
International Journal of Automation and Computing 05(2), April 2008, 174-184

DOI: 10.1007/s11633-008-0174-0

A Concept of Dynamically Reconfigurable Real-time

Vision System for Autonomous Mobile Robotics

Aymeric De Cabrol1,∗ Thibault Garcia2 Patrick Bonnin1,3 Maryline Chetto2

1L2TI, Université Paris 13, 99 avenue JB Clément, 93 430 Villetaneuse, France
2IRCCyN, 1 rue de la Noë, BP 92 101, 44 321 Nantes CEDEX 03, France

3LRV, 10–12 Avenue de l′Europe, 78 140 Vélizy, France

Abstract: This paper describes specific constraints of vision systems that are dedicated to be embedded in mobile robots. If PC-
based hardware architecture is convenient in this field because of its versatility, flexibility, performance, and cost, current real-time
operating systems are not completely adapted to long processing with varying duration, and it is often necessary to oversize the system
to guarantee fail-safe functioning. Also, interactions with other robotic tasks having more priority are difficult to handle. To answer
this problem, we have developed a dynamically reconfigurable vision processing system, based on the innovative features of Cléopatre
real-time applicative layer concerning scheduling and fault tolerance. This framework allows to define emergency and optional tasks
to ensure a minimal quality of service for the other subsystems of the robot, while allowing to adapt dynamically vision processing
chain to an exceptional overlasting vision process or processor overload. Thus, it allows a better cohabitation of several subsystems in
a single hardware, and to develop less expensive but safe systems, as they will be designed for the regular case and not rare exceptional
ones. Finally, it brings a new way to think and develop vision systems, with pairs of complementary operators.

Keywords: Real-time vision, dynamic reconfiguration, embedded systems, robustness, real-time operating system.

1 Introduction

Mobile robotics usually requires a vision system because
sight is a very convenient means to detect and recognize
from afar things with unexpected or badly defined appear-
ance. However, extracting relevant information from the
video stream is a very complex process, requiring a signifi-
cant amount of computing power. Moreover, an erroneous
result will cause a wrong action from the robot, which may
be dangerous for the machine itself, as well as for its en-
vironment where there might be human beings. Therefore,
design of the vision system must be thought out carefully
to match specific requirements and constraints of the robot
and its mission.

Some mobile robotic systems are remotely controlled,
and their vision system only acquires a video stream sent
to the remote human pilot. This solution is efficient for
short-range missions in visually complex or unexpected en-
vironments, where analysis and decision skills of the mind
are required because the ability of the computer is either
insufficient or unreliable. This is used for robots dealing
with emergency situations in nuclear plants, as Cybernetix′s
BROKK and SAMM[1].

When the processing of the video stream can be achieved
by a computer, two strategies exist. If the required dimen-
sions of the mobile robot prohibit the embedding of the
vision processing system, this can be set as a distant static
processing center, remotely linked to the mobile robots. Ei-
ther each have a camera, and send data to the processing
center to get back useful information (e. g. position of a tar-
get after a heavy 3D incremental reconstruction of the envi-
ronment from images sent by several robots), or the process-

Manuscript received March 5, 2007; revised November 21, 2007
This work was supported by the French research office (No.

01 K 0742) under the Cléopatre project.
*Corresponding author. E-mail address: aymeric.decabrol@free.fr

ing center may have its own vision system and guide some
blind mobile robots (e. g. RoboCup small-size league[2, 3]).
Nevertheless, this strategy cannot be used when the appli-
cation has hard constraints of video latency (as for Martian
rovers[4]), cadence and regularity of process (systems with
visual servo control as in [5]). To reach a high level of au-
tonomy, the vision system must be embedded within the
mobile robot.

As technology evolves and matures, robotic applications
become more varied, and robots much more complex. Be-
cause of interactions with other mechanical parts of the
robot, servo controls, and a varying unsettled environment,
it is mandatory to use a real-time vision system, which can
be defined as a vision system for which the processing meets
cadence and latency constraints due to client systems, en-
vironment, and the robot itself (see Fig. 1). Such systems
can be designed using three different families of hardware:
electronic, programmable electronic, or computer architec-
ture. The fully electronic hardware, because of its lack of
flexibility and its cost and duration of development, is be-
ing replaced more and more the industrial world by pro-
grammable electronic. However, the flexibility of the latter
is still inferior to those of the computer-based architecture,
because over the past few years progress has been made
in processing power and speed, integration (e. g. small size
of PC-104 boards for embedded applications), diversity and
cost of peripherals (cameras, sensors, communications), and
performance and reliability of real-time operating systems.
Because computer-based architecture offers a flexibility of
design, an easiness of conception and modification, and
open-source community knowledge source and tools for a
low cost, it has become one of the most interesting hard-
ware for robotics.

A. De Cabrol et al. / A Concept of Dynamically Reconfigurable Real-time Vision System for Autonomous Mobile Robotics 175

Fig. 1 Definition of a real-time vision system

However, the vision has specific features and constraints
that are difficult to deal with. These will be detailed in the
next section of this article. As current real-time operating
system design does not fit completely these particular re-
quirements, the LINA laboratory1 has developed a library
of real-time software components within the French national
R&D project named Cléopatre. These innovative features,
which are very interesting and promising for vision process-
ing, are shown and explained in Section 3. In Section 4,
we describe the system we have implemented. As we focus
on the difficulty to match a robust vision processing with
a limited robotic hardware, the robotic system we describe
uses only vision sensors. Finally, we will present in Section
5 how such a system allow us to design and realize a dynam-
ically reconfigurable vision system, able to adapt itself to
fit instantaneous available computing power in embedded
systems where vision has a low priority, and thus to ensure
the robustness to scheduling faults.

2 Applicative constraints

Vision systems that are embedded in an autonomous mo-
bile robotic systems evidently have to fulfill the require-
ments specific to the purpose of the machine. However,
several constraints are common for embedded robotic vi-
sion systems, so they are to be detailed thereafter.

They follow from our experience in mobile robotics,
for legged robots (the RoboCup′s 4-legs league[6, 7]), a
wheeled robotic conveyor for industry (Cléopatre RNTL
project[8−11]), and now the RoboCup rescue challenge[12],
where robots have to complete rescue missions after a dis-
aster, which is a very uncooperative environment.

