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Abstract: This paper proposes a clustering technique that minimizes the need for subjective human intervention and is based on
elements of rough set theory (RST). The proposed algorithm is unified in its approach to clustering and makes use of both local and
global data properties to obtain clustering solutions. It handles single-type and mixed attribute data sets with ease. The results from
three data sets of single and mixed attribute types are used to illustrate the technique and establish its efficiency.
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1 Introduction

Recent years have seen a rapid growth in the volume and
complexity of electronic data being gathered and stored. As
a result of this increase, the task of extracting meaningful
knowledge in the form of patterns, relationships and group-
ings to be used in applications such as decision support,
prediction and taxonomy has become arduous and essen-
tial. Furthermore, the need to discover underlying data
structures in mixed attribute data calls for efficient data
analysis with minimal human intervention.

Cluster analysis is one such technique that is used to
reveal characteristics of underlying patterns in data. It ex-
tracts inherent groupings of homogeneous points from het-
erogeneous data and although there is no agreed bench-
mark definition for the terms “cluster”, “class”, and
“group”, they intuitively describe collections of data points
with natural homogeneity. Agglomerative hierarchical clus-
tering and iterative partitional clustering are two major cat-
egories of clustering algorithm that may be cast into a single
algorithmic framework as shown in Figs. 1 and 2.

Fig. 1 Agglomerative hierarchical clustering framework

Agglomerative hierarchical clustering[1−10] imposes a hi-
erarchical decomposition on a dataset through the itera-
tive fusion of points and clusters, and a final clustering is
determined according to some pre-determined cut-off crite-
rion. Partitional algorithms, including k-means[5,7,8,11−16]

and fuzzy c-means (FCM)[17−22] , follow an iterative opti-
mization strategy for partitioning a database into a pre-
determined number of clusters. The process is initialized
by defining seed points or an initial partition, and the suc-
cessive swapping of data points determines a locally optimal
partition. The FCM methodology differs only in the sense
that points are enabled to have a degree of membership to
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all clusters. Both categories of clustering technique have
advantages and disadvantages. Hierarchical clustering has
an obvious benefit in that it does not require the number
of clusters to be determined a priori; however there is a
trade-off in the need to select a termination point for the
algorithm.

Fig. 2 Iterative partitional clustering framework

Although structurally varied, the two categories of clus-
tering algorithm discussed above share the common prop-
erty of relying on local data properties to reach an optimal
clustering solution, which carries the risk of producing a dis-
torted view of the data structure. Rough set theory (RST),

introduced by Pawlak et. al.[23−26] , moves away from this
local dependence and focuses on the idea of using global
data properties to establish similarity between the objects
in the form of coarse and representative patterns. The rig-
orous framework of RST is provided by a well-defined in-
discernibility relationship that classifies objects into classes
on the basis of perceived differences from an initial knowl-
edge source and its aim is not to perform exploratory data
analysis, but to establish similarities that are evident in
the raw data. In terms of its role as a set theoretical tool,
RST is often compared to fuzzy set theory (FST) with the
argument that the two are competing notions. Upon in-
vestigating this view, Dubois and Prade[27] suggested that
they are in fact mathematical tools with different purposes.
Whereas FST deals with the concept of “vagueness” in the
boundary of a sub-class of a set, RST focuses on coarse-
ness of knowledge within the set itself. It is this notion
of coarseness teamed with the ability to obtain meaningful
knowledge from uncertain and incomplete data that makes
RST a valuable tool for extracting relationships from real-
world data. Since both cluster analysis and RST form data
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groupings, the conceptual link between the techniques is
evident[28,29]. However, the fact that cluster analysis is
an exploratory tool used to reveal underlying groupings
whereas RST imposes a partitioning structure on a dataset
suggests that RST provides scope for discovering “possi-
ble” data clusterings with a view to assessing them on
the basis of global information inherent in the data[30].
Early attempts at combining concepts from both techniques
have led to a hierarchical type clustering algorithm called
knowledge-oriented clustering[29], in which a modification
procedure allows for the simplification of knowledge. This
process of knowledge simplification is not incorporated in
the traditional hierarchical clustering techniques.

This paper proposes an autonomous methodology for ex-
tracting knowledge and relationships from mixed attribute
data in the form of coarse clusters that reflect important
global properties of the data. The resultant clustering tech-
nique is presented as a simple algorithm, and the modified
tools from RST are used to form the classes. By virtue of
the fact that RST reflects global data properties, the clus-
tering solution is unaffected by local discrepancies. Thus,
it has the following advantages: 1) Avoiding the generation
of too many small and unrepresentative clusters; 2) Lead-
ing to a coarse clustering of the universe. Furthermore, the
reliance of the traditional clustering techniques on local op-
timality paves the way for a number of different clustering
solutions and scope for distorted results.

The proposed algorithm also eliminates the need for sub-
jectivity in obtaining a representative number of final clus-
ters and an “optimal” clustering solution is determined ac-
cording to the convergence of a well-defined accuracy mea-
sure. Procedures to determine data partitionings and clus-
ter modifications are developed with an emphasis on mini-
mizing the level of computational complexity to obtain op-
timal clusters efficiently.

The structure of this paper is organized as follows. Sec-
tion 2 provides a preliminary overview of RST followed
by an introduction to the knowledge-oriented algorithm in
Section 3. This section incorporates a break-down of the
generic clustering procedure and provides a detailed discus-
sion of the key steps. Section 4 introduces the proposed
autonomous knowledge-oriented clustering algorithm. Sec-
tion 5 provides a detailed demonstration of the algorithm
on real and generated data. The paper concludes in Section
6 with a summary and suggestions for future research.

2 Preliminaries

The popularity of RST as a tool for handling uncertainty
in data has risen since its introduction in the early 1980s
and it has been used successfully in a number of applica-
tions such as data mining, knowledge discovery, and deci-
sion making[23,28−30] . Its role in knowledge-oriented clus-
tering will become apparent in the next section but a pre-
liminary overview of the main rough set concepts will be
given here.

