (RVS)
simulated spectra with low signal noise ratio (SNR)[12].
However, they have classified stellar spectra of all ordinary
types of stars, while we need to concentrate on different
shapes of several emission lines which require extraction of
feature vectors first. In the following chapters, we describe
several different experiments with extraction of main fea-
tures in an attempt to identify the best method as well
as verification of the results using both unsupervised (clus-
tering) and supervised (classification) learning of both ex-
tracted feature vectors and original data points.

2 Experiment 1: Comparison of differ-
ent wavelet types on simulated spec-
tra

In this experiment, we used the discrete wavelet
transform (DWT) implemented in Matlab. One of the pa-
rameters of wavelet transform is the type of wavelet. The
goal of this experiment was to compare the effect of us-
ing different types of wavelets on the results of cluster-
ing. An extensive literature exists on wavelets and their
applications[13−17] .

We tried to find the wavelet best describing the character
of our data, based on its similarity with the shape of emis-
sion lines. We were choosing from the set of wavelets avail-
able for DWT in Matlab, i.e., daubechies, symlets, coiflets,
biorthogonal, and reverse biorthogonal wavelets family. We
chose two types of different orders from each family:

1) Daubechies (db): orders 1, 4.
2) Symlets (sym): orders 6, 8.
3) Coiflets (coif): orders 2, 3.
4) Biorthogonal (bior): orders 2.6, 6.8.
5) Reverse biorthogonal (rbio): orders 2.6, 5.5.

2.1 Data

The experiment was performed on simulated spectra gen-
erated by computer. A collection of 1 000 spectra was cre-
ated to cover as many emission line shapes as possible. Each
spectrum was created using a combination of 3 Gaussian
functions with parameters generated randomly within ap-
propriately defined ranges, and complemented by a random
noise. The length of a spectrum is 128 points, which ap-
proximately corresponds to the length of a spectrum seg-

1http://basebe.obspm.fr



P. Bromová et al. / Classification of Spectra of Emission Line Stars Using Machine Learning Techniques 267

ment used for emission lines analysis. Each spectrum was
then convolved with a Gaussian function, which simulates
an appropriate resolution of the spectrograph.

2.2 Feature extraction

The DWT was performed in Matlab using the embedded
functions. The feature vector is composed of the wavelet
power spectrum computed from the wavelet coefficients.

Wavelet power spectrum. The power spectrum mea-
sures the power of the transformed signal at each scale of the
employed wavelet transform. The bias of this power spec-
trum was further rectified[18] by division by corresponding
scale. The normalized power spectrum Pj for the scale j
can be described as

Pj = 2−j
∑

n

|Wj,n|2 (1)

where Wj,n is the wavelet coefficient of the j-th scale of the
n-th spectrum.

2.3 Clustering

Clustering was performed using k-means algorithm to re-
sult in 3–6 clusters. The silhouette method[19] was used for
the evaluation. Clustering was performed with 50 itera-
tions and the average silhouette values were presented as
the results.

2.4 Results

Fig. 1 Correctness of clustering for 3, 4, 5, and 6 clusters using

different types of wavelets

In Fig. 1, we can see that there are minimal differences in
the correctness of clustering using different types of wavelets
(hundredths of unit), which suggests the type of wavelet has
no big effect on the clustering results.

3 Experiment 2: Comparison of feature
vectors using clustering

In this experiment, we presented a feature extraction
method based on the wavelet transform and its power spec-
trum (WPS), and an additional value indicating the orien-
tation of the spectral line. Both the discrete (DWT) and
continuous (CWT) wavelet transforms are used. Different
feature vectors were created and compared in terms of clus-
tering of Be stars spectra from the Ondřejov archive. The

clustering was performed using the k-means algorithm.

3.1 Data selection

The data set consists of 656 samples of stellar spectra
of Be stars and also normal stars divided manually into 4
classes (66, 150, 164, and 276 samples) based on the shape
of the emission line. From the input data, a segment with
the Hα spectral line is analyzed. The segment length of 256
pixels is chosen with regard to the width of the emission line
and to the dyadic decomposition used in DWT. Examples
of selected data samples typical for each of the 4 classes are
illustrated in Fig. 2.