2.1 Inner constraints of a vision system

An embedded robotic vision system must meet four cri-
teria:

1) It must see far so that the robot can detect the ele-
ments of the scene soon enough to be able to antici-
pate. This criterion depends on the technical features

1Computer science laboratory, the leader of Cléopatre project.

of the video device: its resolution, its depth of focus,
etc.

2) It must be fast compared with the dynamics of the
observed scene, so that high-level results of the vision
system are not obsolete. If the process is too slow, the
results will be useless because of the difference between
the observed past scene and the present one. This
situation may even provoke a pumping, and endanger
the stability of the whole system.

This swiftness is expressed by two parameters: the
latency, which is the delay between frame grabbing
and results sending, and the cadence, the number of
frames processed each second. Usually, the latency
must be low and the cadence must be sufficiently high.

3) It must be reliable, as the results of vision processing
will make the robot react. In order to avoid aberrant
behavior and to reach high performance, the vision
system must be designed to ensure a high detection
rate, a low false alarm rate, and an optimal quality of
processing.

4) Finally, it must be robust to continue to be reliable de-
spite variations of the environment. Most vision pro-
cessing algorithms require parameters to fit the exter-
nal conditions (ambient luminosity, range of speed for
targets, etc.), the internal conditions (angle and speed
of joints of the robots, odometry, etc.), and the ele-
ments of the scene (list of colors to recognize, shapes
to segment, etc.). As reliability cannot be guaranteed
outside of the validity range, either this range must
be as vast as possible, or parameters must be adapted
periodically to fit the observed variations in the envi-
ronment.

It must be kept in mind that the vision system is em-
bedded within the whole robot, and consequently it must
coexist with all other subsystems. Hence the following con-
straints:

1) Because it is embedded, the vision system must run
with mere available computing resources. Because vi-
sion processing is usually computing power consuming,
it may be impossible to embed the vision system with-
out increasing the computation power of the target,
which can be done by adding a processor dedicated
to vision or a specific processing board. Still, because
embedded systems are designed to be the smallest and
the most economic they can be, adding a component
will increase the volume of the machine, its electri-
cal consumption, the duration of its realization, and
consequently the cost of the project. Therefore, ex-
tensions must be restricted to the strictly necessary
and be carefully thought out.

2) Also, as it is a mere sensor, the vision system must
give a service to the other subsystems, and it has
a lower priority than more critical parts (e. g. con-
trol/command, which process cannot be delayed with-
out making the robot unstable).

176 International Journal of Automation and Computing 05(2), April 2008

3) The third constraint follows from the two previous ones
taken into account simultaneously: the vision system
must not jam the whole system, whatever the rea-
son. For example, such a jamming would keep con-
trol/command from running correctly, making the be-
havior of the robot unpredictable and dangerous for
its environment, in which human beings may be in.

All these considerations must be kept in mind when a
vision system is designed.

Meanwhile, any project has economic constraints, and
the designer has either to choose the smallest hardware to
run the planned vision system, or to select the most efficient
algorithms for a specific hardware.

2.2 Mission constraints

In our mobile robotics applications, whether the environ-
ment is under control (RoboCup 4-legged league, industrial
conveyor) or not (RoboCup rescue), the vision system is in
charge of several tasks of target localization and environ-
ment modeling.

The subsystems of the robot have various needs. The
piloting servo control loop and the path planning module
need obstacles detection and localization to be able to re-
spectively stop before the collision or to compute a new safe
trajectory; the navigation module needs to know the posi-
tion of the robot, and may have to map the environment to
determine the next place to reach. All this information can
be given by the vision system.

For the robotic conveyor developed during the Cléopatre
project or for the RoboCup 4-legged league, the robot ma-
noeuvers indoors, in an environment of which some prop-
erties are known and that can be made cooperative. Thus,
provided that the ground has a known and rare color, an
obstacle detection can be done from a color region segmen-
tation: the color regions detected in the ground area are
potential obstacles, which position can be computed from
their coordinates in the image. Also, the localization of the
robot can be done visually from the detection and the local-
ization of known objects in the reference of the robot. This
method requires that the known objects are unambiguous
and at precisely known locations, and that they are numer-
ous enough to be usable. A convenient solution is to use
cylindrical landmarks, with colored strips, as it has been
used in the RoboCup. The cylindrical shape makes land-
marks appear the same from all around on the floor, and the
sequence of colors used for the strips makes them unique.
Therefore, a color region detection followed by an analysis of
connected regions and a triangulation leads theoretically to
the localization of the robot. However, application teaches
that usually not enough landmarks are visible at the same
time to perform a regular triangulation; consequently, a so-
lution proposed by Hugel et al.[7] consists in computing a
triangulation whenever it is possible, or else use a particle
filter to find the most probable location corresponding to
current view. Finally, to map the environment, the vision
system may use an incremental 3D reconstruction, based
on a color edge detection.

However, the durations of all vision processes must be
managed conscientiously as some vision processes will be
too slow to be usable by the rest of the robot. As an exam-

ple, for a mobile robotics application, as well as the need for
the navigation and the low level servo control loops to know
the position, standard vision-based localization algorithms
are too slow to be used directly by the low level servo con-
trol, which usually runs at least at 1 kHz. That is why the
position is usually given by proprioceptive sensors (odome-
ter, accelerometer, etc.), and is periodically corrected by
the vision-extracted position, as those measurements di-
verge quickly. Also some theoretical solutions may be found
too slow in practice; it was the case of using a color region
segmentation in the real-time vision system. Then, either
another family of process must be used, even if this does
not fit the problem as well (e. g. edge segmentation), or a
more efficient algorithm must be designed (as our fast color
region segmentation, exposed in [13]).

That is why, in a real-time vision system, the cadences of
processes must be chosen carefully to fit the periods of all
client subsystems that need extracted information. To il-
lustrate this, Fig. 2 shows that there is a symmetry between
the vision tasks and the client control loops, so the vision
processes used by the pilotage loop must be fast enough to
deliver information that is not obsolete, whereas those re-
quired by the navigation loop can be a little bit slower, as
this control loop has a smaller frequency.

Fig. 2 Symmetry of cadences in a robotic vision system

2.3 Selected hardware

Nowadays, a mobile robot may be realized using any of
the three standard hardware architectures: electronics, pro-
grammable electronics and PC-based software implementa-
tion. For our research and development approach, the whole
electronics realization is not flexible enough. And, even if
the programmable electronics has made progress over the
past few years, the PC-based architecture is still less expen-
sive and more versatile, and has a great calculation capacity.

