
International Journal of Automation and Computing 8(3), August 2011, 269-279

DOI: 10.1007/s11633-011-0582-4

IC Cloud: Enabling Compositional Cloud

Yi-Ke Guo Li Guo
Department of Computing, Imperial College London, London SW7 2BZ, UK

Abstract: Cloud computing has attracted great interest from both academic and industrial communities. Different paradigms,
architectures and applications based on the concept of cloud have emerged. Although many of them have been quite successful, efforts
are mainly focusing on the study and implementation of particular setups. However, a generic and more flexible solution for cloud
construction is missing. In this paper, we present a composition-based approach for cloud computing (compositional cloud) using
Imperial College Cloud (IC Cloud) as a demonstration example. Instead of studying a specific cloud computing system, our approach
aims to enable a generic framework where various cloud computing architectures and implementation strategies can be systematically
studied. With our approach, cloud computing providers/adopters are able to design and compose their own systems in a quick and
flexible manner. Cloud computing systems will no longer be in fixed shapes but will be dynamic and adjustable according to the
requirements of different application domains.

Keywords: Cloud computing, compositional cloud, infrastructure as a service (IaaS), cloud service, cloud elasticity.

1 Introduction

Cloud computing has been widely studied in the past few
years as it demonstrated the potential to shape the way of
development, maintenance and deployment of both comput-
ing hardware and software resources. Cloud computing is
not a pure technical development, but a commercial reality.
It has a profound reason for being adopted and rapidly de-
veloped. The technical development in the last 10 years lays
down a solid foundation for cloud computing. The increased
degree of connectivity, the hugely improved communication
bandwidth, and the rapidly expanding amount of data have
led many computational service providers and data centers
to employ larger infrastructures with dynamic load and ac-
cess balancing mechanism. By distributing and replicating
data across servers on demand, resource utilization has been
significantly improved. Such an improvement of scalability
via dynamic load balancing was also realized in large scale
web server hosting scenario with respect to the accessing
scaling. All these technologies have made the offering of re-
sources to the general public in a managed and elastic fash-
ion to become possible. Cloud computing adopts various
technologies, including virtualization, service oriented ar-
chitecture (SOA), grid computing, utility computing, etc.,
to realise a completely new industrial paradigm where com-
puting is uniformly provided by a cloud which is “an elastic
execution environment of resource involving multiple stake-
holders and providing a metered service at multiple granu-
larities for a specified level of quality (of services)”[1].

Both academic and industrial people have shown great
interest in cloud computing. Different paradigms, architec-
tures, and implementations based on the concept of cloud
have been proposed. Cloud computing, based on the con-
tent of services provided, is divided into three conceptual
categories, namely, infrastructure as a service (IaaS), plat-
form as a service (PaaS) and software as a service (SaaS).
IaaS focuses on how to provide hardware resources as ser-
vices, while PaaS delivers application development plat-
forms as services and SaaS focuses on deploying software

Manuscript received August 3, 2010; revised March 7, 2011

as services.
Developing a cloud computing system includes many de-

sign decisions regardless of the genre of the system. So far,
efforts have been devoted into developing particular cloud
systems, which mainly focuses on providing easy access ser-
vices to the end users within certain focused contexts. Al-
though many efforts have been successful, a generic and
more flexible design space, where particular cloud system
development can be studied and built up, is missing from
the current literature. Not much work or many systems
have been provided to help cloud service providers construct
new cloud platforms and technologies. Transferring such
knowledge from one system to another is also very difficult.

The work presented in this paper focuses on a rather
different approach-enabling compositional cloud computing
technology. We present Imperial College Cloud (IC Cloud)
as a design space for cloud system development. Instead
of providing a specific cloud computing system, IC Cloud
aims to enable a generic design space where various cloud
computing architectures and implementation strategies can
be systematically studied. With our approach, cloud com-
puting providers/adopters are able to design and implement
their own systems in a very quick and flexible manner by
systematically composing a set of well-developed services
based on a service level agreement (SLA) oriented require-
ment specification. Cloud computing systems built in such
manner will no longer be in fixed shapes but will be ad-
justable according to the requirements of different applica-
tions.

The IC Cloud design strictly follows the SOA princi-
ple and adopts a component-based implementation. Es-
pecially we impose minimal architecture specificity during
the IC Cloud construction and unify every component as
web services. Furthermore, we use a coordination language
as the systematical composition mechanism of the system
which also provides the capacity of dynamically adjusting
the shape of the system based on different requirements.

This article is organised as follows. Some related work
and technologies for the development of cloud computing

270 International Journal of Automation and Computing 8(3), August 2011

systems are presented in Section 2. In Section 3, we ex-
plain in detail the design rationale behind our compositional
cloud framework as well as all the essential components re-
quired for the same. We further extend our discussion on
how a cloud system can be composed in Section 4 using a
simple example. In Section 5, we summarise our work and
discuss the direction of possible future research and devel-
opment.

2 Background and related work

One of the core ideas of cloud computing is virtualisa-
tion. Many projects have been producing virtualisation
software (hypervisors)[2−5] to enable the implementation
of the basic infrastructure of cloud computing. The Xen
hypervisor[4] was developed in Cambridge University. It can
run on a wide variety of computing systems. It currently
supports Linux, NetBSD, FreeBSD, Solaris, Windows, and
other common operating systems as guest operating sys-
tems (OSs). It is well-known for its near-native performance
and its use of paravirtualization. The kernel-based virtual
machine (KVM)[6] relies on CPU support for virtualiza-
tion and leverages existing Linux kernel infrastructure to
provide an integrated hypervisor approach (as opposed to
Xen′s stand-alone hypervisor approach). KVM is known
for its rapid inclusion into the mainline Linux kernel.

