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Abstract: This paper presents an internal model approach for modeling and diagnostic functionality design for nonlinear systems
operating subject to single- and multiple-faults. We therefore provide the framework of structured augmented state models. Fault
characteristics are considered to be generated by dynamical exosystems that are switched via equality constraints to overcome the
augmented state observability limiting the number of diagnosable faults. Based on the proposed model, the fault diagnosis problem is
specified as an optimal hybrid augmented state estimation problem. Sub-optimal solutions are motivated and exemplified for the fault
diagnosis of the well-known three-tank benchmark. As the considered class of fault diagnosis problems is large, the suggested approach
is not only of theoretical interest but also of high practical relevance.
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1 Introduction

A common strategy to come up against model uncertain-
ties and disturbances in system control and state estimation
is to employ state augmentation. Exogenous input signals
are considered to be generated by known dynamical exosys-
tems which are added to the nominal plant dynamics[1, 2].
As fault modeling by exogenous signals is very general and
able to describe nearly all types of faults[3], it seems to be
obvious to apply exosystems also to fault diagnosis. Insights
into the application of exosystems to linear fault diagnosis
can be found in [4, 5].

At first glance, this approach proves to be advantageous
as established methods for nonlinear state estimation can
be utilized for nonlinear fault diagnosis. The internal model
formulation guarantees the augmented model to hold for
both the fault-free and the faulty operating system. Thus,
malfunctions and dangerous plant operation can be moni-
tored by means of physically motivated (fictive) characteris-
tics. Nevertheless, this approach entails a severe drawback:
As in real world fault diagnosis problems the considered
faults affect the system rarely all at the same time, this
unstructured approach is conservative and is restricted to
problems where only few faults are possible (as a rough
rule of thump, the number of diagnosable faults equals the
number of measurement signals).

This contribution presents a powerful approach for the
fault diagnosis of nonlinear systems operating subject to
single- and multiple-faults. The motivation of the suggested
approach is quite simple: Keep the advantages of the un-
structured approach and overcome the limitations imposed
on the number of diagnosable faults. We therefore suggest
the framework of structured augmented state models: An as-
sumable fault scenario (the most commonly encountered is
certainly the single-fault scenario) describes the topology of
a nondeterministic state automaton, whose discrete-states
are related each to an operating mode which is due to the
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presence of a fault and to the fault-free case. The mode-
specific continuous dynamics are selected from the unstruc-
tured model by switching equality constraints in the rule
type of the automaton. By this way, the augmented un-
structured state-space is constrained, conditioned on the
operating mode. The resulting structured augmented state
model describes a hybrid automaton. Based on this, the
fault diagnosis problem is specified as an optimal hybrid
augmented state estimation problem. From the angle of
hybrid (augmented) state estimation, the fault diagnosis is
then evaluated basically relying on [6].

The paper is organized as follows: In Section 2, a short
description of the considered fault diagnosis problem is
given and the framework of structured augmented state
modeling is introduced. The fault diagnosis problem is
specified from an optimal hybrid state estimation point of
view and sub-optimal solutions are discussed in Section 3.
An illustrative simulation example for the fault diagnosis of
the three-tank benchmark is outlined in Section 4.

2 Problem description

We consider nonlinear dynamical systems which can be
described by the following model

Σ:

(
ẋ(t) = f

`
x(t), u(t), δ(t)

´
, x(0) = x0

y(t) = h
`
x(t), u(t), δ(t)

´ . (1)

δu(t) δx(t) δy(t)

Σ

Σu
Σx

Σy

u(t)
u′(t) x(t)

y(t)

u′(t)

