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Abstract: Dimensionality reduction and data visualization are useful and important processes in pattern recognition. Many
techniques have been developed in the recent years. The self-organizing map (SOM) can be an efficient method for this purpose. This
paper reviews recent advances in this area and related approaches such as multidimensional scaling (MDS), nonlinear PCA, principal
manifolds, as well as the connections of the SOM and its recent variant, the visualization induced SOM (ViSOM), with these approaches.
The SOM is shown to produce a quantized, qualitative scaling and while the ViSOM a quantitative or metric scaling and approximates
principal curve/surface. The SOM can also be regarded as a generalized MDS to relate two metric spaces by forming a topological
mapping between them. The relationships among various recently proposed techniques such as ViSOM, Isomap, LLE, and eigenmap
are discussed and compared.
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1 Introduction

Self-organization is a fundamental pattern recognition
process, in which intrinsic inter- and/or intra-pattern re-
lationships and structures within the sensory data are dis-
covered. Data projection and visualization methods are be-
coming increasingly popular tools for many data discovery
applications such as decision support[1], financial analysis[2],
information retrieval[3], knowledge management[4] and
bioinformatics[5] . Searching for a suitable data mapping
method has always been an integral objective of multivari-
ate data analysis and pattern recognition. Projecting data
onto its underlying subspace can detect its real structures,
facilitate functional analysis, and help make a judgment. A
great deal of research has been devoted to this subject and
a number of methods have been proposed.

Classic projection methods include principal component
analysis (PCA) and multidimensional scaling (MDS). The
PCA projects the data onto its principal directions, which
are represented by the orthogonal eigenvectors of the covari-
ance matrix of the data. The PCA′s linearity has limited
its power for practical data, as it cannot capture nonlinear
relationships defined by higher than second-order statistics.
If the input dimensionality is much higher than two, pro-
jection onto a linear plane will provide limited dimension
reduction or visualization power. Extension to nonlinear
can tackle practical problems better. However there is no
single and unique solution to nonlinear PCA[6]. Various
methods have been proposed such as. the auto-associative
networks[7], generalized PCA[8], kernel PCA[9], and the
principal curve and surface[10,11] . Other mapping methods
include the recently proposed local, geometric based group-
ing and averaging[12] and local linear embedding (LLE)[13].

Multidimensional scaling (MDS) tries to project data
points onto a two-dimensional plane by preserving as close
as possible the inter-point metrics[14,15] . The mapping gen-

Manuscript received date May 26, 2007; revised date June 5, 2007
E-mail address: h.yin@manchester.ac.uk

erally is nonlinear and can reveal the overall structure of
the data. Sammon[16] mapping is a widely known example
of MDS. However, MDS methods are generally point-to-
point mapping, which does not provide the explicit map-
ping function[16,17]. Neural networks have been used as al-
ternative approaches to nonlinear data projection. A feed-
forward neural network has been proposed to parameterize
the Sammon mapping function and a back-propagation al-
gorithm has been derived for training of the network and
minimizing the Sammon stress[17]. Neuroscale[18] is another
realization of the MDS using the radial basis function. Re-
cent developments also see the use of geodesic (curvature)
distance instead of Euclidean for capturing nonlinear man-
ifold better, e.g. in the Isomap[12].

The self-organizing map (SOM) is an abstract mathe-
matical model of the mapping between nerve sensory and
cerebral cortex[19,20]. Modeling and analyzing such map-
pings are important to understanding how the brain per-
ceives, encodes, recognizes, and processes the patterns it
receives and thus, if somewhat indirectly, are beneficial to
machine-based pattern recognition. Indeed the SOM has
been widely studied and applied in various pattern recogni-
tion tasks such as clustering, classification, data mining and
visualization. However, the SOM does not directly apply to
scaling, which aims to reproduce proximity in (Euclidean)
distance on a low visualization space, as it has to rely on a
coloring scheme to imprint the distances –that is very crude
and often the distributions of the data points are distorted
on the map. The recently proposed visualization induced
SOM (ViSOM)[21] constrains the lateral contraction force
between the neurons in the SOM and hence regularizes the
inter-neuron distances with respect to a scale-able param-
eter that defines and controls the resolution of the map.
It preserves the data structure as well as the topology as
faithfully as possible. The ViSOM provides a direct visual-
ization of both the structure and distribution of the data.

The remaining of the paper is organized as follows. Sec-
tion 2 provides a review on the SOM, its convergence and
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cost function, and related variants, especially the ViSOM,
for dimension reduction and data visualization. Then MDS
is reviewed and discussed along with recent advances in this
approach. Various methods proposed for nonlinear PCA are
then described in section 4, followed by the principal curve
and surfaces, the principled nonlinear extension of PCA in
section 5. The connections and relationships among vari-
ous approaches to nonlinear projection are discussed next.
Conclusions are drawn in the last section.

