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Abstract: The binary decision diagrams (BDDs) can give canonical representation to Boolean functions; they have wide applications
in the design and verification of digital systems. A new method based on cultural algorithms for minimizing the size of BDDs is presented
in this paper. First of all, the coding of an individual representing a BDDs is given, and the fitness of an individual is defined. The
population is built by a set of the individuals. Second, the implementations based on cultural algorithms for the minimization of BDDs,
i.e., the designs of belief space and population space, and the designs of acceptance function and influence function, are given in detail.
Third, the fault detection approaches using BDDs for digital circuits are studied. A new method for the detection of crosstalk faults
by using BDDs is presented. Experimental results on a number of digital circuits show that the BDDs with small number of nodes can
be obtained by the method proposed in this paper, and all test vectors of a fault in digital circuits can also be produced.
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1 Introduction

Many tasks in combinatorial optimization, mathematical
logic, artificial intelligence, digital system design and other
areas can be formulated in terms of Boolean functions. The
related work is carried out by Boolean manipulations on
Boolean functions. The efficiency of Boolean manipulation
depends on the form of representation of Boolean functions.
The binary decision diagram (BDD) is a graph represen-
tation of Boolean functions, where the functions are rep-
resented as directed acyclic graphs, with internal vertices
corresponding to the variables over which the function is
defined and terminal vertices labeled by the function val-
ues 0 or 1. The operations on Boolean functions can be
implemented as graph algorithms operating on BDDs[1].

One important property of BDDs is that it gives canon-
ical form to Boolean functions, and the size of the graph,
i.e., the number of nodes in the graph, is feasible for many
practical functions[2]. To date, most applications of BDDs
have been in the areas of digital system design, verification,
and testing[3, 4].

One feature of BDDs is that they are very sensitive to
the variable ordering; the variable ordering used can have a
significant impact on the size (i.e., the number of nodes) of
the BDD graph, from linear to exponential in the number
of variables. Therefore, there is a need to find a variable or-
dering that minimizes the size of a BDDs. For this, several
methods have been presented to determine good orderings
in the last few years. For example, the methods were pre-
sented which use initial heuristics starting from the struc-
ture of a circuit, and gradual improvement heuristics based
on the exchange of variables in the BDDs[5]. A minimiza-
tion method for the BDDs by using the ordered best-first
search and branch-and-bound algorithm was presented in
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[6]. The BDD minimization by scatter search was studied
in [7]. The implicit techniques[8], symmetry properties[9],
and linear transformations[10] , were used in the variable or-
dering that minimizes the size of a BDD, respectively.

In this paper, first of all, a new method for the mini-
mization of BDDs, i.e., the variable order based on cultural
algorithms, is presented. Second, we study the applications
of the method for the detection of faults in digital circuits.
In digital circuits, a crosstalk fault may be caused by the
interference effect between interconnection wires[11] . Two
main types of crosstalk faults are crosstalk-induced glitch
and crosstalk-induced delay; they are called crosstalk glitch
and crosstalk delay, respectively. For two lines in a circuit,
if the signal transition of 0 to 1 or 1 to 0 on a line pro-
duces coupling effects on another line, then the signal line
is called an aggressor line, and the other line is called a
victim line. For instance, if the victim line and aggressor
line are driven respectively by a static 0 and a fast-rising (0
to 1) transition, then the crosstalk positive glitch is gener-
ated in the victim′s output signal. If the height of crosstalk
glitch happens to be larger than the upper-threshold value
of logic-low voltage for the given technology, it will produce
logic failures (functionality problem).

A crosstalk delay is produced when both the aggressor
and victim lines have near-simultaneous transitions. If both
lines transit in the same direction, their transition times
are reduced; hence, the effective delay is reduced. These
changes in signal propagation delays can cause incorrect
logic operations. Therefore, it is needed to tackle in circuit
validation and test for crosstalk[12].

Agarwal[13] proposed an analytical framework to model
crosstalk noise in coupled interconnection. The frame-
work is based on transmission-line theory and cap-
tures high-frequency effects in on-chip interconnection.
Wu and Lee[14] studied the built-in self-test scheme in the
crosstalk faults detection for the deep-submicron very large
scale integrated (VLSI) circuits; the scheme used a periodic
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square wave as test signal which was generated by a lin-
ear feedback shift register. It simplifies test generation and
test application while obviating the fault occurrence timing
issue. Yang and Mourad[15] studied the effects of crosstalk-
induced faults due to parameter variation during the man-
ufacture of dynamic random access memories (DRAMs),
and the results indicated that there exist worst case data
patterns in each physical RAM block and cell arrangement.
Liu and Jone[16] studied a test pattern generation method
to detect the maximum crosstalk noise for programmable
logic arrays (PLA); the method was based on the charac-
teristics of dynamic PLA crosstalk noise. In this paper,
a new test method for the detection of crosstalk faults in
digital circuits by using BDDs is presented.

