
International Journal of Automation and Computing 9(4), August 2012, 395-402

DOI: 10.1007/s11633-012-0660-2

Functional Verification of Signature Detection

Architectures for High Speed Network Applications

M. Arun1 A. Krishnan2

1Department of Electronics and Communication Engineering, Sri Krishna College of Engineering and Technology, Coimbatore 641008, India
2K. S. Rangasamy College of Technology, Tiruchengode 637215, India

Abstract: To meet the future internet traffic challenges, enhancement of hardware architectures related to network security has
vital role where software security algorithms are incompatible with high speed in terms of Giga bits per second (Gbps). In this
paper, we discuss signature detection technique (SDT) used in network intrusion detection system (NIDS). Design of most commonly
used hardware based techniques for signature detection such as finite automata, discrete comparators, Knuth-Morris-Pratt (KMP)
algorithm, content addressable memory (CAM) and Bloom filter are discussed. Two novel architectures, XOR based pre computation
CAM (XPCAM) and multi stage look up technique (MSLT) Bloom filter architectures are proposed and implemented in third party
field programmable gate array (FPGA), and area and power consumptions are compared. 10Gbps network traffic generator (TNTG)
is used to test the functionality and ensure the reliability of the proposed architectures. Our approach involves a unique combination
of algorithmic and architectural techniques that outperform some of the current techniques in terms of performance, speed and power-
efficiency.

Keywords: Signature detection, network intrusion detection system (NIDS), content addressable memory (CAM), Bloom filter,
network security.

1 Introduction

Some content strings of Internet packet payload, also
known as “signatures”, imply network intrusion attempts.
Signature based network intrusion detection system (NIDS)
collects these signatures and scans the payload of the Inter-
net packets for them in order to identify, deter and contain
such malicious behaviors. A scalable and fast solution is
needed to accommodate the largest signature set today and
to sustain the real time processing of the high-speed net-
work. This is very challenging especially for today′s high-
speed networks with line speeds of 10 Giga bits per second
(Gbps) and beyond. Software based NIDSs are not scalable
to high-speeds[1, 2]. Hardware NIDSs have gained a lot of
attention recently due to the intrinsic speed advantage over
software systems.

In this paper, we present the implementation of signa-
ture detection technique (SDT) architectures in field pro-
grammable gate array (FPGA), which can provide 10Gbps
throughput using a single commodity FPGA. Available
maximum speed of optical cable (OC) is 40Gbps. Nowa-
days state-of-the-art FPGAs are compatible for high speed
network applications of 40 Gbps or more[3]. Three differ-
ent types of architectures, random access memory (RAM),
content addressable memory (CAM) and Bloom filter, are
selected for the study purpose. Two enhanced novel ar-
chitectures, XOR based pre computation CAM (XPCAM)
and multi stage look up technique (MSLT) Bloom filter are
proposed and implemented in the FPGA.

The contributions of this paper are as follows:
1) Detailed hardware architectures XPCAM and MSLT

Bloom filter are proposed.
2) Mathematical analyses are conducted to compare the

performance of proposed architectures.

Manuscript received March 27, 2011; revised November 2, 2011

3) Proposed architectures are implemented using Virtex5
XC5VLX85 & back end tool and compared.

4) Proposed architectures are tested in 10 Gbps network
traffic generator (TNTG).

The rest of the paper is organized as follows. Section 2
summarizes the related work on hardware-based signature
detection techniques. Sections 3 and 4 define the problem
of signature detection for NIDS using CAM and Bloom fil-
ter respectively, whereas Section 5 shows the proposed ar-
chitectures. Section 6 shows implementation results of the
proposed architectures. Section 7 describes the experience
during the functional verification of the proposed architec-
tures. Finally, Section 8 concludes the paper.