Fig. 1 Description of the considered fault diagnosis problem
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The vector fields f : Rn × Rp × Rv �→ Rn and h : Rn ×
Rp × Rv �→ Rq are sufficiently smooth functions of the
state x(t) ∈ Rn, the control input u(t) ∈ Rp, the mea-
sured output y(t) ∈ Rq , and the exogenous input δ(t) ∈ Rv

representing deviations due to potential faults.
Depending on the position, the signals contained in δ(t)

are going into (1), it may be distinguished between signals
δu(t), δx(t), and δy(t) representing deviations due to poten-
tial input-faults, system-faults and output-faults, respec-
tively. According to this, system (1) can be decomposed
into the input-sided sub-system

Σu : u′(t) = g
`
u(t), δu(t)

´
(2)

being subject to the fault-signal δu(t), the central sub-
system

Σx : ẋ(t) = f ′`x(t), u′(t), δx(t)
´

(3)

which is subject to δx(t), and the output-sided sub-system

Σy : y(t) = h′`x(t), u′(t), δy(t)
´

(4)

underlying the influence of δy(t) (see Fig. 1). In (1), f =
f ′ ◦ g and h = h′ ◦ g, where “◦” denotes composition (for
example f ′◦ g = f ′(g)). To simplify matters, further consid-
erations use the shorter notation of (1) denoting δ(t) instead
of δu,x,y(t).

2.1 Fault modeling and state vector aug-
mentation

Many different principles for fault representation have
been used in the literature. One of the most commonly
encountered is to model faults by exogenous fault-signals.
Because this principle has proved to be very general and to
be suitable for describing all types of faults[3], this will be
employed as basis for the subsequent fault representations.

In (1), deviations due to potential faults have been al-
ready introduced by the exogenous input-term δ(t). In the
following, this is considered to be the vectorial concatena-
tion

δ(t) =
ˆ
δT1 (t), . . . , δTM (t)

˜T
(5)

of M exogenous fault-signals δρ(t) ∈ Rvρ , each character-
izing a candidate Sρ for a potential single-fault S . With
regard to the set defined by the fault-candidates Sρ, the
following assumption will be made.

Assumption 1. The set

S =
˘Sρ, ρ ∈ {1, . . . ,M}¯

(6)

containing M candidates Sρ for a potential single-fault S is
known and complete.

Remark 1. In general, there is no possibility to prove
whether a certain fault is present or not[5]. This necessi-
tates the above assumption considering a single-fault S as
an element of the given fault set S. It is important to note
that in practical applications the completeness of the set
S can never be assured since the occurrence of an unfore-
seen fault can be excluded noway. Hence the risk of false
diagnosis always exists, but may be decisively reduced by
a judicious choice of the set S. The practical design of S

would typically not only include faults having been previ-
ously experienced but also potential fault-candidates that

are possibly predictable from analyzing physical weak spots
of the system.

2.1.1 Fault modeling by exosystems

Up to now, the fault-specific deviations δρ(t) have been
considered as unrestricted exogenous inputs. However, ar-
bitrary fault-signals are rather implausible in the majority
of practical cases[7], hence would model faults rather con-
servatively for most applications. In the following, each
signal δρ(t) ∈ Rvρ is considered as the output generated by
a known and stable dynamical exosystem

∆ρ :

(
ξ̇ρ(t) = φρ

`
ξρ(t)

´
, ξρ(0) = ξρ,0 (7a)

δρ(t) = ψρ

`
ξρ(t), x(t), u(t)

´
(7b)

where ξρ(t) ∈ Rnρ is the (fault-) state of the exosystem and
φρ : Rnρ �→ Rnρ , ψρ : Rnρ ×Rn×Rp �→ Rvρ are sufficiently
smooth vector fields.

The exosystem (7) operates as a signal-generator whose
nonlinear function φρ and initial condition ξρ,0 uniquely de-
termine the fault-state ξρ(t), thus, with ψρ, x(t), and u(t),
uniquely determines the fault-signal δρ(t). The set Rnρ of
admissible initial conditions and the exosystem ∆ρ in con-
junction specify a class of possible signals δρ(t). In this way,
the so far unrestricted fault-signals δρ(t) get constrained to
a smaller and more realistic set.