2 Self-organizing maps: a review

2.1 The SOM background

External stimuli are received by various sensory or re-
ceptive fields (e.g. visual-, auditory-, motor-, or somato-
sensory), coded or abstracted by the living neural networks,
and projected through axons onto the cerebral cortex, often
to distinct parts of cortex. The different areas of the cortex
correspond to different sensory inputs, though some func-
tions require collective responses from various areas. To-
pographically ordered mappings have been widely observed
in the cortex. Detailed areas (associative areas) are devel-
oped through self-organization gradually in a topographi-
cally meaningful fashion. Studying such topographic pro-
jections is important for forming dimension reduction map-
ping and for the effective representation of sensory informa-
tion and feature extraction.

Von der Malsburg and Willshaw first developed in math-
ematical form the self-organizing topographic mappings,
mainly from two-dimensional presynaptic sheets to two-
dimensional postsynaptic sheets, based on retinatopic map-
ping: the ordered projection of visual retina to visual
cortex[22,23]. Kohonen[19] abstracted this self-organizing
learning model and proposed a much simplified mechanism
which ingeniously incorporates the Hebbian learning rule
and lateral interconnection rules. This simplified model can
emulate the self-organization effect. Although the resulting
SOM algorithm was more or less proposed in a heuristic
manner, it is an abstract and generalized model of the self-
organization or unsupervised learning process.

2.2 The SOM algorithm

The SOM uses a set of neurons, often arranged in a 2D
rectangular or hexagonal grid or map, to form a discrete,
topological mapping of an input space, X∈ Rn. At the
start of the learning, all the weights {wwwrrr1, wwwrrr2, . . . ,wwwrrrM}
are initialized to small random numbers. Here wwwrrri is the
weight vector associated to neuron i and is a vector of the
same dimension, n, of the input. M is the total number of
neurons. rrri is the location vector (coordinates) of neuron i
on the grid. Then the algorithm repeats the following steps.

1) At each time t, present an input, xxx(t), select the win-
ner,

v(t) = arg min
k∈Ω

‖xxx(t) −wwwk(t)‖ . (1)

2) Updating the weights of winner and its neighbors,

Δwwwk(t) = α(t)η(v, k, t)[xxx(t) −wwwk(t)]. (2)

3) Repeat until the map converges.

where η(v, k, t) is the neighborhood function and Ω is the
set of neuron indexes. Although one can use the original
top-hat type of neighborhood function, a Gaussian form,
η(v, k, t) = exp(−||v−k||2/2σ(t)2), is often used in practice
with σ representing the effective range of the neighborhood.

The SOM algorithm vector-quantizes or clusters the in-
put space and produces a map which preserves topology.
It can also be and has been used for classification. In this
case, the map is trained on examples of known categories.
The nodes are then classified or labeled so that the map
can be used to classify unseen samples. The classification
performance can be further improved by the LVQ[20].

2.3 Convergence and cost function

The SOM is an unsupervised, associative memory
mechanism[24,25]. Such a mechanism is also related to vec-
tor quantization (VQ) in coding terms. The SOM has been
shown to be an asymptotically optimal VQ[26,27]. More im-
portantly, with the neighborhood learning, the SOM is an
error tolerant VQ and Bayesian VQ[28,29].

Convergence and ordering has only been proved in one
dimensional case and the full proof of both convergence and
ordering in multidimensional may not exist, though there
have been several attempts, e.g. [30-34]. Such an issue may
be due to the fact that no clearly agreed definition of order-
ing exists and may also be linked to the claimed lack of an
exact cost function that the algorithm follows as shown in
[31, 32]. Recent work by various researchers, however, has
shed light on this intriguing issue surrounding the SOM. In
[27] the Central Limit Theorem is extended and used it to
show that with diminishing neighborhood as in the origi-
nal SOM, the weight vectors are asymptotically Gaussian
distributed and will converge in mean square sense to the
means of the Voronoi cells. In [27], Yin and Allinson have
also proved that the initial state has diminishing effect on
the final weights when the learning parameters follow the
convergence conditions. Such an effect has been verified by
de Bolt et al[35] using Monte-Carlo bootstrap cross valida-
tion. The ordering was not considered.

Luttrell[28] first related hierarchical noise tolerant coding
theory to the SOM. When the transmission channel noise is
considered, a two-stage optimization has to be done by min-
imizing the representation distortion (as in the VQ) as well
as the distortion caused by the channel noise. The SOM
can be interpreted as such a coding algorithm. The neigh-
borhood function acts as the model for the channel noise
distribution and should not go to zero as in the original
SOM. Such a noise tolerant VQ has the following objective
function[28]:

D2 =

∫
dxxxp(xxx)

∫
dnnnπ(nnn) ‖xxx −wwwk‖2 (3)

where nnn is the noise variable and π(nnn) is the noise distribu-
tion. Durbin and Mitchison[36] and Mitchison[37] have also
linked the SOM and this noise tolerant VQ with minimal
wiring of cortex like maps.