Fig. 2 Examples of selected data samples typical for each of the

4 classes: (a), (b) and (c) are spectra of Be stars; (d) is a normal

star. In (a) there is a pure emission on Hα spectral line; (b)

contains a small absorption part (less than 1
3

of the height); (c)

contains a larger absorption part (more than 1
3

of the height).

The spectrum of a normal star (d) consists of a pure absorption

3.2 Feature extraction

The feature vector is composed of two parts:
1) Set of features computed from wavelet coefficients.
2) Value indicating the orientation of the spectral line

(this information is lost in the wavelet power spectrum).
In this experiment, the wavelet transform was performed

in Matlab using the embedded functions, with the wavelet
“symlet 4”.

Orientation of spectral line. The information about
the orientation of a spectral line is lost in the wavelet power
spectrum coefficients. Two data samples with the same
shape but opposite orientations of the spectral line would
yield an equal wavelet power spectrum. Therefore, this in-
formation must be added into the feature vector. We want
to distinguish whether a spectral line is oriented up (emis-
sion line) or down (absorption line), so we use one positive
value and one negative value. The question is which ab-
solute value to choose. In this experiment, we tried three
values: 1, 0.1, and the amplitude of a spectral line, mea-
sured from the continuum of value 1.
NNN largest coefficients. As we did not have any refer-

ence methods of feature extraction from Be stars for com-
parison, we compared our results with a common method of
feature extraction from time series using wavelets, in which
N largest coefficients of wavelet transform are kept and the
rest of the coefficients are set to zero[20]. In experiments,
N = 10 was used. In this feature extraction technique, the
orientation of a spectral line is not added to the feature
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vector, as the wavelet coefficients do contain the informa-
tion about the orientation and the amplitude of the spectral
line.

Feature vectors. Different kinds of feature vectors were
created from the resulting coefficients of the wavelet trans-
form and used for comparison:

1) Spectrum: original spectrum values, normalized to
range [0,1]. (In this case, the DWT coefficients are not
used.)

2) Approximation: DWT approximation coefficients,
normalized to range [0,1].

3) Approximation+detail: DWT approximation and de-
tail coefficients of the last level, normalized to range [0, 1].

4) 10 largest coefs: 10 largest absolute values of coeffi-
cients, normalized to range [−1, 1].

5) 20 largest coefs: 20 largest absolute values of coeffi-
cients, normalized to range [−1, 1].

6) Discrete wavelet power spectrum (DWPS) + orienta-
tion 1: One part of the feature vector is the wavelet power
spectrum of DWT, normalized such that its total energy
equals 1. The second part of the feature vector is a value
indicating the orientation of the spectral line — lines ori-
ented up have the value of 1, lines oriented down have the
value of −1.

7) DWPS+orientation 0.1: the same as the previous one
except the absolute value of orientation 0.1.

8) DWPS+amplitude: One part of the feature vector is
normalized wavelet power spectrum as in the previous case.
The second part is the amplitude of the spectral line mea-
sured from the continuum of value 1.

9) Continuous wavelet power spectrum (CWPS) 16+ori-
entation 1: Wavelet power spectrum (normalized) of CWT
performed with 16 scales. The orientation is the same as in
the previous cases with DWPS.

10) CWPS 8+orientation 1: Wavelet power spectrum
(normalized) of CWT performed with 8 scales. The ori-
entation is the same as in the previous case.

3.3 Clustering

The k-means algorithm in Matlab was used for cluster-
ing. Squared Euclidean distance was used as a distance
measure. Clustering was repeated 30 times, each iteration
with a new set of initial cluster centroid positions. k-means
returns the solution with the lowest within-cluster sums of
point-to-centroid distances.

3.4 Evaluation

We proposed an evaluation method utilizing our knowl-
edge of ideal classification of spectra based on a manual
categorizing.