2 Related work

Software-based intrusion detection systems can only sup-
port modest throughput. On the other hand, hardware can
easily adapt in NIDS application needs, achieving better
performance with reasonable cost. In this section, we inves-
tigate various hardware-based solutions for string matching.
FPGAs are more suitable, because they are reconfigurable;
they provide hardware speed and exploit parallelism. This
characteristic of reconfigurable devices allows updating or
changing the rule set, adding new features, even changing
systems architecture, without any hardware cost. One of
the first attempts in string matching using FPGAs, pre-
sented in 1993 by Pryor et al.[4] Most researchers designed
signature detection architectures based on regular expres-
sions (NFAs and DFAs)[5−8]. This is a low cost solution,
but does not achieve very high performance. A widely used
technique to increase sharing and reduce designs cost is the
use of pre-decoding, which was applied to both regular ex-
pression and CAM-like approaches[9−11]. Pre-decoding has
been recently introduced and used by several research

396 International Journal of Automation and Computing 9(4), August 2012

groups. It is based on the idea that incoming data are pre-
decoded in centralized decoders, so that each unique char
acter is matched only once. A more efficient and very low
cost approach was presented by Dharmapurikar et al.[12]

who implemented Bloom filters to perform string match-
ing.

In the past decade, much research on energy reduction
has focused on the circuit and technology domains[13]. Sev-
eral works on reducing CAM power consumption have fo-
cused on reducing match-line power[14,15]. Another ap-
proach is to use Bloom filter. Bloom filter is a space ef-
ficient, randomized data structure for representing a sig-
nature set and supporting set membership queries. Bloom
filter summarizes the contents (files, keywords or objects)
into a compact form that is orders of magnitude smaller
than the original collection. The reduction in size may
help to improve system performance and conserve system
resources such as network bandwidth, memory capacity and
disk space. We have seen quite few network system designs,
prototypes and real deployments that utilize Bloom filters
for content representation[16].

Instead of working in device level, our approach concen-
trates on pre-computation techniques. Bloom filter based
MSLT architecture and pre-computation based CAM using
XOR gates are proposed where performance is improved by
reducing the number of comparisons. Proposed architec-
tures are described and implemented in third party FPGA.
FPGA-based platforms can exploit the fact that the NIDS
rules change relatively infrequently, and use reconfiguration
to reduce implementation cost. In addition, FPGA-based
systems can exploit parallelism in order to achieve satisfac-
tory processing throughput.

3 Content addressable memory

A content-addressable memory (CAM) is a critical de-
vice for applications involving communication networks, Lo-
cal area network bridges/switches, databases, lookup ta-
bles, and tag directories, due to its high-speed data search
capability. Fig. 1 shows the memory organization of the
pre computation based (PB)-CAM architecture proposed
by Lin et al.[17], which consists of data memory, parameter
memory, and parameter extractor, where k � n. To re-
duce massive comparison operations for data searches, the
operation is divided into two parts. In the first part, the
parameter extractor extracts a parameter from the input
data, which is then compared to parameters stored in par-
allel in the parameter memory. If no match is returned in
the first part, it means that the input data mismatch the
data related to the stored parameter. Otherwise, the data
related to those stored parameters have to be compared in
the second part. It should be noted that although the first
part must access the entire parameter memory, the parame-
ter memory is far smaller than that of the CAM. Moreover,
since comparisons made in the first part have already fil-
tered out the unmatched data, the second part only needs
to compare the data that match with the first part. The PB-
CAM exploits this characteristic to reduce the comparison
operations, thereby saving power. Therefore, the parameter
extractor of the PB-CAM is critical, because it determines
the number of comparison operations in the second part.

As we stated previously, the parameter extractor plays a
significant role since this circuit determines the number of
comparison operations required in the second part. There-
fore, the design goal of the parameter extractor is to filter
out as many unmatched data as possible to minimize the
required number of comparison operations in the second
part. The ones-count function was adapted to perform pa-
rameter extraction in [17]. For ones count approach, with
an n bit data length, there are n + 1 type of one′s count
(from 0 ones to n ones count). Further, it is necessary to
add an extra type of one′s count to indicate the availability
of stored data. Therefore, the minimal bit length of the pa-
rameter is equal to log(n+2). The parameter extractor for
the ones-count approach is implemented with full adders as
shown in Fig. 2, where FA denotes full adder, INCR4 de-
notes 4 bit increment. In Section 2.2, we will use a 14 bit
example to illustrate the ones-count PB-CAM system and
discuss the disadvantages by mathematical analysis. For
a 16 bit length input data, all the input data contain 216

numbers, and the number of input data related to the same
parameter for ones count approach is 16Cr, where r is a
type of one′s-count (from 0 to 15 one′s-counts). Then we
can compute the average probability that the parameter
occurs. The average probability can be determined by