An interesting and a very useful piece of work is lib-
virt, the virtualisation application programming interface
(API)[7]. It provides an abstract layer on top of many differ-
ent hypervisors such as Xen and KVM in a programmable
way. The key advantage of using such an abstract layer for
the IaaS development is that the upper level development
such as the control of VMs′ lifecycle, storage, and network
management is completely separated from the underlying
hypervisor′s implementation. With libvirt, IaaS cloud plat-
form development only needs to concentrate on the upper
level without considering the low level hypervisors adopted.

With respect to cloud computing platforms, there are
quite a few services available in the market such as the
Amazon EC2/S3/AWS, GoGrid, [8] and RackSpace[9]. Aca-
demic efforts include Virtual Workspaces, OpenNebula[10],
and Reservoir[11]. Among them, Amazon web services
(AWS) is no doubt the leading and the most successful IaaS
solution in the commercial world. It enables its users to
control the entire software stack on top of the hardware in-
stances (VM images) provided. Hardware such as CPUs,
memory, disk volumes are provided to users on a pay-as-
you-go basis. Users are either able to create a new Amazon
machine image (AMI), which replicates their local working
environment, or select from a library of globally available
AMIs that are provided by others. They then need to up-
load the created or selected AMIs to Amazon simple storage
service (S3) before he can start, stop, and monitor instances
of the uploaded AMIs.

Google App Engine[12] provides a PaaS based cloud plat-
form which enables its users to run their applications writ-
ten by composing functions provided by the platform using
the Python programming language. Thus, in addition to
supporting the Python standard library, Google App En-
gine also supports APIs for various Google provided ser-
vices. Google App Engine also provides a web-based ad-

ministration console for users to easily manage their run-
ning web applications.

Microsoft Azure[13] targets on providing an integrated
hosting, development and manageable cloud computing en-
vironment so that application developers can easily create,
host, manage, and distribute both Web and standalone
applications through Microsoft data centres. In order to
achieve this goal, Microsoft Azure supports a comprehen-
sive collection of proprietary development tools and proto-
cols which includes Live Services, Microsoft .NET Services,
Microsoft SQL Services, Microsoft SharePoint Services, and
Microsoft Dynamics CRM Services. It also supports web
service standards like SOAP and REST to allow applica-
tions to interact non-Microsoft solutions.

Sun network.com (Sun grid)[14] allows its users to run
Solaris OS, Java, C, C++, and FORTRAN based applica-
tions. A user has to build and debug his applications and
runtime scripts in a local development environment that is
configured to be similar to that on the Sun environment.
The user then needs to create a bundled zip archive (con-
taining all the related scripts, libraries, executable binaries
and input data) and upload it to Sun grid. At last, he/she
can execute and monitor the application using the Sun grid
web portal or API. After the completion of the application,
the user will need to download the execution results to his
local development environment for viewing.

The open source project, Eucalyptus[15], is built to allow
administrators and researchers to deploy a cloud comput-
ing infrastructure. The whole system is designed and im-
plemented in a hierarchical fashion and with an interface
compatible AWS. Eucalyptus claims to be highly modular
with each module represented by a well-defined API and
therefore enabling users to replace components for experi-
mentation with new cloud-computing solutions. Also, the
system exposes its features through a common set of Ama-
zon EC2 and S3 interfaces and expects users who are famil-
iar with EC2 and S3 to transition seamlessly to an Euca-
lyptus deployment. It now enables businesses of any size to
leverage their own IT resources to get the benefits of cloud
computing and it eliminates lock-in, security ambiguity, and
unexpected storage costs that could associate with public
clouds. The newest version of Eucalyptus makes available
a variety of relevant information which can be used in open
source tools like Nagios and Ganglia, providing cloud ad-
ministrators with insights on various aspects of the cloud
as well as the status of specific Eucalyptus components.

OpenNebula focuses on the resource management issues
in cloud computing. To manage virtual infrastructures, it
provides an abstract view of virtual resources regardless of
the underlying virtualisation platform. It manages the full
lifecycle of the VMs and supports configurable resource al-
location policies. It is believed that cloud resources may be
limited. In the circumstances where the resource demands
cannot be met, the requests for resources will have to be pri-
oritised, queued, pre-reserved, deployed to external clouds,
or even rejected. This can be solved with resource lease
managers such as Haizea, which is alike to futures market
for cloud computing resources. It pre-empts resource us-
age and puts in place advance resource reservations so that
highly prioritised demand can be served promptly. Haizea
acts as a scheduling backend for OpenNebula, and together

Y. K. Guo and L. Guo / IC Cloud: Enabling Compositional Cloud 271

they overwhelm other virtual infrastructure managers by
giving the functionality to scale out to external clouds, and
providing support for scheduling groups of VMs so that ei-
ther the entire group of VMs are provided with resources
or no member of the group is.

All these works provide rich technical mechanisms for
building cloud systems. It is therefore becoming desirable,
as well as possible, that we can build up a design space
by making proper abstraction over these works so that a
cloud system can be systematically studied, designed and
constructed. We will present our attempt to this goal by
describing our development of IC Cloud.

3 Enabling compositional cloud

3.1 Rationale behind compositional cloud

Acknowledging that “one model fits all” is unlikely to be
appropriate for the development of cloud computing.

1) Cloud computing is an aggregation of many existing
computing technologies. Different service providers and
vendors have their own understandings about cloud com-
puting so are their designs and system implementations. It
seems impossible or improper to debate which one is the
best design, and it is difficult for early cloud computing
developers and/or adopters to try out all the possibilities.

2) The second argument is that cloud computing plat-
forms are still fast evolving. New features and functions
will emerge while new requirements are being proposed. It
is unrealistic to assume that a pre-designed system will fit
all the future requirements.