Definition 1. Information system
An information system is defined as a family of sets

A = (U, A) where U is a non-empty universe of objects
and A is a finite non-empty set of attributes such that
∀a ∈ A, a : U → Va, where Va is the value set of a.

Definition 2. Decision system
Let U be a finite universe of objects and A a finite

set of attributes. A decision system is the family of sets
A = (U, A ∪ {d}) such that d /∈ A is a decision attribute

and members of A are referred to as condition attributes.
Definition 3. B-indiscernibility relation
Let A = (U,A) be an information system. Given a set

of attributes B ⊆ A, classes are formed according to a B-
indiscernibility relation.

IndA(B) = {x, x′ ∈ U : ∀a ∈ B, a(x) = a(x′)} (1)

which induces a partitioning of the universe U according
to the attribute set B. The resultant classes are known as
indiscernibility classes [x]B .

The B-indiscernibility relation is a mathematical equiva-
lence relation that partitions U into a finite number of dis-
joint equivalence (indiscernibility) classes [x]B as depicted
in Fig. 3.

Fig. 3 Partitioning of a universe U

Thus, any set X ⊆ U can be approximated solely on the
basis of information in B ⊆ A by constructing a B-lower
approximation and B-upper approximation of X defined
respectively as:

Definition 4. B-lower and upper approximations
Let A = (U, A) be an information system and IndA(B)

an indiscernibility relation placed on universe U with re-
spect to the attribute set B ⊆ A. For a given set X ⊆ U a
B-lower approximation of X is defined as

BX = {x : [x]B ⊆ X} (2)

and a B-upper approximation of X is defined as

BX = {x : [x]B ∩ X �= Ø}. (3)

The lower approximation consists of objects that def-
initely belong to X and the upper approximation con-
tains objects that possibly belong to X. Consequently,
X is classified as a rough set if its B-boundary region,
BNB(X) = BX−BX, is non-empty. In other words, there
is a region of uncertainty regarding set membership. This
uncertainty may be quantified for individual points x by
assessing the degree of overlap between the indiscernibility
class [x]B and the rough set X. In this manner, classifica-
tions maintain a global sense of knowledge.

3 Knowledge-oriented clustering: Gen-
eric framework

The generic clustering framework shown in Figs. 1 and
2 illustrates how points are traditionally assigned to clus-
ters according to the two categories of clustering. Although
the two procedures are distinct in both their algorithmic
construction and the premise upon which final clusters are
obtained, both of them rely on the local data properties
to refine clustering formations. In the context of hierar-
chical clustering, this is achieved with the calculation of
distances between clusters whereas the use of local opti-
mality in partitional clustering leads to the final clustering
solution. Without doubt, the two techniques have achieved
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success in a range of applications[5,7,10,16] but by extract-
ing selected useful properties of the algorithms and teaming
them with tools from RST, it is possible to overcome some
of the drawbacks associated with these traditional meth-
ods through the use of knowledge-oriented (K-O) cluster-
ing. The algorithmic framework of K-O clustering is similar
to that of agglomerative hierarchical clustering as shown in
Fig. 1. However, the main clustering tool is a form of in-
discernibility relation taken from RST. In using a simple
algorithmic framework, K-O clustering is computationally
efficient. Furthermore, the combined use of tools from hi-
erarchical clustering and RST allows clusters to be formed
using both local and global properties of the data. Fig. 4
shows the used algorithm.

Fig. 4 The knowledge-oriented clustering algorithm

The above algorithm includes the following steps:
Step 1. Construct a matrix of similarities S =

{s(xi, xj)} between all pairs of objects.
Step 2. Assign an initial indiscernibility relation Ri to

each object in the universe. Pool information to obtain an
initial clustering U/R.

Step 3. Construct an indiscernibility matrix Γ =
{γ(xi, xj)} to assess the clustering U/R.

Step 4. Modify clustering according to a modified in-
discernibility relation Rmod

i to gain a modified clustering
U/Rmod.

Step 5. Repeat Steps 3 and 4 until a stable clustering is
obtained.

The notions of similarity and indiscernibility will be in-
troduced and discussed in Section 3.1. Section 3.2 details
the idea of initial clustering in a generic knowledge-oriented
clustering framework.

3.1 Similarity and indiscernibility
Knowledge-oriented clustering is under-pinned by the

construction of two key symmetric matrices; similarity S =
{s(xi, xj)} and indiscernibility Γ = {γ(xi, xj)}. They re-
spectively control the local and global extraction of knowl-
edge used to obtain and modify clustering formations. The
similarity matrix S is calculated once in the initialization
stage of Step 1 of the algorithm whereas the indiscernibil-
ity matrix Γ is updated iteratively (see Step 3) until con-
vergence to a final clustering solution is achieved. The re-
calculation of the indiscernibility matrix at each iteration
reflects updated global knowledge of the data whereas the
single similarity matrix displays inherent local distances be-
tween points.

The local properties of points depend on how similar they
are to each other, thus the form of the similarity matrix S
is dependent on the distance measure chosen to determine

similarity s(xi, xj) between pairs of objects. Most cluster-
ing algorithms are designed to deal solely with numerical
attributes, however, many of the data collected consists of
a mixture of both numerical and categorical attributes (e.g.
medical data sets). Thus, there is a need for a measure
which can take into account the mixed nature of the data.
A combined similarity measure of the following form is sug-
gested:

s(xi, xj) =
knum

k

⎛
⎝1 − snum(xi, xj)

max
i,j

snum(xi, xj)

⎞
⎠ +

kcat

k

⎛
⎝1 − scat(xi, xj)

max
i,j

scat(xi, xj)

⎞
⎠ (4)

where xi, xj are objects in a universe U , k = knum + kcat is
the total number of attributes, snum is the similarity mea-
sure for numerical data, and scat is the similarity measure
for categorical data and also is essentially the Hamming
distance.