Average probability =
16Cr

216
(1)

Fig. 1 PB-CAM Architecture

Fig. 2 One′s count parameter extractor

Table 1 lists the number of data related to the same
parameter and their average probabilities for the input
data that is 16 bit in length. Note that with conven-
tional CAMs, the comparison circuit must compare all

M. Arun and A. Krishnan / Functional Verification of Signature Detection Architectures for · · · 397

stored data, whereas with the ones-count PB-CAMs, a large
amount of unmatched data can be initially filtered out,
reducing comparison operations for minimum power con-
sumption in some cases. However, the average probabilities
of some parameters, such as 0, 1, 2, 3, 13, 14, 15, and 16
are less than 1%. In Table 1, we can see that parameters
with over 2000 comparison operations range between 4 and
12. However, the summation of the average probabilities
for these parameters is close to 92%. Although the number
of comparison operations required for ones-count PB-CAMs
is fewer than that of conventional CAMs, ones-count PB-
CAMs fail to reduce the number of comparison operations
in the second part when the parameter value is between 5
and 9, thereby consuming a large amount of power. As can
be seen in Fig. 3, random input patterns for the ones-count
approach demonstrate the Gaussian distribution character-
istic. Note that the Gaussian distribution will limit any fur-
ther reduction of the comparison operations in PB-CAMs.

Fig. 3 Gaussian distribution

Table 1 Number of comparisons and average probabilities for

the ones count approach

Parameter
Number of Average

comparisons probability

0000 0 1 0.001525879

0001 1 16 0.024414063

0010 2 120 0.183105469

0011 3 560 0.854492188

0100 4 1820 2.777099609

0101 5 4368 6.665039063

0110 6 8008 12.21923828

0111 7 11440 17.45605469

1000 8 12870 19.63806152

1001 9 11440 17.45605469

1010 10 8008 12.21923828

1011 11 4368 6.665039063

1100 12 1820 2.777099609

1101 13 560 0.854492188

1110 14 120 0.183105469

1111 15 16 0.024414063

Valid 16 1 0.001525879

4 Bloom filter

Bloom filter was formulated by Bloom[18] and is used
widely today for different purposes including web caching,
intrusion detection and content based routing. The theory
behind Bloom filters is described in this section. Given a
string X, the Bloom filter computes k hash functions pro-
ducing hash values ranging from 1 to m. It then sets k bits
in an m bit long vector at the addresses corresponding to
the k hash values. The same procedure is repeated for all
the members of the set. This process is called “program-
ming” of the filter illustrated in Fig. 4. The query process is
similar to programming, where a string whose membership
is to be verified is input to the filter. The Bloom filter gener-
ates k hash values using the same hash functions it used to
program the filter. However, finding an unset bit certainly
implies that the string does not belong to the set, since if it
did then all the k bits would definitely have been set when
the Bloom filter was programmed with that string. This ex-
plains the presence of false positives in this scheme, and the
absence of any false negatives. The concept is illustrated in
Figs. 5 and 6. The false positive rate, f , is

f = (1 − e−
nk
m)k (2)

where, n is the number of strings programmed into the
Bloom filter. The value of f can be reduced by choosing ap-
propriate values of m and k for a given size of the member
set, n. It is clear that the value of m needs to be quite large
compared to the size of the string set, i.e., n. Also, for a
given ratio of m/n, the false positive probability can be re-
duced by increasing the number of hash functions k. In the
optimal case, when false positive probability is minimized
with respect to k, we get the following relation:

f =
m

n
ln 2. (3)

This corresponds to a false positive probability of:

f = (
1

2
)k. (4)

The ratio m/n can be interpreted as the average number
of bits consumed by a single member of the set.

Fig. 4 Programming multiple strings in the Bloom filter

Fig. 5 Querying a Bloom filter with a string

398 International Journal of Automation and Computing 9(4), August 2012

Fig. 6 False positives

A block diagram of a typical Bloom filter is illustrated in
Fig. 7, where HF denotes hash function. Given a string X,
which is a member of the signature set, a Bloom filter com-
putes k many hash values on the input X and d which are
uniformly distributed between 1 to number of hash func-
tions, k. Then it uses these hash values as index to the
m-bit long lookup vector. It sets the bits corresponding to
the index given by the hash values computed. It repeats
this procedure for each member of the signature set.