Moreover, the recent developments and advances of real-
time operating systems have led to current wide offer of
systems and tools. Those based on Linux, such as DIAPM
RTAI[14], are particularly interesting because of their high
level of performance and their permanent improvement by
their community, and because they can be embedded on
very limited targets by using a minimal Linux kernel. The

A. De Cabrol et al. / A Concept of Dynamically Reconfigurable Real-time Vision System for Autonomous Mobile Robotics 177

fact that some of them are free and open-source is an addi-
tional asset for research purposes.

2.4 Compromise between safety and cost

To fit the temporal constraints and to enable an efficient
exchange of information with other subsystems of the robot,
the vision processes are implemented as real-time tasks.
The vision processing has still several particularities that
make these tasks different from others.

First of all, a vision process lasts generally much longer
than most processes of other subsystems. This is due to
the fact that processed data is an image, which size is
192 kB for a greyscale low-resolution QSIF (160 × 120 pix-
els, with 1 byte per pixel) or 576 kB for a color one. The
low-level vision processes test and use all these bytes to ex-
tract some higher level data, and this must be done at video
rate (25Hz). This requires a large amount of the embedded
computing power.

The second point is that the duration of a vision process
often depends on the content of the scene: an edge points
chaining process will have more things to do in an image
containing many outlines than on an empty image. Besides
this, it may be difficult to determine the worst case, and
this one can be very rare.

As the vision system has the same importance as a sen-
sor and must not provoke a scheduling fault because one of
its tasks has an exceptionally long duration, the design of
the real-time vision system must ensure a safe functioning
of the whole robotic system. With existing real-time oper-
ating systems, this usually implies the choice of the period
of the task exceeding its worst expected duration. Conse-
quently, the system is oversized for normal situations, and
this means further expenses and less efficiency.

Therefore, our researches have focused on obtaining a
fail-safe vision system with a limited hardware, considering
economic constraints.

2.5 Toward a dynamically reconfigurable
vision systems

A means to reach this goal is to be able to handle in-
dependently usual situations and exceptional ones, due to
either the vision system itself or interaction with the other
subsystems of the robot. To prevent any too long duration,
the vision system would be designed to modify the unfold-
ing of processes or their content to respect the schedule.

However, most of the time, the dynamic reconfiguration
of a vision system is a topic distant from these considera-
tions. Many researches have been conducted to develop a
dynamic reconfiguration of vision systems on programmable
electronic hardware, such as the ARDOISE project[15, 16].
Because the programmable electronic components are ex-
pensive but very fast, this topic aims to load successively
several steps of an algorithm into the FPGA during one pe-
riod, in order to do this operation on a component that is
too small to contain the whole process[17−19] . In other cases,
the dynamic reconfiguration consists in modifying the se-
quence of processes in incremental processing systems[20−22]

or to choose operators to apply on several areas of the image
for the blind-processing systems of image restoration[23−24] .

One of the rare studies concerning the dynamic reconfig-

uration of the processing chain to adapt a vision system to
the hardware is [25], where the system searches the moving
objects in the image and defines their bounding boxes, then
select which boxes to process from the expected duration of
the process knowing the dimensions of each box. However,
if this kind of approach can be interesting for a standalone
image processing system, this cannot work if other systems
share the same processor, as in robotics.

Therefore, a reconfiguration system that enables to adapt
the vision system to instant available computing power,
must run at a higher hierarchical level than the vision sys-
tem. Seeing that no operating system allowed this in 2001
as far as we know, the LINA laboratory studied the fea-
sibility of such an operating system (OS) and developed
the Cléopatre real time applicative layer. Then, we tried to
make good use of the innovative features it offered to design
a robust dynamically reconfigurable vision system.

3 Cléopatre real-time operating system
facilities

Cléopatre is a real-time applicative layer adding new
tools and services to regular real-time operating systems,
which corresponds to the current needs of developers. It
has been developed as the core element of the French na-
tional R&D project Cléopatre, and it aims to provide lesser
general public license (LGPL) open-source software compo-
nents for robotics industrial applications.

This section will look at its original features, and then
detail the two main mechanisms that are of the utmost
interest for embedded robotic vision systems.

3.1 Overview

Cléopatre is a real-time applicative layer that can be ap-
pended to regular real-time operating systems to give them
new abilities. This is implemented owing to an OS abstrac-
tion layer named task control layer (TCL), which is the
only element that has to be adapted to the targeted real
time operation system (RTOS) as shown in Fig. 3. Then,
Cléopatre specific tasks can be run together with the regular
RTOS tasks and user space processes. At present, this has
been used successfully with real time application interface
(RTAI) and RT-Linux.

Fig. 3 Software layers using Cléopatre, with RTAI

The innovative components of Cléopatre can be sorted in
four fields: scheduling, aperiodic tasks servicing, synchro-

178 International Journal of Automation and Computing 05(2), April 2008

nization and fault tolerance[26]. All these components have
been implemented as kernel modules, so they can be loaded
on demand to fit only the needs of a specific application.
This flexibility ensures the lowest footprint.

Most existing RTOS offers only static scheduling, which
does not fit with several families of application, especially
robotics. Consequently, Cléopatre takes advantage of re-
cent studies in scheduling theory and offers both static and
dynamic schedulers. With a static scheduler like deadline
monotonic[27], priority is defined once and for all periodic
tasks, the ones with the shortest deadline being granted
with the highest priority. This mechanism does not allow
to change the tasks periodicity during the running of the ap-
plication, which may be required in robotics to adapt the
processes to a modification of the external environment.
However, the dynamic priority scheduler earliest deadline
first[28] of Cléopatre allows these changes, as the task with
the earliest deadline will be executed first.

Three aperiodic tasks servers are also provided to sched-
ule the soft and hard aperiodic tasks together with the peri-
odic ones: background server (BG), earliest deadline as late
as possible (EDL)[29] and total bandwidth server (TBS)[30].
The two latter ones are optimal in the sense that they min-
imize the mean response time for the soft aperiodic tasks,
and they maximize the acceptance ratio for the hard aperi-
odic tasks. They also guarantee that these aperiodic tasks
meet their timing requirements.

The synchronization components are three sets of
semaphores that can be used with any scheduler (static and
dynamic ones) and prevent deadlocks and priority inversion
situations. These mechanisms are the super-priority proto-
col (SPP), the priority inheritance protocol (PIP)[31] and
the priority ceiling protocol (PCP)[32], that offer various
compromise between security and overhead.