3) The last but not the least, cloud computing system
only emerged gradually from the existing computing sys-
tem as technology evolves. Therefore, it is impossible to
clearly define the boundary between these two. In other
words, the new and cloud based systems will incorporate
many features, components and data of the old systems,
and it is hard to pre-define rigidly what the new system′s
shape would be beforehand.

All these observations suggest that we require a frame-
work where technical design options and system construc-
tion approaches can be systematically studied. The need
for such a systematical study of cloud system becomes even
more important when the dynamical adaptive resource pro-
vision becomes desirable in a cloud system. That is, to be
scalable and sustainable, a cloud computing system needs a
form of meta-scalability which enables the system to evolve
along the complex environment in which it operates. A
system is said to be meta-level scalable when it has the
ability to adapt to any change in an evolving environment.
In the case of cloud computing, a cloud platform is said to
be meta-level scalable when it is designed in such a way
that it can be reconfigured by its users or by the system
itself dynamically to satisfy specific needs, emerging activ-
ities, means of coordination and rules. This means that
cloud platform designer should adopt a different approach.
They should separately focus on the development of atomic
services of cloud computing systems and the composition
mechanisms of them.

In Fig. 1, we illustrate a simple framework of composi-
tional cloud. Instead of constructing any specific cloud in-
frastructure in advance, cloud infrastructure providers sub-

mit their requirements to the compositional cloud which
maintains a set of atomic services and resource pools. A set
of coordination descriptions are then generated along with a
list of selected services and VMs, which together form a spe-
cific cloud setup (cloud one or cloud two as shown in the di-
agram) for a particular cloud construction requirement. IC
Cloud is developed as a compositional cloud system based
on this simple design principle.

Fig. 1 Compositional cloud

3.2 Components for IC Cloud

There are five main components defined for IC Cloud,
namely, VM, service and VM pool, atomic service, coordi-
nation description, and cloud requirement description.
3.2.1 VM

VM is the most fundamental and manageable computing
element in IC Cloud. Each VM, based on users′ require-
ments, can have number of CPUs, memories, storage vol-
umes and an OS defined. It is not functional but only acts a
“box” that carries resources serving for users′ applications.
A user can have as many as possible VMs in his/her cloud
setup. Fig. 2 shows all the properties that are defined for a
VM.

Fig. 2 Virtual machine properties

272 International Journal of Automation and Computing 8(3), August 2011

In Fig. 2, ACPI denotes advanced configuration and
power interface, APIC denotes advanced programmable in-
terrupt controller, PAE denotes physical address extention,
and OS denotes operating system.

3.2.2 Service and VM pool

Service pool acts as a service repository which enables
publishing, searching, and match making of all available
atomic services. It is a direct implementation of the service
registry concept of SOA. VM pool is a resource container
from which VMs are created. It usually contains a large
amount of computing resources which are sliced into smaller
resource units based on the user requirements. Many VM
pools can be deployed in parallel in a data centre in order to
provide sufficient computing resources. At implementation
level, the concept of VM pool may be mapped to a physical
server or a cluster of servers.

3.2.3 Atomic service

Atomic services refer to the fundamental functions that
are required in almost every cloud computing system. They
provide computational operations for cloud systems. Every
user composed cloud can have any number of atomic ser-
vices based on the features of their applications.

We summarised and implemented twelve atomic services
in IC Cloud. They are also described in a semantic manner
by specifying their functional properties (inputs, outputs,
precondition, and post-condition) and non-functional prop-
erties (cost, pricing model, etc.) as shown in Fig. 2.

1) Requirements processing service. It converts high level
cloud construction requirements to detailed and executable
requirements. Users are not always able to specify their re-
quirements in technical details but can only explain what
their applications are trying to achieve. For such a case,
requirements processing service comes into play.

2) Contract service. This service deals with all contract
related issues such as what is the price plan; when is the bill
made and when the payment needs to be made. It ensures
the agreement between cloud providers and users.

3) Billing service. This service periodically reviews the
resource usage of a user and generates bills based on the
contract that the user signed.

4) Payment service. It handles all payment related is-
sues such as how to deal with different payment methods,
whether there is a pending payment.

5) Monitoring service. Monitoring service is one of the
most important components in our system. It keeps mon-
itoring the VMs′ health status periodically. It also acts as
a utility metre that keeps recording all the VMs resource
usages in a VM pool including CPU time, memory, I/O
operations, networking traffic, etc.

6) Security service. It is designed to provide security
functions such as authentication, authorization, credential
conversion, auditing, and delegation. It handles the details
of processing and validating authentication tokens, and it
evaluates policy rules regarding the decision to allow the at-
tempted actions based on information about the requestor
(identity, attributes, etc.), the target (identity, policy, at-
tributes, etc.), and details of the request. Also, it securely
logs relevant information about events.

7) Communication control service. It handles the net-
working issues of all VMs in the system. It is responsible
for initialising the local sub-net of a VM pool and allocates

MAC addresses to newly created VMs. It keeps tracking
of the allocation of IP addresses in the sub-net. If more
IP addresses are needed, it will generate more items in the
IP address and MAC address mapping table and refresh the
dynamic host configuration protocol (DHCP) server on each
VM pool. In addition, it controls how network packages are
sent, routed, and forwarded between VMs that cross differ-
ent sub-net to perform virtual LANs management. In this
way, VM users are unaware of the underlying network in-
frastructure and can be managed based on the sub-network
basis.

8) Storage service. The storage controller provides a ba-
sic storage service which is similar to S3 to the IC Cloud
users. Users are able to upload their data, image files
through the interface provided to the IC Cloud storage
space.

9) SLA service. It ensures that the signed SLA between a
cloud service provider and a consumer is met. In IC Cloud,
SLA issue is mainly resolved at application level. A per-
formance repository is maintained in order to provide past
performance data of each system component to the SLA
service.

10) VM management service. It controls all the VM life-
cycle related operations such as creating VMs, booting up
VMs, shutting down VMs, pausing VMs, resuming VMs,
destroying VMs and deleting VMs.