When the codebook (the map) is finite, the noise can
be considered as discrete, then the cost function can be
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re-expressed as

D2 =
∑

i

∫
Vi

∑
k

π(i, k) ‖xxx −wwwk‖2p(xxx)dxxx (4)

where Vi is the Voronoi region of cell i. When the channel
noise distribution is replaced by a neighborhood function
(analogous to inter-symbol dispersion), this gives to the cost
function of the SOM. The neighborhood function can be
interpreted as channel noise model. Such a cost function
has been discussed in the SOM community, e.g. [15, 26,
38-40]. The cost function is therefore

E(www1, ...wwwM ) =
∑

i

∫
Vi

∑
k

η(i, k) ‖xxx −wwwk‖2p(xxx)dxxx. (5)

It leads naturally to the SOM update algorithm based on
the stochastic or sample gradient descent method. That is,
for each Voronoi region, the sub cost function is

Ei(www1, ...wwwM ) =

∫
Vi

∑
k

η(i, k) ‖xxx −wwwk‖2p(xxx)dxxx. (6)

Then the optimization for the weights {www1, www2, . . . , wwwM}
can be sought using the sample gradients., which are

∂
�

Ei(www1, ...wwwM )

∂wwwj
= 2η(i, j)(xxx −wwwj). (7)

This results in the SOM updating rule (2). Note, although
the neighborhood function η(i, j) is inexplicitly related to
wwwj , it does not contribute to the weight optimization, nor
does the weight optimization lead to its adaptation as neigh-
borhood adaptation is controlled by a pre-specified scheme,
unrelated to the weight adaptation. Thus the neighborhood
can be omitted from taking partial differentiation.

It has been argued however that this energy function is
violated at boundaries of Voronoi cells where input xxx has
exactly the same smallest distance to two neighboring neu-
rons. Thus this energy function holds mainly for discrete
cases where the probability of such boundary input points
is close to zero, or the local (sample) cost function should
be used in deciding the winner[40]. When spatial-invariant
neighborhood function is used as it is often the case, assign-
ing the boundary input to either cells will lead to the same
local sample cost or error, therefore any input data on the
boundary can be assigned to either Voronoi cells that have
the same smallest distance to it. Only when the neurons lie
on the borders of the map, such violation occurs as unbal-
anced neighborhoods of the neurons. The result is a slightly
more contraction towards to the center or inside of the map
for the border neurons compared to the common SOM al-
gorithm as shown in [38]. Using either the simple distance
or local distortion measure as the winning rule will result
in border neurons be contracted towards inside the map,
especially when the map is not fully converged or when the
effective range of the neighborhood function is great. With
the local distortion rule, this boundary effect is heavier as
greater local error is incurred for the border neurons due to
its few neighboring neurons than any inside neurons.

To exactly follow the cost function, the winning rule
should be modified to follow the local sample cost function

�

Ei or the local distortion measure (instead of the simplest
nearest distance)

v = arg min
i

∑
k

η(i, k) ‖xxx −wwwk‖2. (8)

When the neighborhood function is symmetric as it is of-
ten the case and when the data density function is smooth,
this local distortion winning rule is the same as to the sim-
plest nearest distance rule for most, non-boundary nodes,
especially as the number of nodes is large. On the borders of
the map, however, differences exist due to the unbalance of
the nodes presented in the neighborhoods. Such differences
become negligible to the majority of the neurons especially
when a large map is used and when the neighborhood func-
tion shrinks to its minimum scale or just the winner.

2.4 Topological order measures

The quality of the mapping in terms of topographic or
topological preservation is measured for its topological or-
dering, in addition to the overall quantization error. Such
a measure is not unique (unless input and map dimen-
sions are equal) and there is no clear definition of order[41].
Among several proposed measures, Bauer and Pawelzik[42]

proposed a measure called the topology product to measure
the topological ordering of the map,

P =
1

M2 − M

∑
i

∑
j

log

(
j∏

l=1

dD(wwwi,wwwηO(l,i))

dD(wwwi,wwwηD(l,i))

dO(i, ηo(l, i))

dO(i, ηD(l, i))

) 1
2k

(9)

where dD and dO represent the distance measures in the
input or data space and on the map respectively. η(l,i)
represents the l-th neighbor of node i in either data (D) or
map(O) space.

The first ratio in the product measures the ratio or match
of weight distance sequences of a neighborhood (upto j) on
the map and in the data space. The second ratio is the
index distance sequences of the neighborhood on the map
and in the data space. The topographic product measures
the product of the two ratios of all the neighborhoods.