Fig. 7 Block diagram of typical Bloom filter

For an input string Y , Bloom filter computes k many
hash values by utilizing the same hash functions used in
programming of the Bloom filter. Bloom filter looks up the
bit values located on the offsets (computed hash values) on
the bit vector. If it finds any bit unset at those addresses,
it declares the input string to be a nonmember of the sig-
nature set, which is called a mismatch. Otherwise, it finds
all the bits are set, it concludes that input string may be a
member of the signature set with a false positive probabil-
ity, which is called a match.

5 Low power architectures

5.1 XOR based CAM

The key idea behind our method is to reduce the number
of comparison operations by eliminating the Gaussian dis-
tribution explained in Section 3. For a 16 bit input data, if
we can distribute the input data uniformly over the parame-
ters, then the number of input data related to each param-
eter would be 214/16 = 4096, and the maximum number
of required comparison operations would be 214/16 = 4096
for each case in the second part of the comparison process.
Compared with the ones-count approach, this approach can
reduce comparison operations by a minimum of 3912 and a
maximum of 8774 (i.e., for parameter value from 4 to 12)
for 92% of the cases. Based on these observations, we pro-
pose a new parameter extractor called Block-XOR, which is
shown in Fig. 8 to achieve the previous requirement. In our
approach, we first partition the input data bit into several

blocks, from which an output bit is computed using XOR
logic operation for each of these blocks. The output bits
are then combined to become the input parameter for the
second part of the comparison process. To compare with
the ones-count approach, we set the bit length of the pa-
rameter to log n, where n is the bit length of the input data.
Therefore, the number of blocks is n/ log n in our approach.
The selected signal is defined as

S = A3A2A1A0. (5)

Fig. 8 XOR based pre-computation block

The concept of Block-XOR approach is to uniformly dis-
tribute the parameter over the input data. By the rule of
product, the number of input data that results in the same
parameter is 8× 8 × 8 × 8 = 4096. Consequently, the aver-
age probability can be determined as 4096/216 × 100 % =
6.25 %. Obviously, the concept of Block-XOR approach can
reduce the comparison operations, hence minimize power
consumption. Table 2 lists the number of input data that
result in the same parameter for the proposed Block-XOR
PB-CAM. As can be seen from Tables 1 and 2, in most
cases, the proposed Block-XOR PB-CAM required far fewer
comparison operations than the ones-count approach for pa-
rameter values between 4 and 12 illustrated in Fig. 9.