11) VM pool management service. As a cloud system
is normally made of many VM pools, how to allocate re-
sources from those VM pools becomes an issue. The VM
pool management service is designed exactly for this pur-
pose. For requests that ask for new VM instances, it fetches
resource information (CPUs, memories, disk′s size, etc.) of
available VM pools and decides to which VM pool the new
VM instance should go to by applying different scheduling
algorithm.

12) Elastic scheduling service. One of the key merits of
cloud computing paradigm is its elastic resources provision
feature. Elastic computing service is the enabling force for
this. Based on the information fed by the monitor service, it
is able to dynamically extend/shrink the resources supplied
to an application.

Besides the atomic services, we also developed four ex-
tra integrated services which offer ready-to-use computing
infrastructure for quick cloud solutions.

3.2.3.1 IC Cloud giant storage service

The IC Cloud giant storage service extends the atomic
storage service to provided unlimited storage space. It de-
signed for storing very big data files (next generation se-
quencing experiment files for example). As shown in Fig. 3,
it is implemented and deployed in a distributed manner and
all the components of the service are deployed on VMs to
ensure its scalability. It supports automatic data backup
for high data availability and is accessible both via APIs
and standard ftp clients. Large files are split into smaller
chunks when they are stored and are merged back when
requested by the scheduling controller. The unified name
space maintains the meta-data of those files, and the balanc-
ing controller automatically adjusts the workloads amongst
the available data nodes. When there is not enough storage
space, the balancing controller also requests more VMs.

3.2.3.2 IC Cloud high I/O performance service

Y. K. Guo and L. Guo / IC Cloud: Enabling Compositional Cloud 273

The IC Cloud high performance I/O service provides ex-
tremely high speed file processing power. It is built on top
of giant storage services using memory objects. The ba-
sic idea behind it is that besides storing large files in the
giant storage service, we maintain a memory cache which
stores the most used file objects. It benefits from the IC
Cloud elastic resource infrastructure as the memory it re-
quests to use can be provided in an on-demand manner. It
is designed in an extendable way in order to adopt differ-
ent persistent strategies for different I/O operations. Fig. 4
shows IC Cloud high I/O performance service.

Fig. 3 IC Cloud giant storage service

Fig. 4 IC Cloud high I/O performance service

The main components of the service are:
1) Memory cluster. It is a pool that holds available mem-

ories for storing file objects. The size of the pool, as ex-
plained earlier, is elastic as the provision of memories is in
the similar way of VMs provision and we can always add or
remove VMs to/from the pool.

2) Memory operator. It maintains and adjusts size of the
memory cluster based on the file processing throughout,
and current capacity of the memory cluster.

3) Persistence manager. It persists the file objects in the
memory cluster to the IC Cloud giant storage services reg-
ularly. At the moment, we only adopt a simple algorithm
for the purpose. File objects that are not required for more
than five minutes are taken out from the memory cluster
and are put into the giant storage service.
3.2.3.3 IC Cloud pattern service

The IC Cloud pattern service provides a list of pre-
configured and ready-to-use computing architectures de-
rived from frequently used computing patterns. The pat-
terns that IC Cloud provides are:

1) Flat cluster pattern. It provides users with a cluster
that is made up of several VMs which are able to com-
municate with each other. This infrastructure can be used
by applications that require many computing nodes which
maintain their data, system states locally and are only able
to share information through message passing. Fig. 5 shows
flat cluster pattern.

Fig. 5 Flat cluster pattern

2) Pyramid cluster pattern. Pyramid cluster has a con-
trol VM which talks to the rest of the computing VMs in
the cluster. Only the networks between the control VM
and each of the computing VMs are enabled. This pattern
suits those applications that require a central node which
maintains the whole system states and leave concrete com-
putation to computing nodes. Fig. 6 shows pyramid cluster.

Fig. 6 Pyramid cluster

3) Diamond cluster. It is usual for applications to main-
tain a shared storage point. This can be achieved in two
ways in IC Cloud. Applications can either use the storage
services provided or use a diamond cluster. In a diamond
cluster, a special VM is provided. It has limited computing
power but has a volume attached, which can be accessed by
all the computing VMs in the cluster. The size of volume,
of course, is provided by end users when the cluster is re-
quested. The storage node can be replaced by a database
node if it is desired. Fig. 7 shows diamond clusters.

Fig. 7 Diamond clusters

4) Star cluster. It is a hybrid infrastructure of the two
different diamond clusters for more complex applications on
the cloud.

It should be noticed that, in all the above patterns, al-
though the number of VMs in the clusters is given by the
end users at their creation time, new VMs can be dynam-
ically added in based on the run time application status.
Fig. 8 shows star cluster.

Fig. 8 Star cluster

274 International Journal of Automation and Computing 8(3), August 2011

3.2.3.4 IC Cloud giant relational database (RDB)
service

The IC Cloud giant DB service provides unlimited DB
space using a bunch of MySQL clusters. As it supports
standard SQL interface, it can be adopted quickly by any
application that requires a giant, scalable and reliable DB
solution. Similar to the giant storage services, the whole
giant RDB service is deployed on the VMs for its elasticity.
Fig. 9 shows IC Cloud giant DB service.

Fig. 9 IC Cloud giant DB service

3.2.4 Coordination description

As we have argued, there is no standard way to put to-
gether all the atomic services to make up a “perfect” sys-
tem. Atomic services will have to be composed in a co-
ordinated and dynamical fashion. We adopt the notion of
coordination description to specify how atomic services are
composed and coordinated for different cloud setups. Each
user composed cloud has to be made by using coordination
description in IC Cloud.