Finally, deadline mechanism (DM)[33] and imprecise com-
putation (IC)[34] are two features that allow to implement
fault-tolerant systems able to manage a transient overload.
As they are of the utmost interest for the vision processing,
they are presented in detail in the two next paragraphs.

3.2 Deadline mechanism

The deadline mechanism enables the designer to associate
an emergency task to each regular one to ensure a minimal
functioning of the system in any situation.

More often than not, real time systems run periodic tasks
that contains one operator or more in the case of the vision
system. The duration of each task must be less than the
critical delay defined by the designer, which can be used
by the scheduler to define priority of this task. If the task
outlasts this duration, a scheduling fault occurs and may
have several consequences: results of the process may be
obsolete, unserviceable for client subsystems, and provoke
either a transient bad behavior or a complete breakdown of
the robot. Therefore, this kind of problem must be avoided.

In order to do so, deadline mechanism enables to assign
two tasks for a single operation, for which critical delay has
been defined. The first task ensures normal functioning of
the system, and the second one is run only if the first one
outlasts its deadline (see Fig. 4). Logically, the duration of
the emergency task is shorter than the first one′s, and the
quality of its results is worse; its purpose is to guarantee

a degraded functioning to the system. When this mecha-
nism is activated, the scheduler places at first all emergency
tasks using the earliest deadline as late as possible algorithm
(EDL), that sets their activation date as late as possible ac-
cording to their maximal duration (which must be known)
and the deadline of the corresponding operation. Then the
principal tasks will be placed into the remaining spare time,
owing to another scheduling algorithm that is chosen by the
designer.

Fig. 4 DM: Example of use (A′ is backup task of task A. During

the first period, the principal function has completed successfully,

so A′
1 is abandoned. During the second period, an aperiodic task

B is running with more priority, so A is delayed. As A cannot

complete before the activation of A′
2, A is aborted and A′

2 is

activated.)

If the principal task has completed before the beginning
of the emergency task, this latter one is aborted, and the
scheduling is computed again to use freed time. If it has
not, the exceptional duration of the principal task has no
lethal result for the whole system because an emergency
behavior planned during the design phase is run.

3.3 Imprecise computation

In order to take advantage of the free time remaining
after all normal tasks have been run, Cléopatre has an-
other mechanism called IC, which enables the running of
extra tasks when the processor is underloaded. The pur-
pose of this mechanism is to enable to design some optional
tasks to refine the results of a principal task, among other
things. The scheduler runs this optional task during the
free time after the completion of the main task it refines. If
the optional task has not completed before its deadline, it
is merely aborted (see Fig. 5).

An optional task itself can also possess another optional
refining task.

Fig. 5 IC: Example of use (A and B are two principal periodic

tasks, with dAi
and dBi

being the deadlines of Ai and Bi. A+

is the optimal task of A. During the first period, A+ cannot

complete before the next activation of A, so it is aborted. During

the second period, B is shorter so A+ can run until completion.)

4 Dynamically reconfigurable vision
system

Classic vision systems compel to choose the best algo-
rithm for each operator. The best algorithm means the one

A. De Cabrol et al. / A Concept of Dynamically Reconfigurable Real-time Vision System for Autonomous Mobile Robotics 179

with the best compromise for the targeted mission, and if
the algorithm meets mission needs, appraisal criteria are
the required quality of results, their preciseness, the speed
of the process and its robustness to several parameters of
the robot or its environment.

However, a compromise always means that the chosen
algorithm has mean performances, and that a better one
could be found for each criterion. Moreover, a safe imple-
mentation imposes to consider the worst situations to de-
termine the periodicity of tasks, even if they are extremely
rare: this makes the system oversized, and has repercus-
sions on its cost.

Therefore, the fault tolerance mechanisms of Cléopatre
are interesting as they enable to implement a dynamic re-
configuration of the tasks sequence according to the state
of the whole processor and not only the vision subsystem,
and to guarantee a fail-safe behavior. Moreover, as it is
possible to run two different tasks to do a single operation,
the principal task will use the best algorithm for standard
situations, and the emergency task will implement a faster
algorithm for which maximal duration is known.

4.1 Nominal and backup systems

To illustrate this, we have implemented with these mech-
anisms a color region segmentation for a robotic system.
The most robust algorithm is a classic region segmenta-
tion, that operates a region growth simultaneously on the
three color planes. It does not need a priori knowledge,
and its only parameters are the criteria of homogeneity for
monochromatic intensities. Consequently, it is quite insen-
sitive to lighting variations, one of the biggest problems in
robotic vision. However, this process is relatively long, and
its duration fluctuates according to the number and the
size of color regions in the image, even if this still fits the
cadence and latency constraints of the system.

Another way to segment color regions of an image is to
do a color classification followed by a connected components
decomposition. The color classification requires several pa-
rameters to divide the color space (read-green-blue (RGB),
blue-green-red (BGR), YUV, etc.) to do a low level merging
of the information in the three spectral planes, similar to
low-level merging presented in [35, 36]. Then, the connected
components decomposition can be done by Rosenfeld and
Pfaltz′s algorithm[37] or by a run-length decomposition[38] ,
and it requires only two scans of the classified image. There-
fore, this algorithm is faster than the region growth and
its duration more regular: so an estimate of its maximal
processing time can easily be defined. Nevertheless, these
operators are efficient only if the parameters of the color
classification truly fit the current situation, but apparent
color of objects usually depends on the ambient luminosity
and the type of surface of the object (e. g. there may be
some specular spots). That is why the color classification
parameters are often chosen by a human expert by hand,
or with a semi-automatic process. Another means to find
these parameters is to compute them automatically from
the observation of an element with known colors, such as a
color test card embedded on the robot[4], or by a recognition
of some elements of the scene (vision challenge of RoboCup
2005).

To be able to use the deadline mechanism of Cléopatre,

the candidate algorithms must be sorted. The one that fits
the best mission constraints will be used for the principal
task, and the one with a known maximal duration will be
used for the emergency task. In this example, the color
region segmentation is robust enough to be used for the
main task, and the other will be for the emergency one.
Even if the results of the latter are not as robust as the other
one′s, this algorithm will be able to give a result before the
deadline, which is mandatory for the other subsystems to
run properly, and will prevent jamming.

The method to define optional tasks is wholly different.
They can be either refining operators for main operators,
or totally different and independent processes.