The principle is to simply count the number of correctly
classified samples. We have 4 target classes and 4 output
classes, but the problem is we do not know which output
class corresponds to which target class. So, at first we need
to map the output classes to the target classes, i.e., to assign
each output class a target class. This is achieved by creat-
ing the correspondence matrix, which is a square matrix of
the size of the number of classes, and where the element on
position (i, j) corresponds to the number of samples with
an output class i and a target class j. In the case of a per-

fect clustering, all values besides the main diagonal would
be equal to zero.

Now we find the mapping by searching for the maximum
value in the matrix. The row and the column of the maxi-
mum element will constitute the corresponding pair of out-
put and target class. We set this row and column to zero
and again find the maximum element. By repeating this
process we find all corresponding pairs of classes. The max-
imum values correspond to correctly classified samples. So
now we simply count the number of correctly classified sam-
ples by summing all maximum values we used for mapping
the classes. By dividing by the total number of samples we
get the percentual match of clustering which is used as a
final evaluation.

3.5 Results

Fig. 3 shows the percentual match of the clustering for
different kinds of feature vectors. The numbers of feature
vectors in the figure correspond to the numbers in the num-
bered list in Section 3.2.

Fig. 3 The match of the clustering using different feature vec-

tors

The best results are given by the last feature vector con-
sisting of the continuous wavelet power spectrum calculated
from 8 scales of CWT coefficients, and the value represent-
ing the orientation of the Hα line with absolute value of 1.
The match is 14% higher than the best result of a feature
vector without WPS. Also the results of all other feature
vectors containing WPS are better than the feature vectors
without WPS.

4 Experiment 3: Comparison of feature
vectors using classification

In this experiment, we proposed several feature ex-
traction methods based on the discrete wavelet transform
(DWT). The data set was the same as in the previous ex-
periment, but in addition the known target classes of spec-
tra (manually assigned) were used for training. A small
segment containing the Hα line was selected for feature ex-
traction. Classification was performed using the support
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vector machines (SVM). The results were given by the ac-
curacy of classification.

4.1 Feature extraction

In this experiment, the wavelet transform was per-
formed using the cross-platform discrete wavelet transform
library[21]. The selected data samples were decomposed into
J scales using the discrete wavelet transform with CDF
9/7[22] wavelet as in (2). This wavelet is employed for
lossy compression in JPEG 2000 and Dirac compression
standards. Responses of this wavelet can be computed by
a convolution with two FIR filters, one with 7 coefficients
and the other with 9 coefficients.

Wj,n = 〈x,ψj,n〉 (2)

where x is data sample, and ψ is the wavelet function.
On each obtained sub-band, the following descriptor was

calculated to form the resulting feature vector as (3). The
individual methods are further explained in detail.

v = {vj}1�j<J . (3)

Wavelet power spectrum. It is described in Section
2.2.

Euclidean norm. The Euclidean or �2 norm is the intu-
itive notion of length of a vector. The norm for the specific
sub-band j can be calculated as ‖Wj‖2 by

‖Wj‖2 =

(
∑

n

|Wj,n|2
) 1

2

. (4)

Maximum norm. Similarly, the maximum or infinity
norm can be defined as the maximal value of DWT magni-
tudes:

‖Wj‖∞ = max
n

|Wj,n|. (5)

Arithmetic mean. The mean (6) is the sum of wavelet
coefficients Wj at the specific scale j divided by the number
of coefficients there. In this paper, the mean is defined as
the expected value with respect to the method below.

μj = E [Wj ] . (6)

Standard deviation. The standard deviation (7) is the
square root of the variance of the specific wavelet sub-band
at the scale of j. It indicates how much variation exists
with respect to the arithmetic mean.

σj =
(
E

[
(Wj − μj)

2]) 1
2 . (7)

4.2 Classification

Classification of resulting feature vectors was performed
using the support vector machines (SVM)[23]. The li-
brary LIBSVM[24] was employed. The radial basis function
(RBF) was used as the kernel function.