The Hamming distance is an appropriate scat measure[31]

but the choice of a suitable snum measure is more difficult
due to the nature of the data and the wide selection of
possible measures. The Euclidean distance measure is well-
established and popular, being used in a variety of statisti-
cal analyzes, and is a special case of the Minkowski metric.
However, for the purpose of clustering, the fact that the
Euclidean distance is scale-invariant can lead to distorted
results. Although this can be rectified by standardizing the
data, it should be remembered that this process can itself
effect the clustering solution. Another alternative is to use
the Mahalanobis distance. This measure takes into account
the covariance structure of the attributes and acknowledges
the fact that significant correlations between attributes may
influence the final result. Again, this cannot be applied in
all circumstances since it relies on the assumptions of nor-
mality and homoscedacity in the attributes. It has been
suggested by Manly[32] that the Penrose measure is a more
appropriate replacement for the Mahalanobis distance when
dealing with data sets that have less than 100 degrees of
freedom. In summary, the choice of an appropriate snum

measure is reliant on a number of factors including the size
and application of the data as well as statistical properties
and it must be chosen accordingly to the conditions of the
given clustering problem.

Global knowledge of the data is represented as the pro-
portion of points that regard each pair of points in the
universe to be indiscernible. The information is displayed
in the indiscernibility (or “gamma”) matrix Γ which is
constructed in Step 3 of the algorithm to assess a given
clustering formation and induce modification if necessary.
Its entries γ(xi, xj) represent an indiscernibility degree[31]

between each pair of objects xi and xj , such that 0 ≤
γ(xi, xj) ≤ 1. The resultant indiscernibility matrix is de-
fined as follows.

Definition 5. Indiscernibility matrix
Let A = (U,A) be an information system with non-

empty finite universe U = {x1, x2, · · · , xn} and attribute
set A = {a1, a2, · · · , ak}. For a given clustering of the uni-
verse, the indiscernibility matrix Γ = {γ(xi, xj)} represents
the global proportion of objects that regard each pair of
objects in the universe to be indiscernible, where the indis-
cernibility degree γ(xi, xj) for each pair of objects is given
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by

γ(xi, xj) =

|U|∑
k=1

γindis
k (xi, xj)

|U|∑
k=1

γindis
k (xi, xj)+

|U|∑
k=1

γdis
k (xi, xj)

(5)

where

γindis
k (xi, xj) =

{
1, if xkRkxi and xkRkxj

0, otherwise
(6)

and

γdis
k (xi, xj) =

{
1, if not(xiRkxj)

0, otherwise
. (7)

It should be noted that the notion of indiscernibility in this
context is more general than the form outlined in Definition
3 and no longer satisfies every property of an equivalence
relation. Definition 3 defines objects to be indiscernible if
they possess identical attribute values, whereas the general
form of indiscernibility (see Definition 6) allows objects to
be regarded as indiscernible if their similarity value s(xi, xj)
exceeds some pre-determined threshold. With this idea, the
relation Rk represents well-defined indiscernibility relation
used to partition the universe into classes. γindis

k (xi, xj) as-
sesses indiscernibility between xi and xj . It takes the value
1 if xi, xj , and xk all lie in the same indiscernibility class
according to the relation Rk. The inclusion of object xk ac-
knowledges the fact that similarity is measured locally with
respect to this point. Conversely, γdis

k (xi, xj) is equal to 1 if
xi and xj are discernible with respect to Rk. In other words,
they do not lie in the same indiscernibility class according
to relation Rk.

The success of knowledge-oriented clustering hinges on
the information obtained from the similarity and indiscerni-
bility matrices. In the first instance (Step 1), the similarity
matrix S draws out local properties of the data in the form
of raw distances between points. Since this knowledge forms
the basis of the initial indiscernibility relation Rk used to
gain a first partitioning of the universe, and since the initial
partitioning should be optimal in the sense that a meaning-
ful and representative clustering of the data is ultimately
attainable, the selection of an appropriate similarity mea-
sure is crucial. On the other hand, the indiscernibility ma-
trix Γ, calculated in Step 3 of the algorithm, displays global
knowledge about the positioning of points in the universe
which is then used to modify a given clustering into coarser
and more meaningful clusters.

3.2 Initial clustering of the data

After initializing the knowledge-oriented clustering algo-
rithm with the calculation of the similarity matrix S, it
is necessary to obtain an initial clustering of the universe
(see Step 2). This step is dependent on the local knowl-
edge displayed in the similarity matrix and provides a quick
overview of the clustering structure of the data, which can
be later modified to form definitive clusters. The initial
clustering should in some sense represent a best possible
first clustering. However, it should be noted that this no-
tion of optimality does not necessarily imply the initial clus-
tering with the least number of clusters. Since clusters may
be subsequently joined but not re-partitioned, it does not
increase the computational burden to obtain a high number
of initial clusters.

The initial clustering of the data is governed by key
threshold parameters which must be chosen to ensure a true
reflection of inherent clustering properties. Failure to do so
will lead to a distorted final clustering. Specifically, a set of
initial threshold values {Thi}n

i=1 is selected to correspond
to a set of initial indiscernibility relations {Ri}n

i=1 which are
assigned to each object in the universe. The above modified
form of indiscernibility allows two points to belong to the
same indiscernibility class if the similarity value exceeds a
pre-determined threshold.

Definition 6. Initial indiscernibility relation
Let A = (U,A) be an information system with non-

empty finite universe U = {x1, x2, · · · , xn} and attribute
set A = {a1, a2, · · · , ak}. An initial indiscernibility relation
Ri is assigned to each object in the universe as follows:

Ri = {(xi, xj) ∈ U × U : s(xi, xj) ≥ Thi, j = 1, 2, · · · , n}
(8)

where s(· , ·) is the similarity measure between two objects
and Thi is a derived initial threshold value for object xi.

Ri induces a partition U/Ri of the universe for all
i = 1, · · · , n. Those objects that are similar to xi (Pi =
{xj : xiRixj}) and those objects that are not similar to xi

(U − Pi = {xj : not (xiRixj)}). After obtaining the initial
set of partitions, {U/Ri : i = 1, 2, · · · , n}, the information
is pooled to obtain an overall initial partitioning of the uni-
verse U/R, referred to as the initial clustering. The way in
which the partitionings {U/Ri}n

i=1 are formed and, thus,
the formation of the initial clustering U/R is highly depen-
dent on the choice of the thresholds {Thi}n

i=1. Hirano and

Tsumoto[31] made an attempt to set these initial thresh-
old values autonomously using the notion of gradient level
similarity. This was achieved by applying a form of Gaus-
sian smoothing to their chosen similarity function to obtain
derivative values. Threshold values were selected to corre-
spond to comparably large similarity decreases. However,
not only is this technique computationally intensive, but
the notion of using interpolation to obtain derivative values
results in a high degree of error, particularly in small data
sets. A method to overcome these drawbacks in setting the
initial threshold values is suggested in Section 4.

