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Abstract: Methods based on numerical optimization are useful and effective in the design of control systems. This paper describes

the design of retarded fractional delay differential systems (RFDDSs) by the method of inequalities, in which the design problem

is formulated so that it is suitable for solution by numerical methods. Zakian′s original formulation, which was first proposed in

connection with rational systems, is extended to the case of RFDDSs. In making the use of this formulation possible for RFDDSs, the

associated stability problems are resolved by using the stability test and the numerical algorithm for computing the abscissa of stability

recently developed by the authors. During the design process, the time responses are obtained by a known method for the numerical

inversion of Laplace transforms. Two numerical examples are given, where fractional controllers are designed for a time-delay and a

heat-conduction plants.
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1 Introduction

Recently, much research effort has been given to frac-

tional differential systems. Many physical processes have

their mathematical models described by fractional delay

differential equations (see, for example, [1] and the refer-

ences therein). Moreover, it is demonstrated[2] that if ap-

propriately designed, feedback systems with fractional order

controllers can yield better performances than those with

integer order controllers.

Many investigators have been prompted to develop meth-

ods for designing fractional differential systems in order to

enhance the system′s performances and robustness (see, for

example, [2–4] and also the references therein). These meth-

ods are suitable for handling simple design problems with

some specific design specifications. It is evident that the de-

sign problems become much more complicated when there

are a number of design objectives to fulfill simultaneously.

Therefore, it is desirable to have a systematic method that

can solve the design problems for fractional differential sys-

tems efficaciously.

Methods based on numerical optimization have proved

useful and effective in the design of control systems. The

method of inequalities[5−8] (MoI) is a general multiobjective

optimization method that requires the formulation of design

problems as a set of inequalities. The method facilitates

a realistic formulation of the design problem by allowing

the designer to express the constraints and the performance

specifications directly in terms of inequalities, whereas all

tedious computations are carried out by efficient numerical

algorithms. The method has been successfully applied to

many difficult design problems (see, for example, [9–14])

and also many references cited in [8]). So far, no one has
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considered the design of fractional differential systems using

the MoI.

The objective of this paper is to describe the design of

retarded fractional delay differential systems (RFDDSs) by

the MoI, where the transfer functions of the systems are of

the form

q0(s) +
∑n2

k=1qk(s)e−βks +
∑ñ2

k=1q̃k(s)e−vk(s)

p0(s) +
∑n1

k=1pk(s)e−γks +
∑ñ1

k=1p̃k(s)e−uk(s)
(1)

the delays γk and βk are such that 0 < γ1 < · · · < γn1 and

0 < β1 < · · · < βn2 , the polynomials pk, qk, p̃k, and q̃k are of

the form
∑lk

j=0 ajs
αj with all αj � 0, deg(p0) > deg(pk) for

k = 1, 2, · · · , n1, deg(p0) � deg(q0) and deg(p0) > deg(qk)

for k = 1, 2, · · · , n2, uk, and vk are polynomials of the form
∑mk

j=1 bjs
δj with 0 < δj � 1 and bj � 0, and none of uk and

vk assumes the form αs.

Obviously, the class of systems (1) is very general and

includes rational systems (RSs) and retarded delay differ-

ential systems (RDDSs) as special cases. This is illustrated

in Fig. 1.

Fig. 1 Class of RFDDSs includes RSs and RDDSs

The formulation of the design problem considered here
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was first proposed by Zakian and Al-Naib[5] in connection

with rational systems. In order to make the use of this

formulation possible for the more general case of systems

described by transfer functions of the form (1), the associ-

ated stability problems are resolved by using the stability

test and the numerical method for computing the abscissa of

stability that have been recently developed by the authors

(see Section 3.1 for details). During the design process,

the system′s time responses are obtained by using a known

method for numerical inversion of Laplace transforms (see

Section 3.2 for the details).

The organization of the paper is as follows. Section 2

describes the MoI and the general principle of the design

formulation that was considered in [5]. In Section 3, such a

formulation is extended to the case of RFDDSs so that the

design problem is suitable for solution by numerical meth-

ods. In addition, the numerical methods involved are briefly

described. In Section 4, two illustrative numerical examples

are given, where fractional controllers are designed, respec-

tively, for a time-delay plant and a heat-conduction process.