Villmann et al[43] proposed a topographic function to
measure the neighborhoodness of weight vectors in data
space as well as on the map. While the neighborhoodness of
the weight vectors is defined by the adjacent Voronoi cells
of the weights. The function measures the degree of weight
vectors are ordered in the data space as to their indexes on
the lattice, as well as how well the indexes are preserved
when their weight vectors are neighbors.

Defining a fully ordered map can be straightforward us-
ing the distance relations[26] . For example, if all the nearest
neighboring nodes on the map have their nearest neighbor-
ing nodes′ weights in their nearest neighborhood in the data
space, we can call the map is a 1st-order (ordered) map[26],

d(wwwi,wwwj) ≤ d(wwwi,wwwk), ∀i ∈ Ω; j ∈ η1
i ; k /∈ η1

i (10)

where Ω is the map and η1
i denotes the 1st-order neighbor-

hood of node i.
Similarly if the map is a 1st-order ordered map, and all

the 2nd nearest neighboring nodes have their weights in
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their 2nd nearest neighborhood in the data space, we can
call the map a 2nd-order (ordered) map. For the 2nd ordered
map, the distance relations to be satisfied are

d(wwwi,wwwj) ≤ d(wwwi,wwwk) ≤ d(wwwi,wwwl),

∀i ∈ Ω; j ∈ η1
i ; k /∈ η1

i & k ∈ η2
i ; l /∈ η2

i . (11)

And so forth to define higher ordered maps with interneu-
ron distance hierarchies. An m-th order map is optimal for
tolerate the channel noise spreading or inter-symbol dis-
persion upto m-th neighboring code. Such a fully ordered
map however may not be achievable, especially when the
mapping is a dimension-reduction one. Then the degree or
percentage to which the nodes and their weights are ordered
can be measured, together with the probabilities that the
nodes are utilized, can determine the topology preservation
and that to what degree and to what order the map can
tolerate the (channel) noise.

Goodhill and Sejnowski[41] proposed the C measure, a
correlation between the similarity of stimulus in the data
space and the similarity of their prototypes in the map
space, to quantify the topological preservation

C =
∑

i

∑
j

F (i, j)G[M(i), M(j)] (12)

where F and G are symmetric similarity measures in the
input and map spaces respectively and can be problem spe-
cific, and M(i) and M(j) are the mapped points or weight
vectors of node i and j respectively.

The C measure directly evaluates the correlation between
distance relations between two spaces. Various other to-
pographic mapping objectives can be unified under the C
measure such as multidimensional scaling, minimal wiring,
and travel salesperson problem, and noise tolerant VQ. It
has also been shown that if a mapping that preserves or-
dering exists then maximizing C will find it. Thus the C
measure is also the objective function of the mapping, an
important property different from other topology preserva-
tion measures and definitions.

The above list of measures is by no means complete.
Other measures for ordering exist in the literature. One
can always use the underlying cost function (5) to mea-
sure the goodness of the mapping including the topology
preservation, at least one can use a temporal window to
take a sample of it as suggested in [38]. The (final) neigh-
borhood function specifies the level of topology (ordering)
the mapping is likely to achieve or is required. To make an
analogy to the above C measure, the neighborhood function
can be interpreted as the G measure used in (12) and term
||xxx −wwwk||2 represents the F measure. Indeed, the input xxx
and weight wwwj are mapped on the map as node index i and
j and their G measure is the neighborhood function such
as exponentials. Such an analogy also sheds light on the
scaling effect of the SOM. Multidimensional scale also aims
to preserve local similarities on a mapped space (see section
6 for more detailed account).

2.5 ViSOM

The SOM is optimal for vector quantization. Its topo-
graphic ordering provides the mapping with enhanced fault

and noise tolerant abilities. It also provides a latent struc-
ture of the input space and is applicable to many applica-
tions, e.g. dimensionality reduction for face recognition[44].
In the aspect of data visualization and dimensionality re-
duction, the SOM has been linked with the principal curves
and surfaces[45]. However the SOM does not preserve dis-
tance on the map. Instead it tries to establish topological
order of the mapping between data points and their corre-
sponding nodes on the map.

For scaling and data visualization, a direct and faithful
display of data structure and distribution is desirable. The
visualization induced SOM (ViSOM) has been proposed to
extend the SOM for distance preservation on the map[21],
instead of using a crude coloring scheme, which imprints
qualitatively the interneuron distances as colors or grey lev-
els on the map. For the map to capture the data structure
naturally and directly, (local) distance quantities must be
preserved on the map, along with the topology. The map
can be seen as a smooth and graded mesh or manifold em-
bedded into the data space, onto which the data points
are mapped and the inter-point distances are approximately
preserved.

In order to achieve that, the updating force, [xxx(t)−wwwk(t)],
of the SOM algorithm, is decomposed into two components:
[xxx(t) − wwwv(t)]+[wwwv(t) − wwwk(t)]. The first term represents
the updating force from the winner v to the input xxx(t),
and is the same to the updating force used by the winner.
The second force is a lateral contraction force that brings
the neighboring neurons to the winner. In the ViSOM,
this lateral contraction force is regulated in order to help
maintain a uniform inter-neuron distance ||wwwv(t) −wwwk(t)||,
at least locally on the map.