The coordination mechanism that we adopted follows the
similar concept of workflow management system. Although
there have been many approaches[16, 17] for composing ser-
vices, we use a revised version of coordination descrip-
tion language-lightweight coordination calculus (LCC)[18]

for atomic service composition for its simplicity.
In most of the existing coordination systems, such as

conventional workflow systems, workflows need to be pre-
deployed before getting executed and every new incoming
request will trigger a new workflow instance based on the
deployed template. To change the shape of the system,
new workflows need to be deployed. With LCC, the coor-
dination description, although usually pre-defined, can be
changed at run time without affecting any running instance
in the system as there is no pre-deployment process. Each
submitted coordination description will directly trigger a
new coordination.
3.2.4.1 Lightweight coordination calculus

LCC is a language used to represent coordination be-
tween distributed components. In a distributed system,
the coordination that conveys information between compo-
nents is performed only by sending and receiving messages.
For example, suppose an interaction allows a component
a(r1, a1) to send a message m1 to component a(r2, a2) while
component a(r2, a2) is expected to reply with a message m2.
Assuming that each component operates sequentially, the
sets of possible interaction sequences that can be allowed to
these two components are as given below (with M1 ⇒ A1

denoting a message M1 sent to A1 and M2 ⇒ A2 denoting
a message M2 received from A2.

a(r1, a1) :: (m1 ⇒ a(r2, a2) then m2 ⇐ a(r2, a2))

a(r2, a2) :: (m1 ⇒ a(r1, a1) then m2 ⇐ a(r1, a1)).

This definition of the message passing behaviour of the
interaction is referred to as the interaction framework. An
interaction framework defines a space of possible interac-
tions determined by message passing, so the descriptions
allow constraints to be specified based on the circumstance
under which messages are sent or received. Two forms of
constraints are permitted:

1) Constraints under which message M is allowed to be
sent to component A. We write M ⇒ A ← C to attach a
constraint C to an output message.

2) Constraints under which message M is allowed to be
received by component A. We write M ⇐ A← C to attach
a constraint C to an input message.

Its complete syntax is shown below:

Framework = {Clause, ...}
Clause = Agent :: Def

Agent = a(Type, id)

Def = Agent|Message|Def thenDef

|Def or Def |Def par Def

Message = M ⇒ Agent|M ⇒ Agent← C

|M ⇐ Agent|M ⇐ Agent← C

C = Term|C ∧ C|C ∨ C

type = Term

id = Constant

Constant = Term.

One of the purposes of this language is to eliminate
centralised engines during the coordination process, which
largely improves system scalability and reduces perfor-
mance bottleneck that is usually caused by the existence
of the centralised server. Due to the limited paper space,
we are not going to give more language details of LCC as
they can be found in paper. In order to use the LCC for
describing the composition and coordination of component
services in building a cloud system, the LCC calculus is
extended to support cloud specific features.

In a cloud system, it is very common to see operations
that take long time to accomplish, such as VM image trans-
ferring, upload bundle image, etc. This requires asyn-
chronous communication between different services (compo-
nents) during the coordination process. The original LCC
syntax does not support this directly. In order to express
asynchronous message passing, we introduce a new term:

⎧
⎪⎨

⎪⎩

M1 ⇒ A← C

then

M2 ⇐ A← C

⎫
⎪⎬

⎪⎭
Token

.

The above syntax indicates that after a message M1 is
sent to A, message M2 will be received in an asynchronous
manner. “Token” specifies the unique ID that is used to
identify the asynchronous message pair.

Y. K. Guo and L. Guo / IC Cloud: Enabling Compositional Cloud 275

In addition, as LCC is designed for generic coordination
purpose, it does not specify message semantic for any spe-
cific application domain. In order to apply it to composi-
tional cloud, we define a set of cloud message semantics as
illustrated in Table 1. These messages, we believe, are in-
dependent of any concrete underlying implementation and
are required for almost all the cloud system setups.

Coordination of different atomic services using LCC is
illustrated in Fig. 10.

Fig. 10 LCC based atomic service coordination

In the diagram, each atomic service is implemented as a
web service. Unlike most of the standard web services, each
atomic service only has two public interfaces, namely, send
and receive, through with which they communicate by pass-
ing the LCC coordination descriptions. An LCC interpreter
is implemented and is embedded into the atomic service. It
resolves the constraints specified in the LCC description by
calling the methods provided by the atomic services and
keeps the whole coordination process continuous.
3.2.5 Cloud requirement description

To compose a new cloud platform in IC Cloud, the first
step is to submit cloud construction requirement. The
document specifies both infrastructure level and functional
level requirements of the potential cloud platform. The
cloud requirement description can be regarded as an ab-
straction of service requirement specification in an SLA.
Two sorts of requirements are supported by IC Cloud, i.e.,
explicit requirement and implicit requirement.

3.2.5.1 Explicit requirement

Users who know precisely how to compose their clouds
using provided components can submit explicit requirement
documents to the IC Cloud. They have to conduct system
planning studies of their potential cloud setup prior to de-
ployment. Fig. 11 shows all the properties of an explicit

requirement.
1) VMPools. It specifies a list of physical servers that

can be turned into VM pools as well as the access points of
them for the potential system.

2) Network setup of potential system. In an explicit re-
quirement, users also need to specify how the network of
their potential system should be set up. Such information
includes whether the system needs to provide internet ac-
cess to its end users; whether the system allows its users to
communicate with each other; whether the end users of the
system need to publish their services to the public, etc.

3) Atomic services and the coordination descriptions for
them. Based on the functions that the potential system
needs to provide, the system composer has to select atomic
services from the service pool. Also, he/she needs to pro-
duce the coordination descriptions for those services to pro-
vide various functions.

Fig. 11 Properties of explicit requirement

3.2.5.2 Implicit requirement

Users are sometimes less knowledgeable about how to
build a cloud system or may not have that knowledge at
all. Therefore, instead of submitting explicit requirements,
they can submit high-level requirement descriptions that
describe what the systems should be rather than how they
can be implemented. A concrete cloud composition solution
is automatically generated based on the given requirements.
Fig. 12 shows the properties that are defined for an implicit
requirement document.