4 Knowledge-oriented clustering with
autonomy

Knowledge-oriented clustering algorithms can be framed
within a generic algorithmic framework shown in Fig. 4, but
the efficiency and optimality of the algorithm is dependent
on the selection of individual threshold parameters. Not
only is this relevant to the initial clustering of the uni-
verse, but it is also true in the modification stages of the
algorithm (see Step 4) where further threshold values de-
termine updated partitionings of the universe. However,
whereas traditional hierarchical clustering algorithms[1−10]

rely on subjectivity to determine parameters, it is desir-
able to develop a set of well-defined procedures for setting
the required thresholds autonomously at each stage of the
knowledge-oriented clustering algorithm. Thus, the same
(or a highly similar) clustering solution is ensured upon
applying the algorithm through independent means to the
same data. This section details such procedures within the
generic framework outlined in Section 3. Section 4.1 in-
troduces a method for obtaining a set of initial threshold
values {Thi}n

i=1 which will lead to an optimal initial clus-



94 International Journal of Automation and Computing 05(1), January 2008

tering of the universe. The notion of cluster modification is
discussed in Sections 4.2 and 4.3.

4.1 Autonomous initial clustering of the
data

The initial clustering of the universe is a crucial stage in
the knowledge-oriented clustering procedure. If it is done
in an incorrect manner, the subsequent clusterings will not
fully reflect inherent data structures, which will lead to a
distorted and meaningless final clustering. Since the initial
partitioning is achieved by imposing initial indiscernibility
relations (8) on the data, which are themselves dependent
upon selected threshold values {Thi}n

i=1, it is the setting of
these thresholds that holds the key to a meaningful cluster-
ing of the universe. A method is suggested here to deter-
mine the initial thresholds autonomously while maintaining
the key goal of computational efficiency.

In a physical sense, the centre of gravity (CoG) is an
imaginary point around which the centre of an object′s
weight lies. Using this idea, points in a plane can be sepa-
rated into two classes by a line upon which their CoG lies.
For two distinct and equally weighted clusters of points,
the line will lie mid-way between them. Naturally, when
the distinction between clusters becomes more ambiguous,
the line will move up or down to reflect this change. In the
K-O clustering algorithm, the initial threshold values take
on this role of partitioning the objects into two classes. The
closer the points lie to the object in question, the “higher”
the threshold line is expected to be. In other words, a sen-
sible positioning of the initial threshold line is the line upon
which the CoG of the points lies. This is referred to as the
CoG line as shown in Fig. 5.

Fig. 5 Centre of gravity line

The CoG line of a set of points in the plane is posi-
tioned such that the sum of all perpendicular distances from
the points to this line is zero. These calculations may be
weighted if the CoG line is seemingly distorted by outlying
points. Following this method, an initial threshold Thi cor-
responding to the object xi may be obtained by selecting
the similarity value s(xi, xk), k = 1, 2, · · · , n, which mini-
mizes the following sum of differences

∣∣∣∣∣
n∑

j=1

(s(xi, xj) − ws(xi, xk))

∣∣∣∣∣ , i = 1, 2, · · · , n (9)

where w is a weighting value that is usually set to 1 but may
be set to 2 to raise the CoG line if necessary. This procedure
produces a set of initial threshold values corresponding to

each object in the universe from which the initial partition-
ings may be obtained. This information is then pooled to
obtain the initial clustering of the universe U/R.

4.2 Assessment and modification of clus-
ters

As mentioned earlier, the algorithm in the initial step
will consist of a relatively high number of clusters. This
is a result of the way in which the initial indiscernibility
relations partition the universe. Specifically, each initial in-
discernibility relation Ri imposes a partitioning of the uni-
verse U/Ri consisting of two classes. High numbers of initial
clusters occur if the relation Ri disagrees on which pairs of
points should belong to the same class. For example, for
a given information system, if relation Ri places objects xi

and xj in different classes, they will automatically belong
to different clusters in the initial clustering; even if every
other indiscernibility relation places them in the same class.
This may be rectified in the later steps of the algorithm
using global modification which alters this and, thus, the
need for a high number of clusters. The global modification
of any given clustering is controlled by the indiscernibility
matrix Γ = {γ(xi, xj)} introduced in Section 3. Its entries
γ(xi, xj) assess the indiscernibility degree between each pair
of objects in the universe, and determine what proportion
of the initial indiscernibility relations regard the two points
to be indiscernible. In this way, the indiscernibility degree
between two objects overlooks local discrepancies between
equivalence relations. Modification to the given clustering
is then performed using a modified indiscernibility relation
as defined below:

Definition 7. Modified indiscernibility relation
Let A = (U,A) be an information system with non-

empty finite universe U = {x1, x2, · · · , xn} and attribute
set A = {a1, a2, · · · , ak}. Suppose that U/R is a given clus-
tering of the universe. The clustering is modified according
to the indiscernibility relation:

Rmod
i = {(xi, xj) ∈ U × U : γ(xi, xj) ≥ Thγ , j = 1, · · · , n}

(10)

where Thγ is a pre-determined gamma threshold value.
In performing modification, a given clustering U/R is

adapted to gain a coarser and more meaningful clustering
of the universe U/Rmod. As with the initial thresholds,
the choice of the gamma threshold value at each modifica-
tion step will directly influence the final clustering obtained.
Therefore, this value is chosen carefully. In a previous work,
the gamma value was effectively hand-picked with a view to
assessing the validity of the obtained clusterings and allow-
ing for re-selection of an appropriate value if necessary[29].
This method provides good clusterings and be in keeping
with the desire to maintain a high degree of autonomy and
computational efficiency in the algorithm; it is preferable
and less cumbersome to select the gamma threshold value
autonomously according to some pre-determined accuracy
criterion. A method for achieving this based on a defined
clustering accuracy measure is suggested in Section 4.3.