The update rule of the ViSOM is[21]

wwwk(t + 1) =wwwk(t) + α(t)η(v, k, t){[xxx(t) −wwwv(t)]+

β[wwwv(t) −wwwk(t)]}. (13)

where β is the constraint -the simplest constraint can be
β = dvk/(Dvkλ)-1, dvk is the distance of neuron weights in
the input space, Dvk is the distance of neuron indexes on
the map, and λ is a (required) resolution constant.

The ViSOM regularizes the contraction force so that the
distances between the nodes on the map are analogous to
the distances of their weights in the data space locally. The
aim is to make inter-neuron distances on the map propor-
tional to those in the data space, i.e. Dvk ∝ dvk or exactly
λDvk ≈ dvk. When the data points are eventually projected
on a trained map, the distance between points i and j on the
map reflects the distance between these two points in the
data space, subject to the quantization error (the distance
between a data point and its neural representative). This
makes visualization more direct and quantitatively measur-
able. The resolution of the map can be enhanced by in-
terpolating a trained (small) map[46] or by incorporating
local linear projections[47] . The size or covering range of
the neighborhood function can also be decreased from an
initially large value to a final small one. The final neigh-
borhood, however, should not contain just the winner. The
rigidity or curvature of the map is controlled by the ulti-
mate size of the neighborhood. The larger of this size the
flatter the final map is in the data space. Guidelines for
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setting these parameters can be found in [48].
Several improvements have since been made since. For

example in [49] a probabilistic data assignment is used in
both the input assignment and the neighborhood function
and an improved second order constraint is adopted. In [50]
the ViSOM has been extended to arbitrary, neural gas type
of map structure.

3 Metric multidimensional scaling

Multidimensional scaling (MDS) is a traditional sub-
ject related to dimension reduction and data visualiza-
tion. MDS tries to project data points onto an often two-
dimensional plane by preserving as closely as possible the
inter-point metrics[14]. The projection is generally nonlin-
ear and can reveal the overall structure of the data. A
general fitness function or the so-called stress function is
defined as

S =

∑
i,j

(dij − Dij)
2

∑
i,j

D2
ij

(14)

where dij represents the proximity (or dissimilarity) of data
points i and j in the original data space, Dij represents the
distance (usually Euclidean) between mapped points i and
j in the projected space.

MDS relies on an optimization algorithm to search for a
configuration that gives as low stress as possible. A gradi-
ent method is commonly used for this purpose. Inevitably,
various computational problems such as local minima and
divergence may occur to the optimization process. The
methods are also often computationally intensive. The final
solution depends on the starting configuration and param-
eters used in the algorithm.

Sammon mapping[16] is a well-known example of MDS.
The objective of Sammon mapping is to minimize the dif-
ferences between inter-point (Euclidean) distances in the
original space and those in the projected plane.

SSammon =
1∑

i<j

dij

∑
i<j

(dij − Dij)
2

dij
. (15)

In Sammon mapping intermediate normalization (of orig-
inal space) is used to preserve good local distributions and
at the same time to maintain a global structure. A second-
order Newton optimization method is used to recursively
solve the optimal configuration. It converges faster than
the simple gradient method, but the computational com-
plexity is higher. It may still have the local minima and
inconsistency problems. The Sammon mapping has been
shown to be useful for data structure analysis. However,
like other MDS methods, the Sammon algorithm is a point-
to-point mapping, which does not provide an explicit map-
ping function and cannot naturally accommodate new data
points. It also requires computing and storing all the inter-
point distances. This can prove difficult or even impossible
for many practical applications where data arrives sequen-
tially, the quantity of data is large, and/or memory space
for the data is limited.

In addition to being computationally costly for large data
sets and not adaptive, another major drawback of MDS is

lack of an explicit projection function. Thus for any new
input data, the mapping has to be recalculated based on all
available data. Although some methods have been proposed
to accommodate the new arrivals using triangulation[51,52] ,
the methods are generally not adaptive. However, such
drawbacks can be overcome by implementing or parame-
terizing MDS using neural networks[17,18]. Recently Isomap
was proposed to use geodesic (curvature) distance instead
for better nonlinear scaling[12] . Geodesic distance is calcu-
lated (or cumulated) along the manifold (instead of a direct
Euclidean distance) and is often implemented via neighbor-
hood graphs or neighboring points. Selecting a suitable
neighborhood size can be a difficult task and often needs
cross-validation procedure. Isomap has been reported be-
ing unstable[53].