2 Binary decision diagrams

A BDD is a directed acyclic graph representation of a
Boolean function. With the BDD, the functions can be
constructed, manipulated, and compared by simple and ef-
ficient graph algorithms.

In a BDD, the set of nodes can be divided into terminal
nodes (also called leaf nodes) and nonterminal nodes. Each
nonterminal node is labeled with a variable and has edges
directed toward two children: the 0-branch (shown as a
dashed line) corresponds to the case where the variable is
assigned 0, and 1-branch (shown as a solid line) correspond
to the case where the variable is assigned 1. Each leaf node
is labeled 0 or 1 to correspond to the value of the function.
Each path from the root to a leaf node corresponds to a
truth table entry where the edges in the path correspond
to the assignment of the Boolean variables, and the value
of the leaf node is the value of the function under that
assignment. For example, the BDD is shown in Fig. 1 for
logic function f = x1x2 + x3.

Fig. 1 The BDD of function f

A BDD is called ordered if each variable is encountered
at most once on each path from the root to leaf node and if
the variables are encountered in the same order on all such
paths. We can reduce the size of a BDD by deleting its
many isomorphic sub-graphs. Therefore, a BDD is called
reduced if it does not contain nodes either with isomorphic
sub-graphs or with both edges pointing to the same nodes.
The BDD that is reduced and ordered is also called reduced
ordered binary decision diagram (ROBDD), with a crucial

feature: for any logic function, there is exactly one ROBDD
representing it. Due to this uniqueness property, a BDD
can be exponentially more compact than its corresponding
truth table representation.

For a logic function, the size (i.e., the number of nodes) in
its BDD depends on the variable order used. For example,
let g = x1x2+x3x4+x5x6. The BDD of g is shown in Fig. 2
if the variable ordering is x1 < x2 < x3 < x4 < x5 < x6.
The number of nodes in the variable ordering is 8. If the
variable ordering is x1 < x3 < x5 < x2 < x4 < x6, the
number of nodes in the variable ordering is 16.

Fig. 2 The BDD of function g

As can be seen from Fig. 2, the choice of the variable order
largely influences the size of BDD. It has been shown that
finding an optimal variable ordering starting from a given
BDD representation is NP-hard[17]. In Section 3, we present
a method for variable order based on cultural algorithms.

3 Minimization of BDD by cultural al-
gorithm

3.1 Cultural algorithms

The cultural algorithm is a method adding domain
knowledge to evolutionary computation. It is based on the
assumption that domain knowledge can be extracted dur-
ing the evolutionary process, and in return, it makes use of
that knowledge to guide the search[18−21] . This process of
extraction and use of the domain knowledge has been shown
to be very effective in decreasing computational cost.

The cultural algorithm consists of three major compo-
nents: a population space, a belief space, and a protocol
that describes how knowledge is exchanged between the
first two components[22]. The population space consists of
a set of possible solutions to a given problem. The belief
space is the information repository in which the individu-
als can store their experiences for other individuals to learn
indirectly. In cultural algorithm, the information acquired
by an individual can be shared with the entire population.
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The population space and belief space are linked through
a communication protocol, which indicates the type of in-
formation to be exchanged between the two spaces, and
states the rules about the individuals that can contribute
to the belief space (i.e., acceptance function), and the way
that the belief space can influence to new individuals in the
population space (i.e., influence function).

The acceptance function produces belief information by
gleaning the experience of individuals from the population
space. The influence function makes domain knowledge
guide the evolution of the individuals in population space.
The belief space is improved by updating function, the idea
being to add new knowledge acquired by the accepted indi-
viduals.

The new individuals in population space are produced by
a population-based technique, where three functions, gen-
erate function, select function and objective function, are
used for this purpose. The generate function is an operator
to generate new individuals so that it includes the influ-
ence of belief space in the generation of offspring; the select
function is the operator to select those that will be parent
individuals in the next generation. The objective function
represents objective function.