4.3 Autonomous selection of gamma
thresholds in cluster modification

The aim of knowledge-oriented clustering is to use both
local and global knowledge to determine the partitioning of
a given data set which, in some sense, represents an “ac-
curate” clustering of the universe. Thus, it is possible to
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assess the accuracy of a given clustering numerically as a lin-
ear combination of two distinct accuracy measures, accwithin

and accbetween. They represent within and between-clusters
accuracy, respectively (see Definitions 8 and 9). The within-
clusters accuracy accwithin determines the degree of homo-
geneity within clusters for a given clustering formation. It
is calculated as the mean (with respect to the number of
clusters K) of the set of standard deviations of the unique
similarity values corresponding to the objects in each clus-
ter. For consistency, the trivial case of similarity between
a point and itself is included. The result is modified to re-
duce the occurrence of too many clusters containing just one
point (i.e., one point clusters). Between-clusters accuracy
(accbetween) is taken as the mean of the minimum distances
between each cluster, where the set of appropriate distances
has been reduced to exclude distances between clusters ly-
ing at extreme ends of the clustering space. The aim is to
obtain a clustering which reflects a high degree of homo-
geneity within the clusters and the opposite between the
clusters. Because of the nature of the similarity value (4),
a lower value of acc represents a more accurate clustering.

Definition 8. Let U/R = {C1, C2, · · · , CK} be a
clustering of the universe U . If a given cluster Ck, k ∈
{1, 2, · · · , K}, contains m objects {x1, x2, · · · , xm}, define
the function A(Ck) :

A(Ck) =

√√√√√
m∑

j>i

m∑
i=1

[s(xi, xj)−μCk ]2

m
(11)

where s(xi, xj) represents the similarity between objects xi

and xj , and μCk is the mean of the similarity values in clus-
ter Ck. The within clusters accuracy for the clustering U/R
is defined as

accwithin(U/R) =

K∑
k=1

A(Ck)

K
· P 2 (12)

where P is the number of clusters with cardinality 1.
Definition 9. Let U/R = {C1, C2, · · · , CK} be a clus-

tering of the universe U . Let d(Ci, Cj) be the minimal dis-
tance between the clusters Ci and Cj , and it is calculated
as the maximum similarity value between points in each
cluster for the similarity measure defined in (4). Define

X =

2
K−1∑
i=1

K∑
j=i+1

d(Ci, Cj)

K(K − 1)
, K > 1 (13)

and let B = {d(Ci, Cj) : d(Ci, Cj) ≥ X}. The between-
clusters accuracy for the clustering U/R is defined as

accbetween(U/R) = μ(B) (14)

where μ represents the mean value of the set B.
Using Definitions 8 and 9, a gamma threshold value can

be chosen autonomously according to the following Propo-
sition.

Proposition. If U/R is a given clustering of the universe
U and {Thγi}N

i=1 is a pre-determined set of possible gamma
thresholds, then the threshold Thγ used to achieve the mod-
ified clustering U/R mod is chosen from the set {Thγi}N

i=1

to correspond to the minimum accuracy value

min
U/Rγi

acc(U/Rγi) = min
U/Rγi

{0.1accwithin(U/Rγi )+

0.9accbetween(U/Rγi)} (15)

where {U/Rγi}N
i=1 are the partitionings generated by the

values {Thγi}N
i=1, respectively.

The modification process is iterated until convergence to
a value of the stable acc is achieved, at which the corre-
sponding clustering is deemed to be the final and optimal
clustering of the universe with respect to the defined accu-
racy value (15).

5 Experimental results

In this section, three data sets are clustered using the
above algorithm. In the first instance, knowledge-oriented
clustering with autonomy is used to cluster a small test data
set. In Section 5.1 a step-by-step break-down of the proce-
dure, which corresponds to the generic algorithmic frame-
work shown in Fig. 4, is given. The food nutrient data,
available in the Agriculture Yearbook[33], is clustered in Sec-
tion 5.2 as a practical demonstration of the algorithm. Sec-
tion 5.3 concludes with an illustration of knowledge-oriented
clustering on a small mixed attribute data set.

5.1 Laboratory generated data results

A small test data set, consisting of 18 objects and 2 con-
tinuous attributes listed in Table 1, was generated in the
department to verify the functionality of the autonomous
knowledge-oriented clustering algorithm.

Table 1 Clustering data

Object Attribute 1 Attribute 2 Object Attribute 1 Attribute 2

x1 0.05 0.13 x10 0.40 0.54

x2 0.06 0.32 x11 0.72 0.90

x3 0.11 0.21 x12 0.74 0.74

x4 0.16 0.10 x13 0.47 0.57

x5 0.19 0.25 x14 0.49 0.50

x6 0.23 0.13 x15 0.76 0.83

x7 0.06 0.47 x16 0.61 0.55

x8 0.68 0.80 x17 0.84 0.80

x9 0.69 0.74 x18 0.52 0.60

The data set is sufficiently small to enable the workings of
the algorithm to be described in an explicit manner, while
the clear clustering structure shown in Fig. 6 highlights the
data as a suitable candidate for any clustering procedure.
Through visual analysis of the data plot, three clusters seem
apparent. However, upon applying K-O clustering to the
data, a result of four clusters is achieved as shown in Fig. 7.
This suggests that the use of global modification draws out
the inherent global data properties which remain concealed
in a locally-dependent algorithm. To outline the detailed
process of K-O clustering, a summary of the step-by-step
procedure for the data in Table 1, as stated in Fig. 4, is
provided below. Upper triangular forms of the symmetric
similarity matrix (see Table A1 of Appendix) and indis-
cernibility matrices (see Tables A2 and A3 of Appendix)
for all stages in the algorithm are provided in Appendix.
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Fig. 6 Initial clusters

Fig. 7 Final clusters

Step 1. Construct matrix of similarities between all
pairs of objects.