Table 2 Number of comparisons and average probabilities for

the Block-XOR approach

Parameter Number of Average

comparisons probability

0000 0 4096 6.25

0001 1 4096 6.25

0010 2 4096 6.25

0011 3 4096 6.25

0100 4 4096 6.25

0101 5 4096 6.25

0110 6 4096 6.25

0111 7 4096 6.25

1000 8 4096 6.25

1001 9 4096 6.25

1010 10 4096 6.25

1011 11 4096 6.25

1100 12 4096 6.25

1101 13 4096 6.25

1110 14 4096 6.25

1111 15 4096 6.25

Valid 16 4096 6.25

M. Arun and A. Krishnan / Functional Verification of Signature Detection Architectures for · · · 399

Fig. 9 Uniform distribution

5.2 MSLT based Bloom filter

A Bloom filter never produces false negatives, which
means if it decides that an input is a nonmember, then
the input certainly does not belong to the signature set.
However, it may produce false positives. It may conclude
that the input is a member of the signature set, although
in reality the input may not be a member of the set. Fol-
lowing the analysis of [12], the false positive probability f
is calculated by (2). In order to minimize the false posi-
tive probability, the value of mmust be quite larger than
n. For a fixed value of m/n, k must be large enough such
that f gets minimized. Since the number of hash functions
in Bloom filters is large to reduce the false positive proba-
bility, it is intuitive that their total power consumption is
large. During the programming phase of the Bloom filter,
not much can be done to reduce the power consumption;
otherwise Bloom filter will produce many false positives.
However, while performing lookups over the Bloom filter,
the number of hash functions used to produce a decision
can be reduced significantly. The architecture to support
such a lookup operation for a multi-hashing scheme is illus-
trated in Fig. 10 where number of hash functions per stage
(r) is k/2. We have introduced low power Bloom filter ar-
chitectures where r = k/4 is illustrated in Fig. 11. If match
is achieved in the first stage itself then three fourth of the
hash calculations are minimized when half of the hash calcu-
lations are reduced. In a similar fashion we have considered
low power architecture with k/8 for power analysis. H 3
class of universal hash function was used in the hash calcu-
lations of MSLT. Universal class of hash functions were first
introduced by Carter and Wegman[19]. Given any string X,
consisting of b bits, X = 〈x1, x2, x3, · · · , xb〉 i-th hash func-
tion over the string X is defined as

hi(x) = di1 ·x1 xor di2 ·x2 xor di3 ·x3 xor · · · xor dib ·xb (6)

where dij
′s are random coefficients uniformly distributed

between 1 to size of the lookup vector, m, and xk is the k-
th bit of the input string. “·” is a bit by bit AND operation,
and xor is a logical exclusive OR operation.

Fig. 10 Bloom filter architecture (hash per stage r = k/2)

Fig. 11 Bloom filter architecture (hash per stage r = k/4)

5.3 Theoretical power analysis of MSLT
architectures

A theoretical approach is followed to analyze and com-
pare the power consumptions of the different lookup op-
erations available through Bloom filter architectures pre-
sented in the Section 5.2. Power consumption (see (7)) of a
Bloom filter when performing a regular lookup operation is
a summation of the power consumptions of each of the hash
function computations, i.e., PHi, plus the power consumed
in accessing the memory for each hash value computed, i.e.,
PQ, plus the power consumed by an AND gate.

PBFreg =

k∑

i=1

(PHi + PQ) + PAND. (7)

Power consumption of an AND gate is ignored hereafter,
since it is negligible compared to the power used by the
hash functions. Hence, all of the k many hash functions are
of type 8 bit H3 class of hash functions, so (7) becomes

PBFreg = k(P8 + PQ) (8)

The probability that a bit is still unset after all the signa-
tures are programmed into the Bloom filter by using k-many
independent hash functions is α.

α =

(
1 − 1

m

)kn

≈ e−
kn
m (9)

where 1/m represents any one of the m bits set by a sin-
gle hash function operating on a single signature. Then

400 International Journal of Automation and Computing 9(4), August 2012

(1−1/m) is the probability that the bit is unset after a sin-
gle hash value computation with a single signature. For it
to remain unset, it should not be set by any of the k-many
hash functions each operating on all of the n-many signa-
tures in the signature set. Consequently, the probability
that any one of the bits is set is

(1 − α) = 1 − e−
kn
m . (10)

In order for the first stage to produce a match, the bits
indexed by all r of the independent random hash functions
should be set. So the match probability of the first stage
is, represented as p,

p =

r∏

i=1

(1 − α) = (1 − α)r ≈
(
1 − e−

kn
m

)r

. (11)

Power consumption of MSLT Bloom filter architectures
where r = k/2, k/4 and k/8 are given by

PBF
r= k

2
=

k

2
× (PH8 + PQ) ×

(
1 + p

k
2

)
(12)

PBF
r= k

4
=

k

4
× (PH8 + PQ) ×

(
1 + p

k
4 + p

k
2 + p

3k
4

)
(13)

PBF
r= k

8
=

k

8
× (PH8 + PQ)×

(
1 + p

k
8 + p

k
4 + p

3k
8 1 + p

k
2 + p

3k
8 + p

3k
4 + p

7k
8

)
. (14)

The power saving ratio (PSR), in a single Bloom filter im-
plemented based on the architectures presented functioning
on two different lookup techniques can be calculated as

PSR =

(
PBFreg − PBF

r= k
n

)

PBFreg

. (15)

Using (15), with reference to the power consumption of
BFreg, PSR of BFr=k/2, BFr=k/4 and BFr=k/8 are calcu-
lated for various k values by considering the design speci-
fications shown in Table 3. For 8 bit signature length (i)
with m/n ratio as 24, power consumption (PH8 +PQ) of an
8 bit hash function was estimated by third party back end
tool and substituted in (8).