There are two main aspects in the implementations of the
minimization of BDDs by using cultural algorithms: 1) the
representation of individual and the fitness of an individ-
ual, and 2) the implementation steps of cultural algorithms.
They will be discussed in detail in the following.

3.2 Individuals representation and fitness

Suppose all Boolean functions are expressed over the vari-
ables x1, x2, · · · , xn. We use an integer string of length n as
the coding of an individual corresponding to a BDD, where
n denotes the number of variables of the BDD being con-
sidered. Each integer string represents a variable ordering.
For example, for a given circuit, we use (1 3 5 2 4 6) as the
individual representation corresponding to the BDD under
the variable ordering x1 < x3 < x5 < x2 < x4 < x6. A
population is a set of these individuals. The fitness of an
individual is related to the number of nodes of BDD corre-
sponding to the chosen variable ordering. If the number of
nodes is small, then the fitness is high.

3.3 BDD minimization by cultural
algrithm

In this section, we design a method based on cultural
algorithm to minimize the size of BDDs. The method is as
follows.

Algorithm 1.
Step 1. Produce initial population to initialize the pop-

ulation space and belief space, respectively.
Step 2. Perform evolutionary operations for each indi-

vidual in the population space by an integration technique
of genetic algorithm and simulated annealing.

Step 3. Carry out the evolutionary operations for each
individual in the belief space by the operations of selection,
crossover, and mutation in the conventional genetic algo-
rithm.

Step 4. Update the belief space with the accepted new
individuals in the population space.

Step 5. If the termination condition is satisfied, then the
whole procedure is terminated, else go to Step 2.

In Algorithm 1, the detail implementations for the de-
signs of belief space and population space, acceptance func-
tion, influence function, etc. are given as follows.

1) The design of the population space
We use an integration method of genetic algorithm and

simulated annealing to produce new individuals in the
population space. The simulated annealing is a powerful
optimization technique, which can theoretically converge
asymptotically to the global optimum solution when the
initial temperature is high enough and cooling rate is in-
finitely slow[23, 24]. The integration method can improve
the efficiency of genetic algorithm in a certain degree. The
principle of the integration is to produce new individuals
with genetic algorithm; then these individuals are processed
with simulated annealing, and the results are used as the
new individuals of the next generation. The procedure of
the integration method is as follows.

Algorithm 2.
Step 1. Initialize the temperature parameter T , i.e., set

T = T0, in which T0 is a large positive number.
Step 2. Produce the initial population made up of n

individuals.
Step 3. Compute the fitness of each individual in the

initial population.
Step 4. Repeat:
Step 4.1. Carry out evolutionary operations, i.e., selec-

tion, crossover, and mutation, for individuals in the current
population.

Step 4.2. Let Cj be the child individual produced by a
parent individual Pj , j = 1, · · · , n.

Step 4.3. Compute the fitness E(Cj) of new individual
Cj , j = 1, · · · , n.

Step 4.4. For j = 1, · · · , n, compute �E = E(Cj) −
E(Pj), where E(Pj) is the fitness of parent individual Pj .
If �E � 0, then produce a number ε with uniform distri-
bution in interval [0,1]. If exp|(−�E/T ) > ε, then replace
individual Pj by child individual Cj . If �E < 0, then dis-
card the child individual Cj .

Step 4.5. If the termination condition is satisfied, then
the whole procedure is stopped, else the value of tempera-
ture T is decreased.

In Algorithm 2, for the selection, crossover, and muta-
tion operators, we adopt the implementations in the conven-
tional genetic algorithms, for example, the roulette wheel
selection scheme and two-point crossover.

2) The design of belief space
First of all, the encoding of belief individual in belief

space adopts the same encoding used in the population
space. At the beginning of the method, all chromosomes of
initial individuals are put up to be empty set. Second, the
number of belief individuals in the belief space is chosen as
15 % of the number of individuals in the population space.
Third, the evolutions of individuals in the belief space are
carried out by selection, crossover, and mutation operations
in conventional genetic algorithms.

3) The acceptance function
The acceptance function determines which individuals

and their behaviors may impact the knowledge of the belief
space. It is determined by a percentage of the number of
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individuals in the population space. Here, we use the fol-
lowing mode: the individuals with minimal fitness in the
belief space are replaced with the individual with maximal
fitness in the population space, when the individuals in the
population space have evolved K generations, a given num-
ber of generations. For example, K = 10.