The Euclidean distance was selected as an appropriate
snum measure for this data and similarity between objects
x1 and x2, i.e., s(x1, x2), and objects x1 and x18, i.e.,
s(x1, x18), are calculated as

s(x1, x2) = 1−
√

(0.05 − 0.06)2 + (0.13 − 0.32)2

1.0359
= 0.81632

s(x1, x18) = 1−
√

(0.05 − 0.52)2 + (0.13 − 0.6)2

1.0359
= 0.35833

where max
i,j

snum(xi, xj) = 1.0359. Because of the nature of

the similarity measure (4), similarity values closer to 1 indi-
cate a greater similarity between the objects. The complete
similarity matrix is displayed in Table A1 of Appendix.

Step 2. Assign an initial indiscernibility relation Ri to
each object in the universe and pool the information to ob-
tain an initial clustering U/R.

Initial threshold values Thi were assigned to each object
in the universe using the centre of gravity method (9) with
w = 2. The results for the objects x1 and x18 are displayed
below.

U/R1 = {{x1, x2, x3, x4, x5, x6},
{x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18}}

...
U/R18 = {{x9, x10, x13, x14, x16, x18},

{x1, x2, x3, x4, x5, x6, x7, x8, x11, x12, x15, x17}}

where Th1 = 0.81632 and Th18 = 0.7874. When pooling
the individual partitionings, the initial partitioning of the
universe U/R produced 8 clusters as shown in Fig. 6.

U/R = {{x1, x2, x3, x5}, {x4}, {x6}, {x7},
{x8, x11, x15, x17}, {x9}, {x10, x13, x14, x16, x18}, {x12}}.

Step 3. Construct an indiscernibility matrix to assess the
clustering U/R.

Using (5), the indiscernibility degrees between the object
x1 and various other objects are shown as follows.

γ(x1, x2) = 1,

γ(x1, x4) = 0.85714,

γ(x1, x7) = 0.42857.

These results indicate that 100% of the relations assign
the objects x1 and x2 to the same class whereas only 42.86%
of the relations would place x1 and x7 together.

Step 4. Modify clustering according to a modified in-
discernibility relation Rmod

i to gain a modified clustering
U/Rmod.

After calculating the complete gamma matrix, the initial
clustering was modified with Thγ = 0.5. Two examples of
the individual modified partitionings are shown below fol-
lowed by the modified clustering of the universe
U/Rmod:

U
/
R mod

1 = {{x1, x2, x3, x4, x5, x6},
{x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18}}

...

U
/
R mod

18 = {{x10, x13, x14, x16, x18},
{x1, x2, x3, x4, x5, x6, x7, x8, x9, x11, x12, x15, x17}}

U/Rmod = {{x1, x2, x3, x4, x5, x6}, {x7},
{x8, x9, x11, x12, x15, x17}, {x10, x13, x14, x16, x18}}.

Step 5. Repeat Steps 3 and 4 until a stable clustering is
obtained.

For the data given in Table 1, convergence to the final
solution was obtained after just one iteration. Fig. 7 shows
the resulting clusters.

5.2 Practical clustering demonstration:
Food nutrient data

The second data set to be considered is a real-world appli-
cation. The food nutrient data available in the Agriculture
Yearbook[33] have been clustered here using K-O cluster-
ing both with and without autonomy[28]. Tables 2 and 3
list the results. This classical clustering data set consists of
27 objects, including different types of meat, fish and foul
and 5 attributes (i.e., food-calories, protein, fat, calcium
and iron), as shown in Table A4 of Appendix. Protein and

iron were found to be superfluous to the clustering[8]. Thus,
for the purpose of visualizing the final clusters, the results
obtained using 3 attributes, food-calories, fat and calcium,
will be discussed.
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Table 2 Autonomous clustering results for food nutrient data

(Initial number of clusters is 17.)

Iteration Thγ Clusters acc

1 0.3 11 0.7473

2 0.5 7 0.7173

Table 3 Non-autonomous clustering results for food nutrient

data (Initial number of clusters is 16, and Thstd = 0.11.)

Iteration Thγ Clusters acc

1 0.5 14 0.7625

2 0.4 9 0.7575

3 0.1 5 0.7452

Tables 2 and 3 display the results of K-O clustering with
and without autonomy, respectively. The autonomous al-
gorithm converges after 2 iterations to a final solution of 7
clusters (see Table 2) and the algorithm without autonomy

converged after 3 iterations to a solution of 5 clusters (see
Table 3). Since the algorithmic framework of knowledge-
oriented clustering is similar to that of hierarchical cluster-
ing shown in Fig. 4, these results are compared in Table 4 to
those obtained by using four traditional agglomerative hi-
erarchical clustering techniques, namely complete-linkage,
single-linkage, average-linkage and Ward′s method where
the numbers indicate cluster membership. Although the
two knowledge-oriented methods led to different final so-
lutions, the similarities between the resulting clusters far
out-weigh the differences. Thus, we suggest that both ver-
sions of the K-O algorithm have identified the salient fea-
tures of the data. Furthermore, autonomous K-O cluster-
ing is operated with minimal subjectivity which guarantees
consistent results when it is applied to the same data by
different users. In contrast, the different methods within
the agglomerative hierarchical clustering category produce
different solutions on the same data. A cross-section of
the similarity and gamma values calculated throughout the
procedure is provided in Tables 5–7. The corresponding five
numbered objects are shown in Fig. 8, where the Euclidean
distance was chosen as the snum measure.