4 Nonlinear PCA

PCA is a classic linear projection method aiming at find-
ing orthogonal principal directions from a set of data, along
which the data exhibit the largest variances. By discarding
the minor components, the PCA can effectively reduce data
variables and display the dominant ones in a linear, low di-
mensional subspace. It is the optimal linear projection in
the sense of the mean-square error between original points
and projected ones, i.e.,

min
∑

xxx

(
xxx −

m∑
j=1

(qqqT
j xxx)qqqj

)2

(16)

where {qqqj , j=1,2, . . . , m, m ≤ n} are orthogonal eigenvec-
tors representing principal directions. They are the first m
principal eigenvectors of the covariance matrix of the input.
The second term in the above bracket is the reconstruction
or projection of xxx on these eigenvectors. The term qqqT

j xxx rep-
resents the projection of xxx onto the j-th principal dimen-
sion. Traditional methods for solving eigenvector problem
involve numerical methods. Though fairly efficient and ro-
bust, they are not usually adaptive and often require the
presentation of the entire data set. Several Hebbian-based
learning algorithms and neural networks have been pro-
posed for performing PCA such as, the subspace network[54]

and the generalized Hebbian algorithm[55]. The limitation
of linear PCA is obvious, as it cannot capture nonlinear re-
lationships defined by higher than the second order statis-
tics. If the input dimension is much higher than two, the
projection onto linear principal plane will provide limited
visualization power.

The extension to nonlinear PCA is not unique, due to
the lack of a unified mathematical structure and an efficient
and reliable algorithm, and in some cases due to excessive
freedom in selection of representative basis functions[6,8].
Several methods have been proposed for nonlinear PCA
such as, the five-layer feedforward associative network[7]

and the kernel PCA[9]. The first three layers of the
associative network project the original data on to a curve
or surface, providing an activation value for the bottleneck
node. The last three layers define the curve and surface.
The weights of the associative network are determined by
minimizing the following objective function

min
∑

xxx

‖xxx − fff{sf (xxx)}‖2 (17)
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where fff : R1 → Rn (or R2 → Rn), the function modeled
by the last three layers, defines a curve (or a surface), sf :
Rn → R1 (or Rn → R2), the function modeled by the first
three layers, defines the projection index.

The kernel-based PCA uses nonlinear mapping and ker-
nel functions to generalize PCA to nonlinear and has been
used for various pattern recognition. The nonlinear func-
tion Φ(xxx) maps data onto high-dimensional feature space,
where the standard linear PCA can be performed via kernel
functions: k(xxx,yyy) = (Φ(xxx) · Φ(yyy)). The projected covari-
ance matrix is then,

Cov =
1

N

N∑
i=1

Φ(xxxi)Φ(xxxi)
T. (18)

The standard linear eigenvalue problem can now be writ-
ten as λVVV = KKKVVV , where the columns of VVV are the eigen-
vectors and KKK is a N × N matrix with elements as kernels
Kij := k(xxxi,xxxj) = (Φ(xxxi) · Φ(xxxj)).

Local linear embedding (LLE)[13] is another way of form-
ing nonlinear principal subspace. The local linearity is de-
fined on a local neighborhood, say k nearest neighbors.
Then the linear contributions or weightings, Wij , of these
neighboring points are calculated through

min
∑

i

∥∥∥∥∥xxxi −
∑
j=1

Wijxxxj

∥∥∥∥∥
2

. (19)

The embedding is computed via

min
∑

i

∥∥∥∥∥Yi −
∑
j=1

WijYj

∥∥∥∥∥
2

(20)

where Y is the embedding coordinates.
Recently eigenmap[56] has been proposed to form a local

linear mapping by converting the problem to a generalized
eigenproblem and the solution becomes easily traceable.

First, the weightings (of local neighboring points) or heat
kernels are constructed

Wij = exp(−||xxxi − xxxj ||2
t

). (21)

Then the embedding is computed via the generalized eigen-
problem

Lfff = λDfff (22)

where Dii =
∑

j Wji and L = D − W
The data is then projected to the subspace spanned by

the principal eigen functions (fff1,fff2, . . .,fffm). This ap-
proach is also related to spectral clustering[57].

5 Principal manifolds

The principal curves and principal surfaces[10,11,58] are
the principled nonlinear extension of PCA. The principal
curve is defined as a smooth and self-consistency curve,
which does not intersect itself, passing through the mid-
dle of the data. Denote xxx as a random vector in Rn with
density p and finite second moment. Let f(·) be a smooth
unit-speed curve in Rn, parameterized by the arc length ρ
(from one end of the curve) over Λ ∈ R, a closed interval.