4) The influence operation
When the individuals in the population space have

evolved M generations, we use a part of individuals (e.g.,
20%) in the belief space to replace the same number of in-
dividuals with lower fitness in the population space. Let M
be

M = K0 + L0
Nmax − NC

Nmax
.

Nmax is the maximal number of evolution generations to
be set; NC is the current number of evolution generations;
K0 and L0 are constants. We choose K0 = 10 and L0 =
100. Using above equation for M , we can achieve that the
belief space has little impact on the population space in the
initial stage of the whole algorithm. As the algorithm is
in progress, the belief space will produce more and more
influences for the population space, therefore making the
search ranges of the whole algorithm enlarged.

5) The use of belief knowledge
In general, there are a few types of knowledge in the

belief space. In our method of minimizing BDDs based on
cultural algorithms, normative knowledge is used. The nor-
mative knowledge is represented as a set of intervals, and
each interval is viewed to be a promising range for good
solutions for a parameter. These ranges provide guidelines
within which individual adjustments can be made. The
normative knowledge provides norms or standards for indi-
vidual behavior and guidelines for individuals to follow.

The normative knowledge is used in genetic operations
such as selection and mutation when we carry out the evo-
lutions for individual in the belief space and make influences
on the individuals in the population space.

3.4 Building BDD of a circuit

It is necessary for us to build the BDDs of a circuit when
we minimize the BDDs by the method based on cultural al-
gorithms in this paper. In this section, we give the following
approach to obtain the BDD corresponding to a circuit.

A digital circuit consists of many circuit blocks. A cir-
cuit block implements a specific logic function. The logic
function of the whole circuit is expressed as a sequence of
operations on the Boolean functions realized by these cir-
cuit blocks. This needs a fast method to build the BDD of
the whole circuit by using these BDDs of all circuit blocks.

An operator, ite, is defined as follows: for logic functions
f , g, and h, ite(f, g, h) = f ·g+f ·h. The operator ite(·) can
be used to realize all Boolean operations with two variables.
For example, f + g = ite(f, 1, g), f · g = ite(f, g, 0), and
f ⊕ g = ite(f, g, g), where ⊕ denotes an XOR operation.

Let F be the BDD corresponding to logic function f . Let
G and H be the BDD corresponding to logic functions g and
h, respectively. We use the following method to compute
the BDD corresponding to ite(F, G, H). The Shannon′s
decomposition of F is as follows:

F = w · Fw + w · Fw (1)

where w ∈ {x1, x2, · · · , xn}, Fw denotes F |w=1, and Fw

denotes F |w=0. Fw and Fw are F evaluated at w = 1 and
w = 0, respectively. From (1), we get

ite(F, G, H) = ite(v, ite(Fv, Gv, Hv), ite(Fv, Gv , Hv)) (2)

where v ∈ {x1, x2, · · · , xn}. Equation (2) is true because

ite(F,G, H) =FG + FH =

v(FG + FH)v + v(FG + FH)v =

ite(v, FvGv + F vHv, FvGv + F vHv) =

ite(v, ite(Fv, Gv, Hv), ite(Fv, Gv , Hv)).

The terminal cases of recursion equation (2) are
ite(1, F, G) = ite(0, G, F ) = ite(F, 1, 0) = F .

Here, an example of operator ite(·) is given in the follow-
ing. Three BDDs: G1, G2, and G3 are given in Fig. 3. The
BDD corresponds to operator ite(·) for G1, G2, and G3, as
shown in Fig. 4.

Fig. 3 Three BDDs

Fig. 4 The BDD example for operator ite(·)

The BDD corresponds to that the whole circuit is built
by the forward process. For example, for the circuit shown
in Fig. 5, we start from the primary inputs of the circuit;
each gate output is expressed in terms of primary inputs,
and then these BDDs corresponding to the gate outputs are
built. The BDDs corresponding to lines d and e are built.
The BDDs corresponding to lines a, b, c, d, and e are shown
in Figs. 6 (a)-(e), respectively.
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Fig. 5 An example of circuit

Fig. 6 The BDDs correspond to the whole circuit

Then, according to the logic expression of line f , we
build the BDD corresponding to line f , which is shown
in Fig. 6 (f). Finally, the BDD corresponding to line g is
generated, which is shown in Fig. 6 (g). Thus, the BDD of
the whole circuit is built. The above method of minimizing
BDDs based on cultural algorithms has been implemented
in C++ language; the experimental results will be given in
Section 5.