Using the fault tolerance mechanisms of Cléopatre, the
splitting of the processing chains into real-time tasks has to
be done in a different way than usual. In a classic real-time
vision system, one task generally gathers a linear sequence
of operators, each of them depending only on the results of
the previous one (see Fig. 6). When several processes have
to run simultaneously and use the same input data, they
can be run on different processors.

However, if the faults tolerance mechanisms of Cléopatre
are used, there are numerous possible sequences of opera-
tors, due to the fact that dynamic reconfiguration substi-
tutes some emergency operators to regular ones and possi-
bly schedules also some optional tasks. If only the dead-
line mechanism is used, the tasks splitting must create a
task for each linear sequence of operators without degraded
mode, then another task for each operator having a de-
graded mode, and another one for each emergency operator
(see Fig. 7). If the vision system also uses the imprecise
computation, each refining operator must be implemented
as an independent task.

Fig. 6 Classic splitting of a processing chain into tasks, each

circle being an operator

Fig. 7 Split of a vision processing chain into tasks, using DM

and IC (1+ is a refining operator for operator 1; 2′ is degraded

version of operator 2, used if 2 outlasts its deadline.)

180 International Journal of Automation and Computing 05(2), April 2008

4.2 Implemented system

In order to validate the software architecture we have de-
signed for a dynamically reconfigurable vision system, we
have implanted an elementary vision system. This aimed
to determine if the applicative layer of Cléopatre truly en-
ables to commute between two vision tasks using deadline
mechanism. The difficulty of this test was concerning three
points:

1) The implemented tasks are genuine vision tasks, ex-
tracting color regions, and edges. The image format is
RGB QSIF, so each frame is about 50 kbyte and then
the processing duration of the selected operators is be-
tween 2ms and 10 ms. For a real-time system, data of
this size are very large, and such a duration is very
long.

2) Between two operators, the images are buffered in the
shared memory area protected by mutex. However,
when the deadline mechanism switches to an emer-
gency task, all semaphores taken by the main task
have probably not been freed yet. This thought must
be kept in mind when implementing the system.

3) The video frames are sent by an external program, so a
synchronization must be done as well at the beginning
of the process as during the processing.

The implemented system is as follows: the initialization
of the system that allocates all shared memory image buffers
and creates the semaphores, the input FIFO to receive video
frames, its handler, and all periodic tasks. The handler re-
ceives the video frames and copies them in the input buffers
of each available processing chain. Each buffer is protected
by a mutex, and may be used as well by the principal tasks
as by the emergency tasks. Therefore, regular mutex use is
done in principal task, whereas each emergency tasks begins
by a test of possibly taken mutexes by the main task, and
their reset if needed. As this couple of instructions must
be automatic to avoid inconsistency, they are protected in
a non-preemptive area.

For optional tasks, the mechanism is different as the
Cléopatre framework allows to define a function that will be
activated when optional task is aborted. This final function
sends an informative message to the managing system, and
sets semaphores back to their initial state to avoid dead-
locks.

This basic dynamical vision system has validated the
functioning of the mechanisms of Cléopatre for a real case,
and the feasibility of a whole dynamically reconfigurable vi-
sion system. This has enabled us to verify the good running
of the Cléopatre framework realized by the LINA, and to
feed back its designers with our practical experience about
the existing features and some new features that could an-
swer some of our specific needs. Especially, this practical
realization allowed us to set several rules in order to use at
best these mechanisms.

5 Advanced dynamic reconfiguration

This final section gathers some rules we have found or set
during our experiments. Their purpose is to explain how

should the mechanisms of Cléopatre be used to realize some
efficient dynamically reconfigurable applications, especially
for robotic vision.

5.1 Use of Cléopatre deadline mechanism

5.1.1 Emergency task duration

The deadline mechanism needs a function with a known
maximal duration in order to ensure a degraded functioning
if the principal operator cannot complete properly.

Logically, the duration of an emergency task has to be
shorter compared with the principal task, because the emer-
gency tasks are scheduled at first, and then the principal
tasks are scheduled in the remaining free time. An emer-
gency task with a too long duration will perturb the effi-
ciency of the system, as its duration will be set apart for
each period. Also, a duration longer than the estimated
worst case of the principal function would be a flaw, since
then the best function would be interrupted for a worse
function that lasts the same time.

5.1.2 Emergency task activation frequency

It is necessary to keep the information about the fre-
quency of activation of emergency tasks, so that it can be
analyzed online or offline.

An emergency task should be run seldom only, because
of a temporary overload of the processor, an unsuitabil-
ity between the main operator parameters and the scene
content, or an error of design of the processing chain (bad
periodicity, wrong parameters, etc.).

In order to use this information online, each emergency
task shall send its identification and its activation date to
a manager task, that stores this information in circular
buffers. If this frequency is too high, the manager can run
an asynchronous task to check if the principal operator pa-
rameters have to be changed. Also, for mobile robotics, the
manager can send a signal to the control/command subsys-
tem to indicate that the vision system is about to recon-
figure, and so it would be suitable to stop the temporarily
blind robot.

If this information is stored in a logfile, it can be used by
the designers to check if the periods, the deadlines, and the
parameters of operators have been efficiently set. Compar-
ing this information with the recorded video sequence may
be interesting to find out what kind of scene has jammed
the principal task.

5.1.3 Emergency task content

Various emergency strategies can be considered, depend-
ing on the vision system to realize, the content of the mis-
sion and the complexity needed for degraded mode:

1) Do nothing. The emergency task is empty, but its ac-
tivation prevents the vision system from jamming. In
the succeeding period, the principal function will pro-
cess from the beginning of the most recent input data.
This strategy can be used only if all client subsystems
do not need the imperative sending of a result.

2) Take notice of the problem. This solution is as simple
as the previous one, and it is very fast. For example, it
can be used when computing optical flow with a con-
stant pace. Then, the problem is taken into account
by doubling the pace for the next iteration.

A. De Cabrol et al. / A Concept of Dynamically Reconfigurable Real-time Vision System for Autonomous Mobile Robotics 181

3) Use a predicting operator. To compensate the loss of
a regular result, an emergency result is predicted from
the previous regular results. Therefore, it is able to
send a result to client subsystems, yet nothing guar-
antees computed value.

4) Process again the whole frame with another algorithm.
This method is the one that has been used for our ex-
periments. Its main asset is that it does not require
to synchronize the principal task with the emergency
task. Nevertheless, it requires a fast alternate opera-
tor, which does not always exist.