There are two parameters for an RBF kernel: C and γ.
It is not known beforehand which C and γ are the best for a
given problem, therefore some kind of model selection (pa-
rameter search) must be done. A strategy known as “grid-
search) was used to find parameters C and γ for each feature

extraction method. In grid-search, various pairs of C and
γ values are tried, each combination of parameter choices
is checked using cross-validation, and the parameters with
the best cross-validation accuracy are picked up. We tried
exponentially growing sequences of C = 2−5, 2−3, · · · , 215

and γ = 2−15, 2−13, · · · , 23). Finally, values C = 32 and
γ = 2 had the best accuracy. For cross-validation, 5 folds
were used.

Before classification, scaling of feature vectors (before
adding the orientation) was performed in the interval [0, 1].

4.3 Results

The results were obtained for different feature extraction
techniques in terms of accuracy of classification. For com-
parison, a feature vector consisting of the original values of
the stellar spectrum without the feature extraction was also
used for classification. The results are given in Fig. 4.

Fig. 4 Accuracies of classification for different feature extraction

methods

The results of all the feature extraction methods are com-
parable with the satisfying accuracy which approaches the
accuracy of a feature vector consisting of the original values
of the stellar spectrum without feature extraction. More-
over, the results are significantly better than that of the
common method of feature extraction from time series us-
ing wavelets — keeping N largest coefficients of the wavelet
transform, which has been chosen for comparison.

The best results are given by the feature extraction us-
ing the wavelet power spectrum, where the accuracy is even
higher than that of the original data without the feature ex-
traction.

5 Experiment 4: Classification without
feature extraction

The aim of this experiment is to test if it is possible
to train machine learning algorithm (SVM in this case) to
discriminate between manually selected groups of Be stars
spectra.
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5.1 Data selection

The training set consists of 2 164 spectra from Ondřejov
archive, which were divided into 4 distinct categories based
on the region around Balmer Hα line (which is the interest-
ing region for that type of stars). The spectra were normal-
ized and trimmed to 100 Å around Hα. So we got samples
with about eight hundred points. The numbers of spectra
in individual categories are shown in Table 1.

Table 1 Numbers of spectrain individual categories

Category 1 2 3 4

Count 408 289 1366 129

For better understanding of the categories characteris-
tics, there are a plot of 25 random samples in Fig. 5 and
characteristics spectrum of individual categories created as
a sum of all spectra in corresponding category in Fig. 3.

Principal component analysis (PCA) was also performed
to visually check if there is a separation (and therefore
a chance) to discriminate between individual classes, see
Fig. 7. As seen, the cluster on the left (around 0,0) seems
to contain the mixture of several classes (see the detail in
Fig. 8. It is the proof that simple linear feature extraction
like PCA cannot distinguish between some visible shapes
and it confirms that a more appropriate method has to
take into account both global large-scale shape and small
details of certain features. This is exactly what the multi-
resolution scalable method like DWT is doing.

5.2 Classification

Classification was performed using the support vector
machines (SVM)[23] with the library scikit-learn[25] and
IPython interactive shell. The radial basis function (RBF)
was used as the kernel function.

Fig. 5 Random samples from all categories
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Fig. 6 Characteristic spectrum of individual categories created

as a sum of all spectra in corresponding categories

Fig. 7 PCA separation of individual classes. The symbols in

the legend represent different categories of the line shapes from

Fig. 6

To find optimum values of parameters C and γ, the grid-
search was performed with 10-fold cross-validation with
samples size = 0.1. The results are in Table 2. Based on
this result, values C = 100.0 and γ = 0.01 were used in the
following experiments.

5.3 Results

The mean score was 0.988 (±0.002). There is a detailed
report (now based on test sample =0.25) in Table 3, where
f1-score is a measure of a test′s accuracy. It considers both
the precision p and the recall r of the test to compute the
score F1 = 2 · precision·recall

precision+recall

Learning curve. It is an important tool which helps
us understand the behaviour of the selected model. As you
can see in Fig. 9 from about 1 000 samples there is not big
improvement and there is probably not necessary to have
more than 1 300 samples. Of course, this is valid only for
this model and data.