4 Faults detection of digital circuit

As the VLSI circuits advance, the test and fault detection
have become essential and important parts in the design and
manufacturing of digital circuits. One of the main tasks of
fault detection is to generate the test vectors of faults, i.e.,
test vector generation or test generation in short. In the fol-
lowing, the test generation approaches based on BDDs are
given for stuck-at faults and crosstalk faults, respectively.
The advantage of the approaches is that all test vectors of

a given fault in digital circuits can be obtained. First of all,
the detection of stuck-at faults is studied. The principle of
test generation is as follows. If there is a fault in a circuit,
then the test vectors of the fault are the input assignments
that cause the faulty circuit and normal circuit (fault-free
circuit) to produce different output values.

The test generation approach based on BDDs consists of
the following three steps:

Step 1. The BDD for the normal circuit is built, and the
BDD is called the normal BDD.

Step 2. The BDD for the faulty circuit is built, and the
BDD is called the faulty BDD. The faulty BDD describes
the functionality of faulty circuit. For a fault, when its
normal BDD and faulty BDD are isomorphic, this shows
that the fault is not testable, that is, there are not test
vectors for the fault.

Step 3. A BDD called the test BDD is built, which is
the XOR operation of the normal BDD and faulty BDD. In
the test BDD, each input assignment that leads to the leaf
node with attribute value 1 is a test vector of the fault.

We take the fault of line e4 with s-a-0 in the C17 circuit
shown in Fig. 7 as an example to show the test generation
procedure. First of all, we build the BDD of y2 in normal
circuit, which is shown in Fig. 8 (a). Second, we build the
BDD corresponding to faulty circuit. The BDD of the line
e4 with s-a-0 is shown in Fig. 9 (a); it only contains a node
with attribute value 0. The BDD of line e3 is shown in
Fig. 9 (b). The BDD corresponding to the faulty circuit is
shown in Fig. 9 (c), which is obtained by the logic NAND
operation of the BDDs for Figs. 9 (a) and (b).

Fig. 7 C17 circuit

Fig. 8 Building the test BDD

The test BDD is given in Fig. 8 (b), which is the XOR
operation of the BDD shown in Fig. 8 (a) corresponding to
the normal circuit and the BDD shown in Fig. 9 (c) corre-
sponding to faulty circuit.
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Fig. 9 Building the BDD of fault circuit

In the test BDD shown in Fig. 8 (b), there are three paths
from root node to the leaf node with attribute value 1. They
are 1) x2 = 1, x4 = 1; 2) x2 = 1, x4 = 0, x3 = 0, x5 = 0;
3) x2 = 0, x3 = 0, x5 = 0. Therefore, the test vectors for
fault e4: s-a-0 are (∗ 1 ∗ 1 ∗), (∗ 1 0 0 0 ), and (∗ 0 0 ∗ 0),
and these vectors have the forms of components (x1 x2 x3

x4 x5), where * denotes that the value of the component is
0 or 1. In fact, these vectors are all test vectors of fault e4:
s-a-0.

Second, the detection of crosstalk fault is studied. The
crosstalk fault is one of the interference effects being caused
by parasitic capacitance and inductance coupling. For two
lines in a circuit, if the signal transit of 0 to 1 or 1 to 0
on a line produces coupling effects on another line, then
the line is called an aggressor line; the other line is called a
victim line. Here, for circuit C17 shown in Fig. 7, we give an
example for test generation when there is a crosstalk fault
between signal lines e3 and e4.

Assume that e4 is an aggressor line, and e3 is a victim
line. If a down transition (1 to 0) in signal line e4 produces
a glitch (1 to 0 ) in signal line e3, then there is a crosstalk
fault between lines e3 and e4. The task of test generation
is to search for the inputs vectors of circuit C17 in order
to detect the crosstalk fault. For example, a test vector
of the crosstalk fault is made up of circuit input vectors
V1=(x1, x2, x3, x4, x5)= (0, 0, 0, 0, 0) and V2 =(x1, x2, x3,
x4, x5)= (0, 0, 0, 0, 1).

Apply V1 and V2 to the circuit sequentially. If the circuit
outputs are y1 = 0 and y2 = 0 for V1, y1 = 0 and y2 = 1
for V2, then there is not crosstalk. If the circuit outputs are
y1 = 0 and y2 = 0 for V1, y1 = 1 and y2 = 1 for V2, then
there is the crosstalk. Therefore, this test vector can detect
the crosstalk fault between lines e3 and e4.