5) Continue the processing with another algorithm. This
method is far more complex to bring into operation. It
requires that the designer knows well the inner mech-
anisms of the used algorithm, and possibly develop
other specific algorithms. Emergency and principal
tasks must also be synchronized. However, this strat-
egy has the great asset to be shorter than the previous
one, and to keep good results of the regular operator
on a part of the input image.

5.1.4 Continuing the process with another algo-
rithm

This case is the most difficult to implement, but also the
most interesting to study, and the most promising. It re-
quires yet a good knowledge of inner mechanisms of chosen
algorithms.

This strategy is justified by the fact that, if the vision
system has been cleverly designed, activation of an emer-
gency task should be a rare event. Thus, when it occurs,
the principal operator has very likely processed a significant
amount of its input data. As it would be a pity to lose this
high quality results, this method enables to bind degraded
results to a small part of the image.

To set an example, we can analyze the simplified case
of the principal and emergency operators processing the
whole image in a single video scan, as smoothing of sam-
pling operators. If the nominal task is a sampling operator
divided by two image dimensions using a Gaussian filter
with σ = 1/

√
2, the convolution mask is the following 5× 5

matrix:

G1/
√

2 =

⎡
⎢⎢⎢⎢⎢⎣

0.00 0.00 0.01 0.00 0.00

0.00 0.04 0.12 0.04 0.00

0.01 0.12 0.32 0.12 0.01

0.00 0.04 0.12 0.04 0.00

0.00 0.00 0.01 0.00 0.00

⎤
⎥⎥⎥⎥⎥⎦

. (1)

This convolution requires for each point 25 multiplica-
tions and 24 additions in a raw implementation, or 4 mul-
tiplications, and 12 additions for a more optimized imple-
mentation. Emergency operators can either use a simpler
operator, as 3× 3 mask shown in (2), or keep only the even
pixels in both directions which needs only a single assign-
ment.

Gd =
1

10

⎡
⎢⎣

1 1 1

1 2 1

1 1 1

⎤
⎥⎦ . (2)

As both principal and emergency operators are of the
same kind, the only information to share between these two
tasks is the coordinate of the last processed pixel. When
the principal task is aborted, the emergency task will go on
from this point, and only the last few lines of the resulting
image will be degraded.

However, used algorithms are often more complex than
that, and the following cases can occur:

1) The algorithm can be composed of several distinct
steps (e. g. several image scans with different pyra-
midal levels, as for the region segmentation).

2) The algorithm may use an irregular scan of the image
(e. g. automaton-based algorithms).

3) The result may be a list of image features (e. g. a list
of regions, of edges, etc.).

Each time, the means to use the deadline mechanism
and the choice of the emergency operator must be carefully
adapted to the specific characteristics of nominal algorithm.

If the principal algorithm can be divided in several steps,
a status variable shall be shared between the two tasks,
to tell which step has been interrupted. According to this
value, several adapted emergency processing can be run.

If the image is not scanned linearly, it would be probably
well advised to use an emergency task that processes the
whole image again.

Finally, if the role of the principal task was to extract
some image features as regions or edges, it may be useful to
mend the extracted features on the line of darn2, according
to applicative context. The purpose of the vision processing
may require an accurate knowledge of several properties of
the image, dependent of the accuracy of operators results;
if the line of darn runs across some of these features, these
may have to be melt so that extracted high-level informa-
tion is precise. For example, if a mission consists in detect-
ing any colored regions (that are possibly obstacles), the
fact that a region may be split in two on both sides of the
line of darn is not a problem. On the contrary, if the sys-
tem has to detect all regions greater than a specified size,
it is mandatory to mend the results of the two processes
to melt regions that are on the line of darn. In case image
features do not have to be sorted (to detect the biggest col-
ored region for example), another possibility is to validate
the incomplete results of the primary task if its giving up
has occurred at the very end of the process; in other word,
we accept that a tiny part of the image is not processed.

In the particular case of the emergency algorithm requir-
ing specific dimensions for its input data, it must be taken
into account to choose from which point the process must
continue (see Fig. 8 (d)). For example, if the emergency
operator can only process images whose dimensions are a
power of 2, it will have to start from a point already pro-
cessed by the principal operator, in order that the second
part of the image has the good size. In this case, since a
part of the image is processed twice, one can choose to use
the results of the one or the other for this area. It could

2The line of darn is the frontier between the part of the image
processed by one operator, and the part processed by another. In
our case, these operators are the principal and the emergency ones.

182 International Journal of Automation and Computing 05(2), April 2008

also be possible to produce more accurate results from a
combination of both.

In all other cases, to simplify the darning problems with
the extracted image features (see Fig. 8 (c)), the emergency
operator can still start again from the beginning of the cur-
rent image line, so that the frontier is horizontal.

Nevertheless, the major difficulty with continuing the
process with another algorithm is that the existing oper-
ators must be adapted to enable the darning.

(a) Result of aborted
principal process

(b) Immediate darn (c) Darn at the begin-
ning of the line

(d) Darn on an area
whose dimensions are
power of 2

Fig. 8 DM: Strategies for darning

5.2 Use of Cléopatre imprecise computa-
tion

It is not self-evident to use properly the imprecise com-
putation mechanism. This mechanism enables to make one
task to be followed by another one, running in the remain-
ing free time. If an optional task outlasts its deadline, it is
aborted and a special function defined by the user is acti-
vated immediately after. According to the role of the op-
tional task, some precautionary measures vary.

In the following, principal tasks will be named A and the
next one B. The optional task of A will be A+. The type
of A′s result is homogeneous to an image.

5.2.1 Case of a refining optional task

The purpose of a refining optional task is to modify re-
sults produced by a principal task so that they can be more
precise, or more adapted to the downstream processing.
However, as these results have been produced by a prin-
cipal task, they already are precise enough (out of design)
to enable the robot to complete its mission. Therefore, it
is primordial that the optional task does not degrade the
results!

In order to do so, two kinds of solutions exist. The first
one consists in creating an extra buffer dedicated to A+, so
that this task reads A′s results but do not modify them. If
A+ is completed before its deadline, its last action will be to
update a flag or a pointer, to tell B that the best input data
to use are in A+′s buffer. This implies that A and A+′s

buffers have the same size, which requires another allocation
of a chunk of memory (about the size of an image).

A second solution can be used if an image partially pro-
cessed by A+ is exploitable. This requires that A+ pro-
cesses in a single scan, and that it improves locally the im-
age. Then, if an optional task is aborted because it has
lasted too long, it would have only small consequences.
However, this solution must not be used if this abortion
causes a too important discontinuity in the result image,
and provoke errors from B task.