Fig. 8 Detailed view of PCA cluster around (0,0)

Table 2 Results of the grid-search

Parameters Score

C = 100.0, γ = 0.01 0.985 (±0.003)∗

C = 10.0, γ = 0.1 0.978 (±0.003)∗

C = 100.0, γ = 0.1 0.977 (±0.004)∗

C = 10.0, γ = 0.01 0.973 (±0.002)

C = 1.0, γ = 0.1 0.970 (±0.003)

C = 100.0, γ = 0.001 0.969 (±0.002)

C = 1.0, γ = 1.0 0.966 (±0.003)

C = 10.0, γ = 1.0 0.965 (±0.004)

C = 100.0, γ = 1.0 0.965 (±0.004)

C = 1.0, γ = 0.01 0.958 (±0.002)

C = 10.0, γ = 0.001 0.956 (±0.003)

C = 100.0, γ = 0.0001 0.953 (±0.003)

C = 0.1, γ = 0.1 0.929 (±0.005)

C = 10.0, γ = 0.0001 0.915 (±0.004)

C = 1.0, γ = 0.001 0.914 (±0.003)

C = 0.1, γ = 0.01 0.908 (±0.003)

C = 0.1, γ = 1.0 0.885 (±0.004)

C = 1.0, γ = 0.0001 0.811 (±0.003)

C = 0.1, γ = 0.001 0.811 (±0.003)

C = 0.1, γ = 0.0001 0.785 (±0.003)

∗denotes the best values

Miss-classification. There were only seven miss-
classified cases (based on testsize = 0.25). Fig. 10 shows
that spectra. It is seen that the boundary between classes
is sometimes very thin— e.g., the small distortion of peak
is considered as a double peak profile or deeper absorption
masks the tiny emission inside it. But these are cases where
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the human would have same troubles to decide the about
right class. In general, the performance of machine learn-
ing is very good, and prove that it is a viable approach to
find desired objects in current petabyte-scaled astronomical
collections.

Table 3 Results of classification

Class Precision Recall f1-score Support

1 0.98 0.96 0.97 100

2 0.95 0.97 0.96 72

3 1.00 1.00 1.00 341

4 0.96 0.96 0.96 28

Average/total 0.99 0.99 0.99 541

Fig. 9 Learning curve

Fig. 10 The miss-classified samples

6 Conclusion

This paper describes the initial experiments in the field of
investigation of spectral line profiles of emission line stars
using machine learning with an attempt to automatically
identify Be and B[e] stars spectra in large archives and clas-
sify their types in an automatic manner. Due to the huge
size of spectra collections, dimension reduction techniques
based on wavelet transformation are studied as well.

The results clearly justify that the machine learning is

able to distinguish different shapes of line profiles even af-
ter drastic dimension reduction.

In the future work, we will compare different classifica-
tion methods and use the results for comparison with the
clustering results. Based on this, we will try to find the
best clustering model and its parameters, which will then
be possible to be used for clustering all spectra in Ondr̆ejov
archive, and possibly to find new interesting candidates.
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[8] P. Škoda, J. Vážný. Searching of new emission-line stars
using the astroinformatics approach. Astronomical Data
Analysis Software and Systems XXI, Astronomical Society
of the Pacific Conference Series, vol.461, pp. 573, 2012.

[9] P. Jahankhani, K. Revett, V. Kodogiannis. Data mining an
EEG dataset with an emphasis on dimensionality reduction.
In Proceedings of the 2007 IEEE Symposium on Computa-
tional Intelligence and Data Mining, IEEE, Honolulu, HI,
USA, pp. 405–412, 2007.

[10] M. Murugappan, R. Nagarajan, S. Yaacob. Combining
spatial filtering and wavelet transform for classifying hu-
man emotions using EEG signals. Journal of Medical and
Biological Engineering, vol. 31, no. 1, pp. 45–51, 2011.

[11] T. Li, Q. Li, S. H. Zhu, M. Ogihara. A survey on wavelet ap-
plications in data mining. SIGKDD Explorations Newslet-
ter, vol. 4, pp. 49–68, 2002.
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