For a data point xxx, its projection index on f is defined
as

ρf (xxx) = sup
ρ∈Λ

{ρ : ‖xxx − f(ρ)‖ = inf
ϑ

‖xxx − f(ϑ)‖}. (23)

The curve is called self-consistent principal curve of ρ if

f(ρ) = E[XXX|ρf (XXX) = ρ]. (24)

The principal component is a special case of the principal
curves if the distribution is ellipsoidal. Although principal
curves have been mainly studied, extension to higher di-
mension, e.g. principal surfaces or manifolds is feasible in
principle. However, in practice, a good implementation of
principal curves/surfaces relies on an effective and efficient
algorithm. The principal curves/surfaces are more of a con-
cept that invites practical algorithm and implementations.
The HS algorithm is a nonparametric method[10] that di-
rectly iterates the two steps of the above definition. It is
similar to the standard LGB VQ algorithm[59] combined
with some smoothing techniques.

HS Algorithm

Initialization: Choose the first linear principal component as
the initial curve, f (0)(xxx).

Projection: Project the data points onto the current curve
and calculate the projections index, i.e. ρ(t)(xxx) = ρf(t)(xxx).

Expectation: For each index, take the mean of data

points projected onto it as the new curve point, i.e.,

f (t+1)(ρ) = E[XXX|ρf(t)(XXX) = ρ].

The projection and expectation steps are repeated until
a convergence criterion is met, e.g. when the change of the
curve between iterations is below a threshold.

For a finite data set, the density p is often unknown, the
above expectation is replaced by a smoothing method such
as the locally weighted running-line smoother or smoothing
splines. For kernel regression, the smoother is

f(ρ) =

N∑
i=1

xxxiκ(ρ, ρi)

N∑
i=1

κ(ρ, ρi)

. (25)

The arc length is simply computed from the line segments.
There are no proofs of convergence of the algorithm, but no
convergence problems have been reported, though the algo-
rithm is biased in some cases[10]. Banfield and Raftery[60]

have modified the HS algorithm by taking the expectation
of the residual of the projections in order to reduce the bias.
Kegl et al[61] have proposed an incremental, e.g. segment by
segment, and arc length constrained method for practical
construction of principal curves.

Tibshirani[58] has introduced a semi-parametric model
for the principal curve. A mixture model was used to
estimate the noise along the curve; and the expectation
and maximization (EM) method was employed to estimate
the parameters. Other options for finding the nonlinear
manifold include the GTM[62] and probabilistic principal
surfaces[63] . These methods model the data by a means
of a latent space. They belong to the semi-parameterized
mixture model, although types and orientations of the local
distributions vary from method to method.
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6 Connections and comparisons be-
tween SOMs and others approaches

The SOM has been related to the discrete principal
curve/surface algorithm[45] . However the differences remain
in both the projection and the smoothing processes. In the
SOM data are projected onto the nodes rather than onto
the curve. The principal curves perform the smoothing en-
tirely in the data space. The smoothing process in the SOM
and ViSOM, as a convergence criterion, is[48],

wwwk =

N∑
i=1

xxxiη(v, k, i)

N∑
i=1

η(v, k, i)

. (26)

The smoothing is governed by the indexes of the neurons
in the map space. The kernel regression uses the arc length
parameters (ρ, ρi) or ||ρ − ρi|| exactly, while the neighbor-
hood function uses the node indexes (k, i) or ||k − i||. Arc
lengths reflect the curve distances between the data points
in the data space. However, the node indexes are integer
numbers denoting the nodes or the positions on the map
grid, not the positions in the data space. So ||k − i|| does
not resemble ||wwwk −wwwi|| in the SOM. In the ViSOM, how-
ever, as the inter-neuron distances on the map represent
those in the data space (subject to the resolution of the
map), the distances of nodes on the map are in proportion
to the difference of their positions in the data space, i.e.
||k − i|| ≈ ||wwwk − wwwi||. The smoothing process in the Vi-
SOM resembles that of the principal curves as shown below:

wwwk =

N∑
i=1

xxxiη(v, k, i)

N∑
i=1

η(v, k, i)

≈

N∑
i=1

xxxiη(wwwv,wwwk, i)

N∑
i=1

η(wwwv ,wwwk, i)

. (27)

It shows that the ViSOM is a better approximation to
the principal curves/surfaces than the SOM. The SOM and
ViSOM are similar only when the data are uniformly dis-
tributed, or when the number of nodes becomes very large,
in which case both the SOM and ViSOM will closely ap-
proximate the principal curves/surfaces.

The similarities between SOMs and metric MDS in terms
of topographic mapping – mostly the qualitative likeness of
the mapping results have been reported. However clear lim-
itations of using the SOM for MDS have been noted[64].
Many applications combine the SOM and MDS for im-
proved visualization of the SOM mapping results.

In [15], it is argued that the SOM is closer to MDS than
to principal manifold. In [48], it is shown that the metric
preserving ViSOM is a close approximate to a discrete prin-
cipal manifold, and in [65] it is also shown that the ViSOM
produces a similar mapping result as to the metric MDS.