Table 4 Comparison of clustering results for food data

Object Food item K-O with autonomy K-O without autonomy Complete-linkage & Ward′s Single-linkage Average-linkage

1 Braised beef 1 1 1 1 1

2 Hamburger 5 5 2 1 1

3 Roast beef 7 1 1 7 1

4 Beef steak 1 1 1 1 1

5 Canned beef 2 2 2 2 2

6 Broiled chicken 3 2 3 2 2

7 Canned chicken 2 2 2 2 2

8 Beef heart 2 2 2 2 2

9 Roast lamb leg 5 5 2 1 1

10 Roast lamb shoulder 1 1 2 1 1

11 Smoked ham 1 1 1 1 1

12 Roast pork 1 1 1 1 1

13 Simmered pork 1 1 1 1 1

14 Beef tongue 2 2 2 2 2

15 Veal cutlet 2 2 2 2 2

16 Baked bluefish 3 2 3 2 2

17 Raw clams 3 3 3 3 3

18 Canned clams 3 3 3 3 3

19 Canned crabmeat 3 2 3 2 2

20 Fried haddock 2 2 3 2 2

21 Broiled mackerel 2 2 2 2 2

22 Canned mackerel 6 3 3 6 3

23 Fried perch 2 2 2 2 2

24 Canned salmon 6 3 3 6 3

25 Canned sardines 4 4 4 4 4

26 Canned tuna 2 2 2 2 2

27 Canned shrimp 3 2 3 5 3
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Table 5 Similarity values for food nutrient data

s(xi, xj) x4 x10 x22 x24 x25

x4 1 0.8263 0.3863 0.3150 0.0586

x10 0.8263 1 0.5208 0.4578 0.1286

x22 0.3863 0.5208 1 0.9186 0.5124

x24 0.3150 0.4578 0.9186 1 0.5008

x25 0.0586 0.1286 0.5124 0.5008 1

Table 6 Gamma values at iteration 1 for food nutrient data

γ(xi, xj) x4 x10 x22 x24 x25

x4 1 0.6667 0 0 0

x10 0.6667 1 0 0 0

x22 0 0 1 1 0.1429

x24 0 0 1 1 0.1429

x25 0 0 0.1429 0.1429 1

Table 7 Gamma values at iteration 2 for food nutrient data

γ(xi, xj) x4 x10 x22 x24 x25

x4 1 0.9231 0 0 0

x10 0.9231 1 0 0 0

x22 0 0 1 1 0

x24 0 0 1 1 0

x25 0 0 0 0 1

Fig. 8 Final clusters of the food nutrient data

5.3 Mixed attribute data

To establish the effectiveness of the autonomous
knowledge-oriented clustering algorithm on a mixed at-
tribute data set, the small data set shown in Table 8 has
been clustered. It consists of 9 objects and 4 attributes (2
continuous attributes and 2 categorical attributes), and was

originally used by Hirano and Tsumoto[31] .

Table 8 Mixed attribute data set

Object Attribute 1 Attribute 2 Attribute 3 Attribute 4

x1 0.0 0.0 Round Small

x2 0.1 0.0 Round Small

x3 0.0 0.1 Round Small

x4 0.1 0.1 Round Small

x5 0.15 0.15 Square Small

x6 0.3 0.3 Square Large

x7 0.4 0.3 Square Large

x8 0.3 0.4 Square Large

x9 0.4 0.4 Square Large

The similarity matrix S shown in Table A5 of Appendix
was calculated using the Euclidean distance as an appro-
priate snum measure and the Hamming distance as the scat

measure. Using the centre of gravity method with w = 1,
the following initial indiscernibility relations were obtained
and led to an initial clustering U/R of four clusters.

U/R1, U/R2, U/R3, U/R4 =

{{x1, x2, x3, x4, x5}, {x6, x7, x8, x9}}
U/R5 = {{x2, x3, x4, x5}, {x1, x6, x7, x8, x9}}

U/R6, U/R7, U/R8, U/R9 =

{{x1, x2, x3, x4}, {x5, x6, x7, x8, x9}}
U/R = {{x1}, {x2, x3, x4}, {x5}, {x6, x7, x8, x9}}.

The algorithm converged with Thγ = 0.2 after just
one iteration to a final solution of three clusters,
U/R mod = {{x1, x2, x3, x4}, {x5}, {x6, x7, x8, x9}}. The
complete gamma matrix is displayed in Table A6 of Ap-
pendix. In contrast to the result obtained by Hirano
and Tsumoto[31] , autonomous knowledge-oriented cluster-
ing has placed point x5 into a cluster on its own, resulting
in three rather than two final clusters. However, both the
raw data (see Table 8) and the indiscernibility matrix (see
Table A6 in Appendix) exhibit a degree of ambiguity sur-
rounding the placement of this point. This suggests that the
autonomous K-O clustering has exhibited a greater sensi-
tivity to the inherent data knowledge by maintaining a one
point cluster containing the point x5.

6 Conclusions

Cluster analysis is an important exploratory technique
for discovering patterns and underlying structures in data.
The aim of clustering is to partition a data set into classes
such that within-class homogeneity is high and between-
class homogeneity weak. However, standard clustering tech-
niques, including agglomerative hierarchical algorithms, k-
means clustering and fuzzy c-means clustering, carry a num-
ber of inherent problems that directly influence the cluster-
ing solution. In all cases, a high degree of subjectivity is
required to obtain an “optimal” clustering solution. This
results in a non-unified approach to clustering, allowing for
different clusters to be obtained when a given technique is
applied to the same data by different people. This puts the
optimality of any given solution under scrutiny in terms of
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how well it really reflects true underlying data structures.
Furthermore, the standard techniques generally focus on
the clustering of single-type attribute data sets (e.g. con-
tinuous attributes) and are unable to cope easily with mixed
attribute data. In terms of clustering applications, such as
medical data, this is a major disadvantage.

To overcome these problems, this paper has proposed an
autonomous knowledge-oriented clustering algorithm. The
algorithmic framework forms clusters autonomously accord-
ing to some pre-defined accuracy measure. In this way, the
technique is standardized in the sense that multiple applica-
tions of the algorithm to the same data by different people
will guarantee the same clustering solution. The algorithm
handles mixed attribute data with ease and is such that no
modification to the algorithm is needed to move between
data sets of different attribute types.

It should be noted that the convergence of the algorithm
to an “optimal” solution is governed by the similarity and
indiscernibility matrices, which represent local and global
knowledge, respectively. In other words, teaming with

the algorithm′s standardized approach gives knowledge-
oriented clustering the edge over other techniques. By in-
corporating global knowledge into the procedure, a coarse
and representative clustering of the universe is obtained ef-
ficiently.