Conclusions and discussion are provided in Section 5.

2 Design by the MoI

The MoI requires that a design problem be expressed as

a set of inequalities

φi(p) � Ci, i = 1, 2, · · · , m (2)

where p ∈ Rn is the design parameter vector, φi : Rn →
R∪{∞} represent performance measures or physical prop-

erties of the system, and the bounds Ci are the supremal

values of φi(p) that can be tolerated. Any point p satisfying

(2) is an acceptable design solution.

In practice, numerical methods are usually employed to

compute a solution of (2). For this reason, it is important

that the design problem (2) be formulated in such a way

that it is suitable for solution by numerical methods.

It is noted in [5, 6, 8, 15] that the process of solving

inequalities (2) by numerical methods involves two phases

of computation as follows:

• Phase I. Determine a point p such that φi(p) < ∞ for

every i.

• Phase II. Determine a solution of inequalities (2) by

starting at the point p obtained in Phase I.

Each phase gives rise to distinct computational problems.

2.1 Phase I

Define a stability point as a point p satisfying

φi(p) < ∞, ∀i (3)

and define the stability region Σ as the set of all stability

points. The main problem in Phase I is how to locate a

stability point by starting from any arbitrary point in Rn,

as shown in Fig. 2.

Fig. 2 In Phase I, a stability point is located from an arbitrary

point in the design parameter space Rn

In general, inequalities (3) are not soluble by numerical

methods. That is, a stability point cannot be generated

using only the functions φi and a descent method. This

is because a gradient or similar property of φi cannot be

defined outside the stability region Σ.

Zakian[5, 8, 15] advocates that a possible method for ob-

taining a stability point by numerical methods is to replace

condition (3) by an equivalent inequality

α(p) < 0 (4)

such that 1) α(p) < ∞ for all p ∈ Rn, and 2) α can be

computed economically in practice.

Once there exists such a function α, condition (4) be-

comes soluble by numerical methods. Consequently, iter-

ative numerical methods can be used to locate a stability

point by starting from any arbitrary point in Rn.

For rational systems, the function α was chosen as the

abscissa of stability of the characteristic polynomial in [5].

In this connection, an economical algorithm for computing

the abscissa of stability was given in [16], which avoids cal-

culating all the characteristic roots. This useful approach

was then extended to the case of retarded delay differential

systems in [17, 18] and to the case of RFDDSs in [19]. See

also Section 3 for further details.

Hence, for RFDDSs (including rational and retarded de-

lay differential systems), condition (3) is replaced by

α(p) < 0, α � sup{Re (s) : f(s) = 0} (5)

where α is called the abscissa of stability of f(s), and f(s)

denotes the characteristic function of the system. Usually,

the inequality (5) is replaced by a practical sufficient con-

dition

α(p) � −ε (ε > 0) (6)

where the bound −ε is introduced so as to ensure that the

system is stable as long as the magnitude of error in the

computed value of α(p) is less than ε.

2.2 Phase II

By starting from a stability point, a search method lo-

cates a solution of (2) within the stability region Σ, as shown

in Fig. 3. To avoid any risk in stepping outside the stability

region, one checks the stability of the system at every point
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generated by the search method. In doing this, one needs

to determine the sign of α(p), which is less demanding than

to compute the value of α(p). Therefore, for the purpose

of maintaining the system′s stability during the search in

Phase II, only a stability test is required.

Fig. 3 In Phase II, a design solution is sought within the stabil-

ity region Σ

Once the system is found to be stable, the numerical

search algorithm generates a long sequence of points p ∈ Σ.

In doing this, φi(p) are to be computed repeatedly. It is

evident that in contrast to Phase I, the main problem in

Phase II is how to compute φi(p) economically.

Usually, the most difficult functions φi to compute are

those defined in terms of the time responses of the system.

Once the time responses are obtained, such functions φi can

be computed using known numerical methods (see Section

4 for examples of these). To evaluate these φi is compu-

tationally expensive. For this reason, the efficiency of the

design procedure mainly depends on that of computing the

time responses. Hence, an efficient and reliable algorithm

for computing the time responses is needed.

Note, in passing, that the functions φi defined in terms

of the frequency responses (for example, bandwidth and

phase margin) are readily computable. Consequently, when

required, these φi can be easily incorporated into the design.