Table 3 Design specifications

Parameters Values

m/n ratio 21

Number of signatures, n 1024

Size of the m bit vector, m 21504

Width of the signature, i 8

PH8 +PQ 0.801 µW

Observation says that increment in k increases the num-
ber of basic functional modules used in the design which
increases device density. Obviously device density is di-
rectly proportional to power consumption, by the obser-
vation from Fig. 12, which cannot be compensated using
parallel look up techniques proposed.

In this section, we have discussed about the proposed
methods and their power consumption which is compared

with the related work, theoretically. In Section 6, we will
see the performance analysis on the proposed architectures
where the speed and device utilization are considered.

Fig. 12 Power saving ratio (PSR)

6 Implementation results

In this section, we present the results of hardware simula-
tion implemented in Xilinx 10.1i. The simulation of all ex-
isting and proposed architectures were synthesized, placed,
and routed on the Virtex5 XC5VLX85 chip where the pack-
age and speed are FF676 and –3, respectively. We use a new
metric “Performance” defined to be the area cost divided
by implementation speed as follows.

Performance =

(
AreaCost

Speed

)
=

(
Signature

Slice

Period

)
. (16)

Table 4 summarizes the performance comparison between
related works and our design. In Table 4, LUT means look
up table. We focus on the Signature/Slice metric. Our de-
sign has the best throughput in all approaches. We also can
see that our design has higher throughput and performance
than related works[17, 20−22]. Study of Table 4 says that
performance proposed CAM and Bloom filter based archi-
tectures out performs the existing works. When we compare
XPCAM and MSLT architectures, hash based Bloom filter
MSLT architectures are suitable for applications based on
their device utilization, performance and bandwidth. Even
XPCAM architectures are immediate follower in the per-
formance table; they are essential contributors for certain
applications where data retrieval is unavoidable.

Bloom filter and CAM based architectures explained in
previous sections are implemented in third party FPGA and
their device utilization details are summarized. Input signa-
ture length is considered as 16 bit for all the architectures.
Due to the reduction in IOBs, PB CAM results better than
RAM. XPCAM consumes less power and space than pre-
vious cases with the help of XOR based pre computation
block. Comparisons show that number of bits is reduced in
BFreg and further reduced in MSLT by the proposed lookup
technique. Functionality of proposed architectures is veri-
fied using the 10 Gbps network traffic generator (TNTG)–
Test Environment.

M. Arun and A. Krishnan / Functional Verification of Signature Detection Architectures for · · · 401

Table 4 Implementation results

Design Device
Size of No. of

Slice
No. of No. of Signature

Period
Throughput

Performance
the signature signatures registers LUT Slice Gbps

Proposed 32 16028 15531 15943 48767 1.03 5.10 6.27 0.20

XPCAM 16 16028 7221 15640 15736 2.22 3.42 4.68 0.65

OCCAM[17] 32 16028 37740 22945 5784 0.42 5.80 5.52 0.07

Virtex5LX85T
16 16028 20500 20145 22254 0.78 5.70 2.81 0.14

Proposed 32 16028 7635 6550 30387 2.10 3.45 9.28 0.61

MSLT 16 16028 5626 9690 15375 2.85 3.42 4.68 0.83

DSLT[20] 32 16028 17239 8775 42632 0.93 4.60 6.96 0.20

16 16028 8852 13758 28574 1.81 4.75 3.37 0.38

Discrete
Virtex26000 32 2457 23843 – – 0.10 4.10 7.80 0.03

comparator[21]

Sharing
Virtex26001 32 8003 10309 – – 0.78 12.4 2.59 0.06

prefix[22]

7 Testing

Fig. 13 shows the TNTG–Test Environment used to ver-
ify the proposed SDT architectures. This network has been
modified slightly from the one first developed for the 1998
evaluation[23].

Fig. 13 TNTG–Test Environment

Test setup generates and captures live traffic at the rate
of 10Gbps which is seen between a victim base and the
Internet. Background traffic is generated that simulates
hundreds of programmers, secretaries, managers, and other
types of users running common UNIX and Windows NT
programs.