1) Type and UserPopulation. These two attributes indi-
cate whether the potential cloud system is a public cloud
or a private cloud and how many users the providers intend
to serve. Using the combination of them, we could roughly
infer the amount of computing resources that are required.

Table 1 Cloud specific LCC messages

Messages Categories Semantics Parameters

Upload Storage service Upload item to storage service Image bundle information

Retrieve Storage service Retrieve item from storage service Image bundle ID

createStorage Storage service Create a virtual storage space Storage requirement description

attachVD Storage service Attach a virtual disk to a VM Virtual disk information

Bundle Storage service Image bundle copied to destination Image bundle ID

Unblock Communication control service Open firewall block for VM VM ID

Routing Communication control service Route network packages to all given VM list VM IDs

Create VM management service Create a new VM VM creation requirement

setResource VM management service Adjust resource setup New resource requirements

Delete VM management service Delete an existing VM VM ID

Email General Send email to an user Textual information

276 International Journal of Automation and Computing 8(3), August 2011

Fig. 12 Properties of implicit requirement

2) A total amount of computing resources that the po-
tential system requires. Once receiving this information,
the IC Cloud system allocates a number of available VM
pools which, in total, meet the resource requirement of the
requestor. This information, if provided, will overwrite the
estimated resource information derived from the type and
user population properties.

3) Billing. Providers are able to specify how they want to
charge their users for the cloud service consumption. Once
this property is ticked, IC Cloud is able to generate a full
billing and payment solution as a part of the final system, of
course, through the generation of coordination descriptions.

4) Elastic. It specifies whether a cloud provider needs
the elastic feature in his/her system. This feature affects
how VMs are provided once the system is composed. VMs
are treated and created differently if they are used to scale
an existing VM.

5) SecurityControl. There are two levels of security con-
trol defined in IC Cloud, namely, causal and intensive. The
former only requires user account based verification and the
latter plugs in certificate based verification while interacting
with the security service.

6) Storage. This property specifies how much storage
space a cloud provider may need and how storage space is
distributed and used in the generated cloud system.

4 Composing a cloud

Composing a cloud requires four main steps in IC Cloud
as shown in Fig. 13.

Fig. 13 Workflow for composing a cloud

A cloud provider needs to specify his requirements for
the potential cloud system at the beginning of the compos-
ing process. The requirement, as discussed earlier, can be
either explicit or implicit. If the output requirement of the
first step is an explicit one, the following steps are “select
atomic services” and “specify LCC descriptions”. Other-
wise, it “generates LCC descriptions”. Once the LCC de-
scriptions are generated, they will be executed at run time
to provide cloud services. We will work through a concrete
example to demonstrate how a cloud can be composed.

Department of Computing of Imperial College London
(DoC) tries to implement an experimental and Amazon like
cloud infrastructure. However, the aim is to maximise the
use of computing resources rather than making profit. The
basic services that they need for the initial stage are:

1) On-demand VM provision,
2) Network management (mainly virtual local area net-

work (VLAN) management),
3) Attaching virtual disk that provides on-demand stor-

age for each VM.
After carrying careful study of the current resource usage

pattern, technicians from the computing support group give
their explicit cloud construction requirement shown below.

<Requirement>
<explictRequirement>
<vmpools>
<vmpool>
http://barking01.doc.ic.ac.uk:/ICCloud/vmsService?WSDL
</vmpool>
<vmpool>
http://barking02.doc.ic.ac.uk:/ICCloud/vmsService?WSDL
</vmpool>
<vmpool>
http://barking03.doc.ic.ac.uk:/ICCloud/vmsService?WSDL
</vmpool>
<vmpool>
http://barking04.doc.ic.ac.uk:/ICCloud/vmsService?WSDL
</vmpool>
</vmpools>
<network publishService=”yes” internet=”yes” vlan=“yes”/>
<AutomicServices>
<VMPoolManagementService/>
<StorageService/>
<VMManagementService/>
<CommunicationControlService/>
</AutomicServices>
<CoordinationDescriptions>
<CoordinationDescription>
http://iccloud.ic.ac.uk/doc/VMProvision/vmp1.xml
</CoordinationDescription>
<CoordinationDescription>
http://iccloud.ic.ac.uk/doc/vlan/vlan1.xml
</CoordinationDescription>
<CoordinationDescription>
http://iccloud.ic.ac.uk/doc/storage/vdisk1.xml
</CoordinationDescription>
</CoordinationDescriptions>
</explictRequirement>

</Requirement>

The <VMPools> element in the above requirement spec-
ifies the available servers that can be used in the potential
cloud and their access points. <Network> element indi-
cates that the control of the internet access and virtual Lan
management are needed as well as the ability to publish ser-
vices to the public. The selected atomic services are “VM
pool management service”, “storage service”, “VM manage-

Y. K. Guo and L. Guo / IC Cloud: Enabling Compositional Cloud 277

ment service”, and “communication control service”. Three
LCC descriptions are attached to the requirement docu-
ment, which realise the basic functions that DoC cloud re-
quires.

Fig. 14 shows how VM instance provisions should be per-
formed for the DoC cloud. A user has to upload his own
image bundle (normally contains all his applications, data,
and OS) to the cloud before deploying it as a VM. He will
then make a VM provision request to the VM pool man-
agement service. On receiving this request, the VM pool
management service selects a VM pool and informs the VM
management service that is deployed on it. The VM man-
agement service will retrieve the user uploaded image bun-
dle using the storage service and create a VM. After the
whole process is completed, it sends the VM access point
to the requesting user.