3 Design formulation for RFDDS

Following the general principle given in Section 2, this

section describes a practical formulation for the design of

RFDDSs by the MoI, which is suitable for solution by nu-

merical methods. In addition, the computational methods

involved are briefly explained.

3.1 Stability test and stabilization

It is known[20] that a system characterized by the trans-

fer function (1) is bounded-input bounded-output (BIBO)

stable if and only if the characteristic function

f(s) = p0(s) +

n1∑

k=1

pk(s)e−γks +

ñ1∑

k=1

p̃k(s)e−uk(s) (7)

has all zeros with negative real parts. Accordingly, an

RFDDS is BIBO stable if and only if

α < 0. (8)

Recently, both a computational stability test and a prac-

tical algorithm for computing the abscissa of stability for

RFDDSs have been established in [19]. The algorithm

makes repeated use of the stability test and thereby avoids

computing of all zeros of the characteristic function f(s).

For RFDDSs, once the abscissa of stability α can be ef-

ficiently computed, a stability point is readily obtainable

by simply solving the inequality (6) by iterative numerical

methods.
3.1.1 Stability test

Let H(ρ) be a right half plane and described by

H(ρ) � {s ∈ C : Re(s) � ρ}
where ρ ∈ R is specified. An RFDDS is said to be H(ρ)-

stable if none of its characteristic roots lies in H(ρ).

By extending the stability test due to Hwang and

Cheng[21], a numerical procedure for testing the H(ρ)-

stability for any given number ρ, which is more general,

is devised in [19]. The key idea of the H(ρ)-stability test is

briefly summarized as follows.

The half plane H(ρ) is represented by a semicircle with

infinite radius and the well-known Cauchy′s residue theo-

rem is applied to determine whether the characteristic func-

tion f(s) has no zeros in H(ρ).

Notice that, in general, f(s) in (7) has a branch cut along

the negative real axis. Therefore, when ρ � 0, the contour

is indented to avoid crossing the branch cut along the neg-

ative real axis. In this case, the search for any roots of the

characteristic function f(s) on the interval [ρ, 0] can be per-

formed readily by using one-dimensional search methods.

In Phase II, neither should the search method step out-

side the stability region Σ, nor should it generate trial points

very close to the boundary of Σ. This is because of the

requirement (6) and because, if the design problem is prop-

erly formulated, a design solution usually lies well inside

the region Σ. For these reasons, in Phase II, it is advisable

to perform an H(−ε)-stability test with ε > 0 sufficiently

small, instead of performing an H(0)-stability test.

Notice that when the system is H(−ε)-stable, condition

(6) is always satisfied. Hence, the H(−ε)-stability test can

be used in practice to ensure that a given point p lies inside

the stability region Σ (in other words, the system is stable).
3.1.2 Computation of abscissa of stability

The numerical method for computing the abscissa of

stability for RFDDSs is devised by modifying Zakian′s
algorithm[16] , which is a bisection method and makes re-

peated use of the H(ρ)-stability test.

In essence, α(p) is computed by the following bisection

algorithm. First, determine two numbers a and b such that

α(p) ∈ (a, b); that is, the system is both H(a)-unstable

and H(b)-stable. Compute the midpoint c = (a + b)/2 and

perform an H(c)-stability test so as to determine which of

the two intervals (a, c) and (c, b) contains α(p). Repeat the

bisection until the interval containing α(p) is sufficiently

small.
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The details of the algorithm can be found in [19].

3.2 Computation of time responses

There are methods available for computing the time re-

sponses of RFDDSs. One may, for example, obtain the

time responses by solving a system of differential equations

of fractional order (see, for example, [1]). However, since

the Laplace transforms of the time responses are readily ob-

tainable in our case, it is convenient to compute the time

responses from their Laplace transforms.

In this paper, we compute the time responses of RFDDSs

by employing IMN approximants[22, 23], which result in a

useful formula for numerically inverting Laplace transforms

(see also [24, 25]).