At the same time, attacks are launched against the Cisco
router (12410) and the four primary victim systems (light
grey box) running with different server operating systems.

The proposed MSLT Bloom filter and XPCAM architec-
tures are described in Verilog HDL and implemented in the
inbuilt Virtex5 LX85T FPGA accommodated in the test
bench. Proposed architectures′ functionality is verified us-
ing the TNTG–Test Environment.

8 Conclusions

Network intrusion detection system is a system which can
detect network attacks resulted from worms and viruses on
the Internet. An efficient signature detection architecture
plays an important role in NIDS. Hardware based NIDS
are an alternative to meet the in line wire speed in terms
of Gbps for network applications. In this work, we propose

pre-processing based architectures to improve the perfor-
mance of the SDTs. The design of the proposed architecture
and its implementation in FPGA are described in detail.
Our simulation results show that the proposed architecture
performs better than all the existing approaches in terms of
the throughput and the device utilization. We also tested a
proof-of-concept system with 10Gbps traffic. This work fo-
cuses on detection of known attacks as signatures contained
in a single packet.

The proposed architectures may not suitable to detect
unknown attacks. As future work, we would like to fur-
ther develop this approach to detect unknown attacks and
extend with application specific integrated circuit (ASIC)
design.

References

[1] D. J. Day, Z. X. Zhao. Protecting against address space lay-
out randomization (ASLR) compromises and return-to-Libc
attacks using network intrusion detection systems. Interna-
tional Journal of Automation and Computing, vol. 8, no. 4,
pp. 472–483, 2011.

[2] S. S. S. Sindhu, S. Geetha, M. Marikannan, A. Kannan. A
neuro-genetic based short-term forecasting framework for
network intrusion prediction system. International Journal
of Automation and Computing, vol. 6, no. 4, pp. 406–414,
2009.

[3] H. Shrikumar. 40Gbps de-layered silicon protocol engine
for TCP record. In Proceedings of Design, Automation and
Test in Europe, IEEE, Munich, Germany, pp. 1–6, 2006.

[4] D. V. Pryor, M. R. Thistle, N. Shirazi. Text searching on
splash 2. In Proceedings of IEEE Symposium on FPGAs for
Custom Computing Machines, IEEE, Napa, USA, pp. 172–
177, 1993.

[5] R. Sidhu, V. K. Prasanna. Fast regular expression match-
ing using FPGAs. In Proceedings of IEEE Symposium on
Field-Programmable Custom Computing Machines, IEEE,
Rohnert Park, USA, pp. 227–238, 2001.

[6] R. Franklin, D. Carver, B. L. Hutchings. Assisting network
intrusion detection with reconfigurable hardware. In Pro-
ceedings of IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, IEEE, Napa, USA, pp. 111–120,
2002.

[7] J. Moscola, J. Lockwood, R. P. Loui, M. Pachos. Im-
plementation of a content-scanning module for an in-
ternet firewall. In Proceedings of IEEE Symposium on
Field-Programmable Custom Computing Machines, IEEE,
pp. 31–38, 2003.

402 International Journal of Automation and Computing 9(4), August 2012

[8] C. R. Clark, D. E. Schimmel. Efficient reconfigurable logic
circuit for matching complex network intrusion detection
patterns. Lecture Notes in Computer Science, Springer, vol.
2778, pp. 956–959, 2003.

[9] C. R. Clark, D. E. Schimmel. Scalable parallel pattern-
matching for high-speed networks. In Proceedings of IEEE
Symposium on Field-Programmable Custom Computing
Machines, IEEE, pp. 249–257, 2004.

[10] Y. H. Cho, W. H. Mangione-Smith. Deep packet filter with
dedicated logic and read only memories. In Proceedings of
IEEE Symposium on Field-Programmable Custom Com-
puting Machines, IEEE, pp. 125–134, 2004.

[11] Z. K. Baker, V. K. Prasanna. Time and area efficient re-
configurable pattern matching on FPGAs. In Proceedings
of ACM International Symposium on Field-Programmable
Gate Arrays, ACM, Monterey, USA, pp. 223–232, 2004.