In general, a test vector of a crosstalk fault is made up
of a pair of circuit input vectors; for instance, for above V1

and V2, we call V1 the first vector and V2 the second vector
in short.

In the following, we present a new approach for the test
generation of crosstalk faults, which consists of the following
steps:

Algorithm 3.
Produce the first-vector V1 in the test vector of a

crosstalk fault by Steps 1–3.
Step 1. Set the values of aggressor line and victim line

to special values.
Step 2. Let C1 be a sub-circuit of normal circuit; C1

consists of the signal lines that can produce effects on the

values of aggressor line or victim line. Build the BDD cor-
responding to the sub-circuit C1. Name the BDD as B1.

Step 3. In B1, search for the input assignments that lead
to the leaf nodes with the special values of aggressor line
and victim line. Then, each of such input assignments is
first-vector V1 in the test vector of a given crosstalk fault.

Produce the second-vector V2 in the test vector of a
crosstalk fault by Steps 4–7.

Step 4. Build the BDD for the normal circuit; name the
BDD as B2.

Step 5. Build the BDD for the faulty circuit; name the
BDD as B3.

Step 6. Build the BDD that is the XOR operation of B2

and B3; name the BDD as B4.
Step 7. In B4, search for the input assignments that lead

to the leaf node with attribute value 1. Then, each of such
input assignments is second-vector V2 in the test vector of
a given crosstalk fault.

We take the crosstalk fault between lines e3 and e4 in
C17 circuit as an example to indicate Algorithm 3. Here,
assume that e4 is an aggressor line and e3 is a victim line,
and that a down transition (1 to 0) in signal line e4 produces
a glitch (1 to 0 ) in signal line e3.

For the generation of the first-vector V1 in the test vec-
tor, we set the values of signal lines e4 and e3 to be 1
for the normal circuit. Build the BDD B1, and search
for the input assignments that lead to the leaf nodes with
the attribute value 1 for aggressor line and victim line.
Thus, we obtain the first-vector V1 in the test vector of
the crosstalk fault. For example, we obtain such a vector
that is V1 = (1, 1, 0, 1, 0).

For the generation of the second-vector V2 in the test
vector, we set the value of signal line e4 as 0 and set the
value of signal line e3 to be 1 for the normal circuit, and
build the BDD B2. We set the value of signal line e4 to 0
and set the value of signal line e3 to 0 for the faulty circuit,
and build the BDD B3. Build the BDD that is the XOR
operation of B2 and B3; name the BDD as B4. In B4, each
input assignment that leads to the leaf node with attribute
value 1 is the second-vector V2 in the test vector of the
crosstalk fault. For example, we obtain such a vector that
is V2 = (1, 0, 0, 1, 1).

Therefore, T = (V1 = (1, 1, 0, 1, 0), V2 = (1, 0, 0, 1, 1)) is
a test vector of the crosstalk fault between lines e3 and e4.
If the vectors V1 or V2 cannot be obtained by Algorithm 3,
then it is shown that there is no test vector for the crosstalk
fault. Besides, if there are test vectors for the crosstalk
fault, then all test vectors of the crosstalk fault can be pro-
duced by Algorithm 3.

5 Experimental results

The above methods for the minimization of BDDs based
on cultural algorithms and the circuit fault detection by
BDDs have been implemented in C++ language and run on
a personal computer with a 3.0 GHz clock and 256 M main
memory. We have performed a number of experiments for
ISCAS′85 benchmark circuits C432, C499, C1355, C1908,
and C2670. The total numbers of both lines and single
stuck-at faults in these circuits are shown in Table 1.
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Table 1 Experimental results for ISCAS85 circuits