3.2.1 Definition of IIIMNMNMN approximants

Zakian[22, 23] defines the IMN approximant of x(t) for

t � 0 by the improper integral

IMN �
∫ ∞

0

x(λt)
N∑

i=1

Kie
−αiλdλ (9)

where (αi, Ki) are defined constants, and the nonnegative

integers M and N are, respectively, the orders of the nu-

merator and the denominator of the Laplace transform of
∑N

i=1 Kie
−αiλ.

In this work, we restrict our attention only to the full

grade IMN approximants[23], whose constants (αi, Ki) are

defined by

N∑

i=1

Ki

z + αi
= e−z

MN and Re(αi) > 0, ∀i (10)

where e−z
MN denotes the [M/N ] Padé approximate to e−z.

The full grade IMN approximants have many remarkably

useful properties (see [23, 25] for details on this) and have

been successfully applied to many practical problems (see,

for example, [5, 24, 26] and the references cited in [25]).

3.2.2 Inversion formula

Let X(s) denote the Laplace transform of x(t), evaluated

at s. That is,

X(s) � L[x(t)] =

∫ ∞

0

x(t)e−stdt (11)

where s is a complex number such that the integral con-

verges to a finite limit. From (9), it can be readily verified

that[22]

IMN (x, t) =
1

t

N∑

i=1

KiX
(αi

t

)
, t > 0. (12)

When N is even, all the constants αi and Ki occur in com-

plex conjugate pairs and hence computational economy can

be obtained by replacing (12) with

IMN(x, t) =
2

t

N/2∑

i=1

Re
[
KiX

(αi

t

)]
, t > 0.

Evidently, (12) provides a useful formula for the numer-

ical inversion of Laplace transforms. For a given value of t,

x(t) is obtained by evaluating its Laplace transforms X(s)

at certain points s = (αi/t) on the complex plane, which

can be done very fast.

In this paper, we normally use M = 11 and N = 18 with

double precision arithmetic operations. However, when-

ever there is a doubt in the accuracy of the obtained re-

sults, we recompute by using M = 30 and N = 40 with

quad-precision arithmetic operations. The details of how

to choose appropriate values of M and N for the inversion

formula (12) can be found in [24].

4 Numerical examples

This section demonstrates how to design RFDDSs by the

MoI using the formulation described in Section 2 and the

algorithms mentioned in Section 3. For clarity, we focus our

attention only on the design of single-input single-output

(SISO) systems. However, it is important to note that the

systematic method developed in the paper can readily be

applied to multiple input multiple output (MIMO) systems

of fractional order.

4.1 Design formulation and specifications

Consider an SISO control system shown in Fig. 4, where

G(s) is the plant transfer function, K(s, p) is the controller

transfer function with design parameter p. Suppose that

the reference r is the unit step function.

Fig. 4 A unity feedback control system

In the following examples, the design objectives are

twofold. First, to achieve a good step response, that is to

say, the response with small maximum overshoot, settling

time, and rise time. Second, to avoid the control satura-

tion by requiring that the control signal be not too large.

Accordingly, the design parameter p is to be determined so

that it satisfies the following design specifications.

φi(p) � Ci, i = 1, 2, 3, 4 (13)

where φ1 is the maximum overshoot, φ2 the rise time, φ3

the settling time, and φ4 the peak of the control signal.

That is to say,

φ1 � max

{
y(t) − y∞

y∞
: t � 0

}

φ2 � min{t : y(t) = 0.9 y∞}
φ3 � min{τ : |y(t) − y∞| � 0.02 y∞, ∀ t � τ}
φ4 � max {|u(t)| : t � 0}

(14)

where y∞ denotes the steady state value of the step response

y, that is,

y∞ � lim
t→∞

y(t).

In many practical applications, the actuator has a satura-

tion characteristic. To avoid the control saturation during
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the operation of the system, the design requirement φ4 � C4

in (13) needs to be taken into design consideration. This

fundamental requirement makes the design problem become

difficult to solve even for SISO systems. However, it should

be noted that the MoI can solve such a design problem ef-

fectively in a systematic manner (see, for example, [9, 10]).

In addition to the design specifications in (13), if there

are constraints on the design parameter p (or permissible

ranges of p), they can be incorporated into the set of de-

sign inequalities (13) very easily. This still results in the

inequalities of the form (2).