Fig. 14 VM instance provision

The corresponding LCC description is given below. For
the sake of readability, all the LCC descriptions will be pre-
sented in plain text rather than their original XML format.

a(user, U1) ::⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

request(“create”, V MDes, BundleID) ⇒ a(vps, A2)
← exist(BundleID)

then

email(V MAccessInfor)⇐ a(vms, A3)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
T

or⎧
⎪⎨

⎪⎩

upload(IB1)⇒ a(ss, S1)← createBundle(IB1)

then

confirm(BundleID)⇐ a(ss, S1)

⎫
⎪⎬

⎪⎭
T1

a(ss, S1) ::⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

upload(IB1)⇐ a(user, U1)

then

confirm(BundleID)⇒ a(user, U1)

← store(IB1, BundleID)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
T2

or⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

request(“retrieve”, BundleID) ⇐ a(vms, A3)
then

reply(“bundle”, IB1)⇒ a(vms, A3)←
fetch(Bundle, IB1)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
T3

a(vps, A2) ::

request(“create”, V MDes, BundleID) ⇐ a(user, U1)

then

request(“create”, V MDes, BundleID) ⇒ a(vms, A3)
← selectV MPool(V MDes, V MPoolList, A2)

a(vms, A3) ::

request(“create”, V MDes, BundleID) ⇐ a(vps, A2)

then⎧
⎪⎨

⎪⎩

request(“retrieve”, BundleID) ⇒ a(ss, S1)

then

reply(“bundle”, IB1)⇐ a(ss, S1)

⎫
⎪⎬

⎪⎭
T4

then

email(V MAccessInfor)⇒ a(user, U1)

← createV M(V MDes, IB1).

Based on the requirement, the underlying network of
DoC cloud needs to be set up in a way that VMs are dis-
tributed across multiple subnets. Fig. 15 shows the dia-
grammatic representation of VLAN management pattern
followed by its LCC description. To enable the communi-
cation of a group of VMs, the communication control service
will inform the involved VM management services to open
the firewall restrictions for the requesting VMs. It then will
set the routing table on each VM pool to make sure all VMs
know where to find the others.

Fig. 15 VLAN management

a(user, A1) ::
request(“enableCommunication”, [V M|V MList])⇒a(cms, A2)

then

confirmation(“communicationEnabled”)⇐a(cms, A2)

a(cms, A2) ::

request(“enableCommunication”, [V M|V MList])⇐a(user, A1)

then⎛

⎜
⎝

a(cmsL([V M|V MList]), A2)

or

confirmation(“communicationEnabled”)⇒a(user, A1)

⎞

⎟
⎠

a(cmsL([V M|V MList]), A2) ::

request(“unblock”, V M)⇒a(vms, A3)selectV MPool(V M, A3)
then

request(“routing”, V MList)⇒a(vms, A3)

←selectV MPool(V M, A3)

then

a(cmsL(V MList), A2)

a(vms, A3) ::

request(“unblock”, V M)⇐a(cmsL, A2)←unblock(V M)

or
request(“routing”, V MList)⇐a(cmsL, A2)← routing(V MList).

278 International Journal of Automation and Computing 8(3), August 2011

The third LCC description specifies the service that at-
taches a virtual disk to a VM in order to provide unlimited
and on-demand storage space for the VM.

Fig. 16 shows attach virtual disk to VM.

Fig. 16 Attach virtual disk to VM

a(user, A1) ::

request(“attachV D”, V DReq, V M) ⇒ a(vps, A2)

then

confirmation(“V DAttched”, V M) ⇐ a(vps, A2)

a(vps, A2) ::

request(“attachV D”, V DReq, V M) ⇐ a(user, A1)

then
request(“createStorage”, V DReq) ⇒ a(ss, S1)

then

confirmation(StorageInfor, V DReq) ⇐ a(ss, S1)

then
request(“attachV D”, StorageInfor, V M) ⇒ a(rms, A3)

← fetchV MPool(V M, A3)

then

confirmation(“V DAttached”, V M) ⇐ a(rms, A3)
then

confirmation(“V DAttached”, V M) ⇒ a(user, A1)

a(vms, A3) ::
request(“attachV D”, StorageInfor, V M) ⇐ a(vps, A2)

then

confirmation(“V DAttached”, V M) ⇒ a(vps, A2)

← attachV D(StorageInfor, V M)

a(ss, S1) ::

request(“createStorage”, V DReq) ⇐ a(vps, A2)

then
confirmation(StorageInfor, V DReq) ⇒ a(vps, A2).

Fig. 17 shows the hierarchical system architecture of the
composed DoC cloud.

Fig. 17 Architecture of the composed DoC cloud

With the DoC cloud implementation, the three selected
atomic services in Section 4 (VM pool management service,

communication control service, and storage service) are de-
ployed on one physical server. Several VM pools are set up
for resource provision with each having a VM management
service deployed.

Users of the DoC cloud interact with the system through
two portals which are VM lifecycle admin portal and data
storage admin portal. Once a user submits a VM creation
request to the DoC cloud, a copy of VM instance provision
description is generated and passed to the VM pool man-
agement service. The whole system then acts following the
instructions specified in the LCC description. To enable the
communication of different VMs in the system, users only
need to submit a VLAN management description through
the user front end. By using the data storage admin portal,
users are able to attach virtual disks on their VMs and these
virtual disks provide them with unlimited storage through
the storage service.

The DoC cloud can be easily scaled up. If there are not
enough resources, we can put a new VM pool into the sys-
tem simply by deploying VM management services on a new
server. There could be more than one VM pool controller
too in order to improve the overall system performance.

5 Conclusions

In this paper, we declared that due to the evolving speed
and the complexity of cloud computing, cloud providers
should be very careful when they use the pre-designed ap-
proach for cloud system construction. We proposed a com-
position based approach for building cloud computing sys-
tems through the detailed demonstration of IC Cloud.