5.2.2 Case of an independent optional task

If an optional task is an independent processing, the de-
signers must think about the reason of this task they want
to implement. As an activation of this task is unpredictable
and irregular, they must ask themselves what would be the
benefit of the produced results. If these results are neces-
sary for the accomplishment of the mission, this task should
perhaps be a regular and periodic task, so that the results
are regularly updated. On the contrary, if those are not
mandatory, the next tasks that use them as input must be
examined to decide if it would be better to use a classic task
with a low periodicity.

Some vision processing operators can use irregular input
data, for example to update a 3D reconstruction from a
single image[39], but such a case is extremely rare. Further-
more, if such an operator was implemented as an optional
task, it would not overload the processor. Meanwhile, noth-
ing guarantees its running.

Nevertheless, one of the main asset of these optional tasks
is that they run only during the free time remaining after
the scheduling of the principal and emergency tasks. The
use of this mechanism contributes to exploit the available
computation time at best without overloading the system.
Therefore, it is very profitable to try to make use of it.

The most interesting use of this mechanism for an inde-
pendent processing may be the calculation of some quality
measurements on the results of principal operators. The
sudden abortion of this computation does not have any bad
consequence on the running of the whole system. On the
contrary, if the calculation is completed and its result shows
that an operator must have its parameters updated, the op-
tional task can emit a signal to the manager task that will
reconfigure the tested operator.

6 Conclusion

The Cléopatre framework contains several innovative fea-
tures for scheduling and fault tolerance, that we have turned
to good account in our field of research: real-time vision for
mobile robotics.

Especially, we have shown that these mechanisms could
enable to run a vision system on a hardware designed for
regular situations (thus without the usual oversize necessary
to deal with the exceptional ones), while ensuring robust-
ness as the design includes a minimal running mode. This
is particularly important to develop systems that are both
safer and less expensive.

Our experiments let us define a set of rules to use at best
the dynamic reconfiguration for Vision Processing. This
foretells an evolution of the way to design a vision process-
ing chain, where one will not reason by an operator but by

A. De Cabrol et al. / A Concept of Dynamically Reconfigurable Real-time Vision System for Autonomous Mobile Robotics 183

couples of complementary operators, so that more sophis-
ticated strategies of dynamic reconfiguration can be used,
that avoid redundant processings and achieve the best final
result in the least duration.

References

[1] Cybernetix. BROKK & SAMM, Remote Intervention Ve-
hicle (Dismantling Operation), Datasheet, 2005.

[2] RoboCup Small Size League, [Online], Avaiable: http://
www.robocup.org.

[3] M. Bowling, M. Veloso. Motion Control in Dynamic Multi-
robot Environments. In Proceedings of the IEEE In-
ternational Symposium on Computational Intelligence in
Robotics and Automation, IEEE, Monterey, CA, USA, pp.
168–173, 1999.

[4] Cornell University. Instruments: Panoramic Camera (Pan-
Cam), [Online], Avaialbe: http://athena.cornell.edu/
the mission/ins pancam.html.

[5] J. Gangloff. Fast Visual Servoing for a 6 Degrees of Freedom
Robotic Arm, Ph. D. dissertation, Université Louis Pasteur,
1999. (in French)

[6] V. Hugel, P. Bonnin, P. Blazevic. French LRP Team′s De-
scription. Robocup, pp. 615–618, 2000.

[7] V. Hugel, T. Costis, P. Bonnin, P. Blazevic. 2005 RoboCup
Technical Report, Technical Report, LRV, 2005.

[8] M. Silly, T. Garcia. Cléopatre: A Modular Real-time Oper-
ating System Based on Linux/RTAI, Final Report, LINA,
2004. (in French)

[9] P. Bonnin, A. De Cabrol. Cléopatre RNTL Project, Robotic
Vision COTS: Final Report, Technical Report, L2TI, 2005.
(in French)

[10] T. Garcia. Design and Implementation of Components for

Embedded Real-time Software, Ph. D. dissertation, École
Centrale De Nantes, LINA, 2005. (in French)

[11] A. De Cabrol. Dynamically Reconfigurable Robust Real-
time Vision Dystem for Mobile Robotics, Ph.D. disserta-
tion, Université Paris 13, 2005. (in French)

[12] RoboCup Rescue, [Online], Avaiable: http://www. res-
cuesystem.org/robocuprescue.

[13] A. De Cabrol, P. Bonnin, V. Hugel, P. Blazevic, M. Silly-
Chetto. Video Rate Color Region Segmentation for Mobile
Robotic Applications. In Proceedings of SPIE, Applications
of Digital Image Processing XXVIII, SPIE, vol. 5909, [On-
line], Avaiable: http://spiedigitallibrary.org/journals /doc
/SPIEDL-home/proc/, September 15, 2005

[14] RTAI, [Online], Avaiable: http://www.rtai.org.

[15] R. Bourguiba. Design of a Dynamically Reconfigurable
Hardware Architecture Dedicated to Real-time Image Pro-
cessing, Ph.D. dissertation, Université de Cergy Pontoise,
2000. (in French)

[16] D. Demigny, M. Paindavoine, S. Weber. Dynamically Re-
configurable Architecture for Real-time Image Processing.
Technique et Science de l′Information, Special Issue Archi-
tectures Reconfigurables, vol. 18, no. 10, pp. 1087–1112,
1999. (in French)

[17] N. Abel, D. Demigny, L. Kessal, N. Boudouani. Implemen-
tation of the Partial Reconfiguration on the ARDOISE Re-
configurable Architecture. In Proceedings of the JFAAA,
Monastir, Tunisie, pp. 45–48, 2002, [Online]. Available:
http://publi-etis.ensea.fr/2002/ADKB02. (in French)

[18] N. Abel, L. Kessal, D. Demigny. Implementation of
Deriche′s Smoothing Filter on the ARDOISE Dynamically
Reconfigurable Architecture. GRETSI, T. Paris (ed.), vol.
I, Paris, France, pp. 376–379, 2003, [Online]. Available:
http://publi-etis.ensea.fr/2003/AKD03. (in French)

[19] S. Bouchoux, E. B. Bourennane, J. Mitran. Implementation
of the JPEG2000 Arithmetic Decoder Based on Dynamic
Reconfiguration of FPGA. In Proceedings of Journées
Francophones de l′Adéquation Algorithmes-Architectures
(JFAAA 2005), pp. 215–219, 2005. (in French)

[20] R. Bajcsy, M. Mintz, E. Liebman. A Common Framework
for Edge Detection and Region Growing, Technical Report,
University of Pennsylvania, 1986.