Throughout this work, the design inequalities (13) or (2)

are solved by using a numerical search algorithm called the

moving boundaries process (MBP)[5]. For the efficiency in

the design process, tasks such as the H(ρ)-stability test,

the computation of α(p) and the step responses are imple-

mented in Fortran programming language.

4.2 Controller design for a time-delay
plant

Let the plant transfer function G(s) be given by

G(s) =
2e−2s

(s + 1)(s + 2)
. (15)

Assume that a fractional proportional-integral (PI) con-

troller is used and the controller transfer function K(s, p)

is

K(s, p) =
p1 + p2s

p3

sp3
(16)

where p = [p1, p2, p3]
T is the vector of design parameters

that are constrained to be positive.

It is easy to verify that the transfer function of the closed-

loop system takes the form (1) and is given by

H(s) =
2(p1 + p2s

p3)e−2s

sp3(s + 1)(s + 2) + 2(p1 + p2sp3)e−2s
. (17)

Suppose that the bounds Ci are specified as follows.

C1 = 0.05, C2 = 5.7, C3 = 6.5, C4 = 1.1. (18)

By solving the inequality

α(p0) � −0.001

and using the MBP algorithm, a stability point p0 is ob-

tained. Then, after a number of iterations, the MBP algo-

rithm locates a design solution

p = [0.225, 0.491, 1.043]T (19)

where α(p) = −0.2714 and the corresponding performance

measures are

φ1 = 0.02, φ2 = 5.62, φ3 = 6.37, φ4 = 1.06.

The control and output signals of the system with the

controller parameter p in (19) are shown in Fig. 5.

Fig. 5 Step responses of the time-delay system

4.3 Controller design for a heat-
conduction process

Consider the plant whose transfer function G(s) is given

by

G(s) =
1√

s sinh(
√

s )
. (20)

The nonrational transfer function in (20) occurs when the

plant is governed by a heat conduction (or diffusion) equa-

tion (see, for example, [26, 27]).

Assume that a fractional phase-lead controller is used

and its transfer function is

K(s, p) =
p1(s

p4 + p2)

(sp4 + p3)
(21)

where p3 > p2 > 0 and p4 > 0. It is worth noting (see, for

example, [28]) that the controller in (21) can be realized in

practice.

The closed-loop transfer function takes the form (1) and

is given by

H(s) =
2p1(s

p4 + p2)e
−√

s

√
s(sp4 + p3)(1 − e−2

√
s) + 2p1(s

p4 + p2)e
−√

s
.

(22)

Suppose that the bounds Ci are specified as follows.

C1 = 0.05, C2 = 0.35, C3 = 0.4, C4 = 10.0. (23)

By starting from a stability point p0 such that

α(p0) � −0.001

the following design solution is found by the MBP algo-

rithm.

p = [9.240, 7.513, 15.204, 1.101]T (24)

where α(p) = −4.4383 and the corresponding performance

measures are

φ1 = 0.02, φ2 = 0.34, φ3 = 0.39, φ4 = 9.24.

The control and output signals of the system with the

controller parameter p in (24) are shown in Fig. 6.
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Fig. 6 Step responses of the heat-conduction system

5 Conclusions

This paper describes the design of RFDDSs by the MoI,

in which the design problem is formulated so that it is suit-

able for solution by numerical methods. This is an exten-

sion of the design formulation which was first used in [5] in

conjunction with rational systems and subsequently in [17,

18] in conjunction with retarded delay differential systems.

The use of this formulation is made possible for RFDDSs

because the associated stability problems have been re-

solved by using the stability test and the algorithm for com-

puting the abscissa of stability which have been recently

developed in [19]. Moreover, in this formulation, the time

responses of the system are obtained efficiently by using

the Laplace transform inversion formula based on Zakian′s
IMN approximants. Once the time responses are obtained,

the performances defined in terms of the responses (which

are usually the most difficult ones to compute) are easily

obtainable by known numerical algorithms.

The numerical results evidently show that by using the

MoI, one can design RFDDSs effectively in a systematic

way. Consequently, one can deal more easily with a so-

phisticated design problem and, provided that appropriate

design criteria are used, can arrive at an accurate and real-

istic formulation of the design problem.

It is of interest to note that the design formulation for

RFDDSs presented in this paper is not only useful for the

MoI but also for other numerical optimization methods that

search for a solution in a design-parameter space.
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