Let’s take a close look at the cost function of metric MDS,
e.g. (14). Its denominator is a normalizing constant for
all, while the numerator, which plays an important role in
establishing the topological mapping, can be rewritten as[65]

∑
i,j

(dij − Dij)
2 =

∑
i,j

(d2
ij + D2

ij − 2dijDij). (28)

The first term is a constant as data points are fixed and
second term will be eventually fixed as it is to match the first
term. To minimize the above stress is to maximize the third
term (without the sign). The third term plays a dominant
role and explains that the mapping is to form correspond-
ing correlation between inter-distances in the original and
mapped spaces. This is closely related to the C measure.

From the cost function of the SOM (5), we can see that
the sample cost function – the integrand of (6), can be ex-
pressed as (for the data contained in Voronoi region i)

∑
k

η(i, k) ‖xxx −wwwk‖2. (29)

As wwwk is the mean of Voronoi region k, let’s denote it
as x̄xxk. Let’s also denote x̄xxi as the mean of Voronoi region
i. Furthermore η(i, k) is a function of ||i − k||. Then the
above equation can be approximated as[65]∑

k

η(i, k) ‖xxx −wwwk‖2 =
∑

k

f(||i − k||) ‖x̄xxi − x̄xxk‖2 =

∑
k

f(Dik)d2
ik. (30)

For the SOM, f(||i−k||) is simply the neighborhood func-
tion, typically an exponential function. The first term of its
Taylor expansion is proportional to –||i−k||2 (subject to the
resolution parameter). This leads the above cost function
with approximately[65],∑

k

−(Dikdik)2 (31)

where Dik represents the distance between the indexes of
the neurons i and k on the map. Therefore the SOM pre-
serves the correlation between the orders of the indexes of
the neurons with the distances of their corresponding data
regions in the input space. So that the largest dik matches
the largest allowed Dik on the grid. As the grid is not
scalable, the data points will be mapped to these pre-fixed
grid positions to achieve maximum correlation. This is a
qualitative scaling and does not preserve the metric on the
mapped space. This however can also be regarded as a kind
of generalization as two spaces are no longer required to be
in the same space. The SOM thus can be used to relate any
two metric spaces by forming such a topological mapping.

In the ViSOM, as the ||i−k|| is proportional to ||wwwi−wwwk||,
so Dik is D(wwwi,wwwk) and is a function of ||wwwi −wwwk||, which
is the mapped distance referred to the input space in the
metric MDS sense. Thus this shows why the ViSOM pro-
duces similar scaling results as to MDS as observed in [21,
48] and many other reports. In other words it shows that
the ViSOM is a metric MDS. The squared distance corre-
lation terms in (31) have little different effect as to those
non-squared ones of MDS in (28). The local distance pre-
serving property of the ViSOM also enables it to capture
highly nonlinear manifolds better compared to global dis-
tance preserving MDS.

As the ViSOM is a discrete principal manifold, at the
same time it is also a MDS. This implies that MDS and prin-
cipal manifold perform the same underlying task at least in
the context of data visualization and dimension reduction.
Finding a principal manifold – a smooth curve/surface pass-
ing through the middle of the data[10,66] – may well result
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in a topographic metric scaling of the input space onto the
lower dimensional manifold. On other hand, although MDS
presents a useful scaling of the data on a low dimensional
space for visualization, it does not provide the underlying
mapping function, the manifold.

A comparison between various classic mapping methods:
PCA, Sammon mapping and SOM on a nonlinear “S” shape
manifold is shown in Fig. 1. These methods have limited
power in extracting highly nonlinear manifold. In Fig. 2
various recent methods such as the ViSOM, Isomap and
LLE on embedding this manifold are demonstrated. The
success of these methods can be easily seen, together with
the superior performance of the ViSOM.

Fig. 1 Projection of S shape data((a)dataset; (b)PCA;
(c)Sammon mapping; (d)SOM).

Fig. 2 Projections of S shape manifold((a)ViSOM embedding
in the data space; (b)ViSOM projection; (c)Isomap; (d)LLE).

7 Conclusions

This paper provides a review on nonlinear dimensionality
reduction and data visualization, from a self-organized ap-
proach. It also reviews the SOM and the issues surrounding
its cost functions and topology measures, and reveals the
connection between the SOM or its variant ViSOM and
nonlinear principal manifolds and MDS through analyzing
their weights and cost functions. Both the SOM and Vi-
SOM are multidimensional scaling methods and produce
nonlinear dimension-reduction mapping or manifold of the
input space. The SOM is shown to be a qualitative scaling
method, while the ViSOM is a metric scaling and approxi-
mates a discrete principal curve/surface. The SOMs can be
seen as a generalized (and quantized) MDS that connecting
or ordering two possibly different metric spaces.

It also reveals that metric MDS and principal manifold
essentially produce the same topographic mapping for vi-
sualization. However metric MDS is a point to point map-
ping, while the principal manifold can establish an explicit
mapping function.
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