[21] H. L. Anderson, R. Bajcsy, M. Mintz. A Modular Feedback
System for Image Segmentation. Technical Report, Univer-
sity of Pennsylvania, 1987.

[22] M. Salotti. Information Management in the First Stages
of Computer Vision, Ph. D. dissertation, Institut National
Polytechnique de Grenoble (INPG), 1994. (in French)

[23] K. Chehdi. Digital Signal Processing and Multimodal and
Multi-spectral Images. In Proceedings of the Invited Con-
ference at the L2TI, Villetaneuse, France, 2005. (in French)

[24] K. Chehdi, B. Vozel, C. Kermad, M. P. Vandecandelaere. A
Blind System to Identify and Filter Degradations Affecting
an Image. In Proceedings of IEEE International Conference
on Signal Processing, Beijing, China, pp. 1987–1993, 2000.

[25] C. Millour, A. Lanusse. Implementation of Preattentive
Mechanisms for Vision-analyzing of Dynamic Scenes. In
Proceedings of the 2nd Scientific Workshop TIPI, Aussois,
France, 1988. (in French)

[26] M. Silly, A. Marchand, T. Garcia. Cléopatre Use′s Guide,
2004.

[27] N. C. Audsley. Deadline Monotonic Scheduling, Technical
Report YCS 146, Department of Computer Science, Uni-
versity of York, USA, 1990.

[28] C. L. Liu, J. W. Layland. Scheduling Algorithms for Multi-
programming in a Hard-real-time Environment. Journal of
the ACM, vol. 20, no. 1, pp. 46–61, 1973.

[29] M. Silly-Chetto. The EDL Server for Scheduling Periodic
and Soft Aperiodic Tasks Resource Constraints. Real-Time
Systems, vol. 17, no. 1, pp. 87–111, 1999.

[30] G. C. Buttazzo, F. Sensini. Optimal Deadline Assignment
for Scheduling Soft Aperiodic Tasks in Hard Real-time En-
vironments. IEEE Transctions on Computers, vol. 48, no.
10, pp. 1035–1052, 1999.

[31] L. Sha, R. Rajkumar, J. Lehoczky. Priority Inheritance Pro-
tocols: An approach to Real-time Synchronization. IEEE
Transactions on Computers, vol. 39, no. 9, pp. 1175–1185,
1990.

[32] M. Chen, K. Lin. Dynamic Priority Ceilings: A Concur-
rency Control Protocol for Real-time Systems. Real-Time
Systems, vol. 2, no. 4, pp. 325–346, 1990.

[33] H. Chetto, S. C. Maryline. An Adaptive Scheduling Al-
gorithm for a Fault-tolerant Real Time System. Software
Engineering Journal, vol. 6, no. 3, pp. 93–100, 1991.

184 International Journal of Automation and Computing 05(2), April 2008

[34] J. Liu, J. Lin, S. Natarajan. Scheduling Algorithms for Mul-
tiprogramming in a Hard Real-time Environment. In Pro-
ceeding of the 8th Real-time System Symposium, San Fran-
cisco, CA, USA, pp. 252–260, 1987.

[35] M. Mangolini. Contribution of Pixel-level Mergeing of Mul-
tisensor Satellite Images to Remote Sensing and Photoint-
erpretation, Ph.D. dissertation, Université de Nice Sophia
Antipolis, 1995.

[36] L. Kuntz-Sliwa. Optimizing a Given Multisensor Configura-
tion: Pixel Mergeing, Ph. D. dissertation, Institut National
Polytechnique de Toulouse (INPT), 1996.

[37] A. Rosenfeld, J. L. Pfalz. Sequential Operations in Digital
Picture Processing. Journal of the ACM, vol. 13, no. 4, pp.
471–494, 1966.

[38] J. Bruce, T. Balch, M. Veloso. Fast and Inexpensive Color
Image Segmentation for Interactive Robots. In Proceed-
ings of IEEE/RSJ International Conference on Intelligent
Robots and Systems, IEEE Press, Takamatsu Japan, vol.
3, pp. 2061–2066, 2000.

[39] M. Herman, T. Kanade. The 3D MOSAIC Scene Under-
standing System: Incremental Reconstruction of 3D Scenes
for Complex Images. Readings in Computer Vision: Issues,
Problems, Principles, and Paradigms, Morgan Kaufmann
Publishers Inc, San Francisco, CA, USA, pp. 471–482, 1987.

Aymeric De Cabrol graduated from
ESME Sudria Engineering School in Paris,
France, in 2001. He received his M. Sc.
degree in automatic control from ENSAE
Sup′aéro in Toulouse, France, in 2002 and
the Ph. D. degree from the Paris 13 Univer-
sity, France, in 2005. He is currently asso-
ciate researcher at the Laboratory of Trans-
port and Processing of Information, L2TI.

His research interest includes vision pro-
cessing for mobile robotics.

Thibault Garcia received his M. Sc. de-
gree in distributed computing, then the
Ph. D. degree from University of Nantes,
France, respectively in 2001 and 2005. He is
currently at the head of Revaweb company.

His research interests include real-time
operating system and scheduling issue.

Patrick Bonnin received his agrégation
in physics in 1985, and his M. Sc. degree
in physical measurement in remote sensing
and the Ph. D. degree from University Paris
7, France, respectively in 1986 and 1991.
Then, he became an associate professor in
1992, and professor in 2000. He is currently
professor at ISTY School of Engineering of
the University of Versailles, France.

His research interests include real-time
robotic vision, especially for legged robots.

Maryline Chetto received her M. Sc. de-
gree in automatic control, the Ph. D. degree
in computer science, and the HDR from
University of Nantes, respectively in 1982,
1984, and 1993. She is currently professor
at the University of Nantes, France.

Her research is conducted in the Group
of Real-time Systems of the Research In-
stitute of Communications and Cybernet-
ics (IRRCyN). She has been the leader of a

French national R&D project, namely Cléopatre, supported by
the French government, which aims to provide free open source
real-time solutions. She has published more than 60 journal ar-
ticles and conference papers in the area of real-time operating
systems.

Her research interests include scheduling and fault-tolerance
in real-time systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