[12] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, J. W.
Lockwood. Deep packet inspection using parallel bloom fil-
ters. IEEE Micro, vol. 24, no. 1, pp. 52–61, 2004.

[13] K. Pagiamtzis, A. Sheikholeslami. Content-addressable
memory (CAM) circuits and architectures: A tutorial and
survey. IEEE Journal of Solid-State Circuits, vol. 41, no. 3,
pp. 712–727, 2006.

[14] H. Miyatake, M. Tanaka, Y. Mori. A design for high-speed-
low power CMOS fully parallel content-addressable memory
macros. IEEE Journal of Solid-State Circuits, vol. 6, no. 6,
pp. 956–968, 2001.

[15] I. Arsovski, A. Sheikholeslami. A mismatch-dependent
power allocation technique for match-line sensing in
content-addressable memories. IEEE Journal of Solid-State
Circuits, vol. 38, no. 11, pp. 1958–1966, 2003.

[16] H. Cai, P. Ge, J. Wang. Applications of bloom filters in
peer-to-peer systems: Issues and questions. In Proceedings
of International Conference on Networking, Architecture,
and Storage, IEEE, Chongqing, China, pp. 97–103, 2008.

[17] C. S. Lin, J. C. Chang, B. D. Liu. A low-power pre-
computation-based fully parallel content-addressable mem-
ory. IEEE Journal of Solid-State Circuits, vol. 38, no. 4,
pp. 654–662, 2003.

[18] B. H. Bloom. Space/time trade-offs in hash coding with al-
lowable errors. Communications of the ACM , vol. 13, no. 7,
pp. 422–426, 1970.

[19] J. L. Carter, M. Wegman. Universal classes of hash func-
tions. Journal of Computer and System Sciences, vol. 18,
no. 2, pp. 143–154, 1979.

[20] I. Kaya, T. Kocak. Low-power Bloom filter architecture
for deep packet inspection. IEEE Communications Letters,
vol. 10, no. 3, pp. 210–212, 2006.

[21] I. Sourdis, D. Pnevmatikatos. Fast, large-scale string match
for a network intrusion detection system. In Proceedings of
International Conference on Field Programmable Logic and
Applications, pp. 880–889, 2003.

[22] B. L. Hutchings, R. Franklin, D. Carver. Assisting network
intrusion detection with reconfigurable hardware. In Pro-
ceedings of IEEE Symposium on Field-Programmable Cus-
tom Computer, IEEE, Napa, USA, pp. 111–120, 2006.

[23] R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K.
R. Kendall, D. McClung, D. Weber, S. E. Webster, D.
Wyschogrod, R. K. Cunningham, M. A. Zissman. Eval-
uating intrusion detection systems: The 1998 DARPA
off-line intrusion detection evaluation. In Proceedings of
DARPA Information Survivability Conference and Expo-
sition, IEEE, Hilton Head, USA, vol. 2, pp. 12–26, 2000.

M. Arun received the B. Eng. degree in
electrical and electronics engineering from
Thiagarajar College of Engineering, Madu-
rai, India in 2002, and M.Eng. degree in
VLSI design from Anna University, Chen-
nai, India in 2004 and he is a Ph. D. can-
didate at Anna University, Chennai, India.
He is currently an associate professor in the
Department of Electronics Engineering at
Sri Krishna College of Engineering, Coim-

batore, India. He has published over 8 papers in international
journals and 3 in technical conferences. He is a member of IEEE
an ISTE.

His research interests include low power VLSI, high perfor-
mance computer networks, and quantum reversible logic.

E-mail: aruninvlsi@gmail.com (Corresponding author)

A. Krishnan received his B. Sc. degree
in physics from Madras University, Chen-
nai India in 1963, B.Eng. degree in electri-
cal engineering from College of Engineering,
Chennai, India in 1966, M.Eng. in con-
trol systems from PSG College of Technol-
ogy, Coimbatore, India and Ph.D. degree
from Indian Institute of Technology, Kan-
pur, India in 1979. He is currently the dean
at K. S. Rangasamy College of Technology,

Tiruchengode, India. He has published over 160 papers in jour-
nals and technical conferences. He is a senior member of IEEE
and ISTE.

His research interests include control systems and digital sys-
tems.

E-mail: a krishnan26@hotmail.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