It is demonstrated that the use of global modification
draws out the important data properties, which remain
hidden in the standard clustering algorithms, and leads
to a representative clustering. It is hypothesized that the
knowledge-oriented clustering procedure may be used to ex-
tract “optimal” and non-ambiguous rules for a decision sup-
port system[28]. It remains a further work to assess the per-
formance of the algorithm in situations of high ambiguity
where clusters lie particularly close or are, indeed, overlap-
ping.

Appendix

Tables A1–A4 are listed as follows.

Table A1 Similarity matrix for laboratory generated data

The values of the elements in the matrix

1 0.816 0.904 0.890 0.822 0.826 0.672 0.112 0.147 0.480 0.015 0.111 0.413 0.445 0.038 0.324 0 0.358

1 0.883 0.767 0.858 0.754 0.855 0.243 0.270 0.610 0.152 0.228 0.536 0.550 0.164 0.425 0.116 0.480

1 0.883 0.9137 0.861 0.744 0.208 0.242 0.576 0.111 0.205 0.509 0.539 0.133 0.416 0.094 0.454

1 0.852 0.927 0.630 0.158 0.198 0.516 0.057 0.166 0.456 0.499 0.088 0.386 0.058 0.405

1 0.878 0.753 0.289 0.324 0.654 0.190 0.289 0.590 0.623 0.215 0.502 0.178 0.536

1 0.633 0.221 0.262 0.572 0.119 0.232 0.516 0.563 0.152 0.453 0.125 0.467

1 0.322 0.338 0.665 0.240 0.294 0.593 0.584 0.240 0.464 0.182 0.539

1 0.941 0.631 0.896 0.918 0.700 0.657 0.918 0.749 0.846 0.753

1 0.660 0.843 0.952 0.732 0.698 0.890 0.801 0.844 0.787

1 0.535 0.619 0.927 0.905 0.554 0.797 0.507 0.871

1 0.844 0.600 0.555 0.922 0.646 0.849 0.652

1 0.692 0.665 0.911 0.778 0.887 0.748

1 0.930 0.624 0.864 0.580 0.944

1 0.588 0.875 0.555 0.899

1 0.693 0.918 0.679

1 0.672 0.901

1 0.636

1

Table A2 Indiscernibility matrix at iteration 1 for laboratory generated data

The values of the elements in the matrix

1 1 1 0.857 1 0.714 0.429 0 0 0 0 0 0 0 0 0 0 0

1 1 0.857 1 0.714 0.429 0 0 0 0 0 0 0 0 0 0 0

1 0.857 1 0.714 0.429 0 0 0 0 0 0 0 0 0 0 0

1 0.857 0.833 0.286 0 0 0 0 0 0 0 0 0 0 0

1 0.714 0.429 0 0 0 0 0 0 0 0 0 0 0

1 0.143 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

1 0.6 0 1 0.857 0 0 1 0 1 0

1 0.364 0.6 0.7 0.364 0.364 0.6 0.364 0.6 0.364

1 0 0.091 1 1 0 1 0 1

1 0.857 0 0 1 0 1 0

1 0.091 0.091 0.857 0.091 0.857 0.091

1 1 0 1 0 1

1 0 1 0 1

1 0 1 0

1 0 1

1 0

1
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Table A3 Indiscernibility matrix at iteration 2 for laboratory generated data

The values of the elements in the matrix

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 1 0 0 1 0 1 0

1 0 1 1 0 0 1 0 1 0

1 0 0 1 1 0 1 0 1

1 1 0 0 1 0 1 0

1 0 0 1 0 1 0

1 1 0 1 0 1

1 0 1 0 1

1 0 1 0

1 0 1

1 0

Table A4 Food nutrient data

Object Food item Calories Protein Fat Calcium Iron

1 Braised beef 340 20 28 9 2.6

2 Hamburger 245 21 17 9 2.7

3 Roast beef 420 15 39 7 2.0

4 Beef steak 375 19 32 9 2.6

5 Canned beef 180 22 10 17 3.7

6 Broiled chicken 115 20 3 8 1.4

7 Canned chicken 170 25 7 12 1.5

8 Beef heart 160 26 5 14 5.9

9 Roast lamb leg 265 20 20 9 2.6

10 Roast lamb shoulder 300 18 25 9 2.3

11 Smoked ham 340 20 28 9 2.5

12 Roast pork 340 19 29 9 2.5

13 Simmered pork 355 19 30 9 2.4

14 Beef tongue 205 18 14 7 2.5

15 Veal cutlet 185 23 9 9 2.7

16 Baked bluefish 135 22 4 25 0.6

17 Raw clams 70 11 1 82 6.0

18 Canned clams 45 7 1 74 5.4

19 Canned crabmeat 90 14 2 38 0.8

20 Fried haddock 135 16 5 15 0.5

21 Broiled mackerel 200 19 13 5 1.0

22 Canned mackerel 155 16 9 157 1.8

23 Fried perch 195 16 11 14 1.3

24 Canned salmon 120 17 5 159 0.7

25 Canned sardines 180 22 9 367 2.5

26 Canned tuna 170 25 7 7 1.2

27 Canned shrimp 110 23 1 98 2.6
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Table A5 Similarity matrix for mixed attribute data

The value of the elements in the matrix

1 0.9116 0.9116 0.8750 0.5625 0.1250 0.0581 0.0581 0

1 0.8750 0.9116 0.6102 0.1813 0.1250 0.1047 0.0581

1 0.9116 0.6102 0.1813 0.1047 0.1250 0.0581

1 0.6875 0.2500 0.1813 0.1813 0.1250

1 0.5625 0.4923 0.4923 0.4375

1 0.9116 0.9116 0.8750

1 0.8750 0.9116

1 0.9116

1

Table A6 Indiscernibility matrix for mixed attribute data

The values of the elements in the matrix

1 0.8 0.8 0.8 0.4444 0 0 0 0

1 1 1 0.5556 0 0 0 0

1 1 0.5556 0 0 0 0

1 0.5556 0 0 0 0

1 0.4444 0.4444 0.4444 0.4444

1 1 1 1

1 1 1

1 1

1
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