We developed a set of atomic services which are generic
and provide basic functions for composing a cloud sys-
tem. We then introduced a coordination mechanism and
extended it to pull all these services together and specify
how they should work as an integrated system. We also
gave a concrete example showing how a cloud system can
be composed. Comparing with the others, the main contri-
bution of our approach is that it adopts a fully flexible and
agile system architecture and sets up a well-formed design
space for carrying out systematic studies and experiments
for cloud computing.

The next step that we are going to take is to deploy
different applications on the IC Cloud to further test the
system performance. We, especially, aim to deploy it for
the academic usage such as physical/chemical experiments.
The immediately following work afterwards is to build up
a customised system performance tuning mechanism based
on the quality of service (QoS) information that is gath-
ered for each user through his/her use of the system. With
such a mechanism, the system should be able to dynami-
cally detect and predicate the upcoming system bottlenecks
and adjust them accordingly. In addition, we plan to ex-
periment and adopt more scheduling algorithms as it is still
unclear at the moment which one is the best or is more
appropriate for academic cloud.

References

[1] Future of Cloud Computing, EU 2010.

[2] Virtualbox Home Page, [Online], Available: http://www.

Y. K. Guo and L. Guo / IC Cloud: Enabling Compositional Cloud 279

virtualbox.org/, June 4, 2011.

[3] Vmware, [Online], Available: http://www.vmware.com/,
June 4, 2011.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt, A. Warfield. Xen and the art
of virtualization. In Proceedings of the 19th ACM Sympo-
sium on Operating Systems Principles, ACM, New York,
USA, pp. 164–177, 2003.

[5] T. Deshane, M. Ben, A. Shah, B. Rao. Quantita-
tive comparison of Xen and KVM. In Proceed-
ings of the Xen Submit, 2008. [Online], Available:
http://wiki.xensource.com/xenwiki/Open Topics For Disc
ussion?action=AttachFile&do=get&target=Quantitative+
Comparison+of+Xen+and+KVM.pdf, June 13, 2011.

[6] A. Kivity, Y. Kamay, D. Laor, U. Lublin, A. Liguori. KVM:
The linux virtual machine monitor. In Proceedings of the
Linux Symposium, pp. 225–230, 2007. [Online], Available:
http://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-
230.pdf, June 13, 2011.

[7] Libvirt virtualization API, [Online], Available:
http://libvirt.org/ index.html, June 4, 2011.

[8] Gogrid: Build the most complete infrastructure in the
cloud, [Online], Available: http://www.gogrid.com/, June
4, 2011.

[9] The rackspace cloudhosting, [Online], Available: http://
www.rackspace.co.uk/rackspace-home/, June 4, 2011.

[10] OpenNebula project, [Online], Available: http://www.
opennebula.org/, June 4, 2011.

[11] Reservoir project, [Online], Available: http://www.
reservoir-fp7.eu/, June 4, 2011.

[12] Google App Engine, [Online], Available: http://appengine.
google.com/, June 4, 2011.

[13] Microsoft Azure, [Online], Available: http://www.mi-
crosoft.com/azure/, June 4, 2011.

[14] ORACLE, [Online], Available: http://www.oracle.com/
us/sun/index.htm.

[15] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S.
Soman, L. Youseff, D. Zagorodnov. The eucalyptus open-
source cloud-computing system. In Proceedings of the 9th
IEEE/ACM International Symposium on Cluster Comput-
ing and the Grid, ACM, Washington, USA, pp. 124–131,
2009.

[16] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I.
Trickovic, S. Weerawarana. Business process execution
language for web services version 1.1, [Online], Available:
http://public.dhe.ibm.com/software/dw/webservices/ws-
bpelsubproc/ws-bpelsubproc.pdf, May 2003.

[17] D. Martin, M. Burstein, J. Hobbs, O. Lassila. Owl-
S Technical Report, [Online], Available: http://www.
w3.org/Submission/OWL-S/.

[18] D. Roberston. A lightweight method for coordina-
tion of agent oriented web services. In Proceedings
of AAAI Spring Symposium on Sematic Web Ser-
vices, 2004. [Online], Available: http://www.aaai.org/
Papers/Symposia/Spring/2004/SS-04-06/SS04-06-011.pdf,
June 13, 2011.

Yi-Ke Guo graduated in computer sci-
ence from Tsinghua University, PRC and
received Ph. D. degree in computational
logic and declarative programming at Impe-
rial College London. He has been working
in the area of data intensive analytical com-
puting since 1995 when he was the technical
director of Imperial College Parallel Com-
puting Centre. He is currently a professor
in computing science in the Department of

Computing, Imperial College London, UK. During the last 10
years, he has been leading the data mining group of the depart-
ment to carry out many research projects, including some major
UK e-science projects such as discovery net on grid based data
analysis for scientific discovery, MESSAGE on wireless mobile
sensor network for environment monitoring, Biological Atlas of
Insulin Resistance (BAIR) on system biology for diabetes study.
He has been focusing on applying data mining technology to sci-
entific data analysis in the fields of life science and healthcare,
environment science and security.

His research interests include large scale scientific data analy-
sis, data mining algorithms and applications, parallel algorithms,
and cloud computing.

E-mail: yg@doc.ic.ac.uk (Corresponding author)

Li Guo received Ph. D. degree in artificial
intelligence at the University of Edinburgh,
UK. He has been working in the area of grid
computing and cloud computing since 2006.
He is currently a research associate in com-
puting science in the Department of Com-
puting, Imperial College London, UK. Dur-
ing the last 5 years, he has been involved in
major grid and cloud related EU and UK
projects. He is the chief architect of Impe-

rial College Cloud platform.
His research interests include large scale distributed system,

intelligent applications, and cloud computing.
E-mail: liguo@doc.ic.ac.uk

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