Circuit names In Out Lines Faults GA CA

C432 36 7 432 524 1871 1274

C499 41 32 499 758 39118 24683

C1355 41 32 1355 1574 37062 21495

C1908 33 25 1980 1879 6147 5162

C2670 233 140 2670 2747 3952 2637

In Table 1, the column circuit names denotes the names
of the benchmark circuits. The two columns “in” and “out”
give the numbers of primary inputs and primary outputs in
the benchmark circuits, respectively. The column “lines”
denotes the total number of signal lines in a circuit. The col-
umn “faults” denotes the size of the simplistically reduced
equivalent single stuck-at fault set for a circuit. The column
“CA” denotes the size of the BDD obtained by the cultural
algorithm, and “GA” denotes genetic algorithm. We use
the following implementations for the crossover operations
and mutation operations in the evolution of individuals in
the belief space of cultural algorithms. For the crossover
operation, first, two parents are selected; and second, two
cut positions are chosen at random. Here, it is valuable to
indicate that a simple exchange of the parts between the
cut positions may produce an invalid solution. We produce
the offspring by choosing the part between the cut positions
from one parent and preserving the position and order of
as many variables as possible from the second parent. For
example, let P1 =(3 1 4 5 6 2 7) and P2 =(6 4 2 3 7 1
5). When the cut positions are the fourth and fifth, i.e.,
we need to exchange the (5 6) in P1 and (3 7) in P2, the
produced solutions (3 1 4 3 7 2 7) and (6 4 2 5 6 1 5) are
invalid if we carry out the simple exchange. The valid off-
spring for P1 and P2 should be (5 1 4 3 7 2 6) and (7 4 2 5
6 1 3).

For the mutation operation in the belief space, we select
two component positions of a parent at random and per-
form the exchange of the values of these two positions. For
example, for the individual P3 =(6 1 2 5 7 4 3), an offspring
produced is (6 4 2 5 7 1 3) by the mutation operation.

In these experiments, the following parameters are used
in cultural algorithms: the maximal evolution generation is
set as 1800; population size of population space is 80. The
parameters in the conventional genetic algorithm used in
the evolutions of individuals in belief space are as follows:
population size of belief space is 20; crossover rate is 0.95;
mutation rate is 0.001. The experimental results are shown
in Table 1.

For the fault detection of digital circuits by BDDs, we
carry out the test vector generation for the ISCAS85 bench-
mark circuits C17, C432, C499, C1355, C1908, and C2670.
We use the variable orders obtained by the cultural algo-
rithm to build the BDDs of normal circuits and faulty cir-
cuits.

For the crosstalk faults in the ISCAS85 benchmark cir-
cuits, we randomly select 10 crosstalk faults from these cir-
cuits to produce the test vectors. The experimental results
show that if there are test vectors for a crosstalk fault, then
the test vector can be produced by Algorithm 3; the time
of producing all test vectors of a crosstalk fault is less than
one minute.

For the stuck-at faults in the ISCAS85 benchmark cir-
cuits, the numbers of test vectors in the test set obtained
for the circuits C432, C499, C1355, C1908, and C2670 are
39, 46, 52, 42, and 251, respectively. The experimental re-
sults show that all test vectors of a fault can be produced
if the fault is testable.

For the stuck-at faults in the C17 circuit, the test set
Test obtained is made up of 11 vectors, i.e., Test = {10000,
10011, 01101, 01110, 01000, 00001, 01111, 10001, 10111,
00101, 00011}. These vectors in test set Test have the forms
of components (x1 x2 x3 x4 x5); the time of generating the
test set Test is less than one minute.

Besides, for the minimization of BDDs, we also carry
out many experiments by using conventional genetic algo-
rithms. The following parameters are used in conventional
genetic algorithms: the population size is 100; the maximal
evolution generation is set as 1800; the roulette wheel selec-
tion scheme and two-point crossover are used; the crossover
rate is 0.95; mutation rate is 0.001.The experimental re-
sults are given in Table 1 in column “GA”. The experimen-
tal results demonstrate that the sizes of the BDD obtained
by using the method based on cultural algorithms in this
paper are smaller than the sizes of the BDD obtained by
conventional genetic algorithms.

6 Conclusions

For a logic circuit, the size in its BDD depends on the
variable order. A good variable order can make the size
of BDD small; therefore, the computational efficiency can
be enhanced when we use BDDs in the area such as in the
design and verification of digital circuits. A new method
based on cultural algorithms for the variable order of BDDs
is presented in this paper. The application of the method
for the detection of stuck-at faults and crosstalk faults in
digital circuits is studied. A new method for the detection
of crosstalk faults by using BDDs is presented. The exper-
imental results show that the sizes of the BDD obtained
by using the method based on cultural algorithms in this
paper are smaller than those of the BDD obtained by con-
ventional genetic algorithms, and all test vectors of a fault
can be obtained by using BDDs. In order to improve the ef-
ficiency of the method in this paper, some work needs to be
done in the future, such as the selections of better genetic
parameters.
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