Remark 2. As discussed in [8,9], many practical system-
faults are nonlinear functions of the system state x(t)
and/or the input u(t). For example, the outflow due to
a leak in a pressure vessel is a nonlinear function of the in-
terior pressure and the temperature. Such fault character-
istics are captured in (7) by allowing the deviations δρ(t) to
be nonlinear functions of x(t) and u(t). Other faults which
can be modeled by (7) are, for instance, additive and mul-
tiplicative actuator-/sensor-faults, parametric faults, and
system-faults causing the dynamics of (1) to change from f
to another nonlinear function.

Since in general, the nonlinear output-function (7b) is
physically motivated, this is known in the majority of prac-
tical cases. In contrast, the dynamics of (7a) is rarely known
in practice. Therefore, one normally has to rely on simple
exosystem models expressing the expected class of signals
ξρ(t) sufficiently accurate. Such predominantly linear ex-
osystems have received significant attention in the literature
concerning disturbance modeling for system control and
state estimation (see, for example [2,10]), but have been also
applied to fault modeling for diagnostic applications[4,7]. A
tabular summary of several linear exosystems for represent-
ing exogenous input-signals is given in [1].

ξρ

t

Fig. 2 Piece-wise constant approximation of an arbitrary signal
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Remark 3. When time and frequency characteristics of
an exogenous input are largely unknown, the assumption
of piece-wise constant bias (see Fig. 2) has proved to be
very effective for a variety of applications[11−13] . Due to
the generally unpredictable nature of faults, such piece-wise
constant approximations of the fault-states ξρ(t) are due to
be indispensable in most diagnostic applications. In this
case, the above introduced exosystem formulation reduces
to

∆ρ :

(
ξ̇ρ(t) = 0, ξρ(0) = ξρ,0

δρ(t) = ψρ

`
ξρ(t), x(t), u(t)

´ (8)

which is a special case of (7). To keep generality, further
considerations will, nevertheless, base on the general ex-
pression.

2.1.2 State vector augmentation

Given that system (1) is considered subject to the set
of fault-candidates S, the possible dynamics of (1) can be
described by an augmented state model including the M
exosystems. The extension of (1) by the M exosystems (7)
results in an unstructured augmented state model which is
given by

Σ̃ :

(
˙̃x(t) = f̃

`
x̃(t), u(t)

´
, x̃(0) = x̃0

y(t) = h̃
`
x̃(t), u(t)

´ (9)

where x̃(t) = [xT(t) ξT1 (t), . . . , ξTM (t)]T ∈ Rñ is the aug-
mented state, f̃ = [(f ◦ (ψ1, . . . , ψM ))T φT

1 , . . . , φ
T
M ]T is the

augmented dynamics, and h̃ = h◦(ψ1, . . . , ψM ) denotes the
modified output term.

From a methodical point of view, (9) is particularly use-
ful. At first glance, crucial diagnostic problems like non-
linear system diagnosis and diagnosability analysis can be
efficiently tackled by using established methods of nonlinear
state estimation theory. For instance, the fault diagnosis of
(1) is accomplishable by means of observing the augmented
state x̃(t)[4]. Accordingly, the diagnosability of (1) can be
analyzed by verifying observability of the augmented system
(9)[7]. That this approach, anyhow, hasn’t become widely
accepted in fault diagnosis so far may be traced back to the
drastic limitation on the number of considerable faults. By
the augmented state observability of (9), this unstructured
approach is restricted to problems where only few faults
may occur. For an extensive study of this issue, the inter-
ested reader is directed to [14]. The goal of the following
subsection is to provide a less conservative model allowing
to overcome these limitations.

2.2 Structured augmented state modeling
for fault diagnosis

If in the fault-free condition of (1) each signal δρ(t) takes
a constant value δ�

ρ ∈ Rvρ , i.e., ξρ(t) = 0, a (single- or
multiple-) fault F can be closer specified as in the following
definition.

Definition 1. A single- or multiple-fault F is defined as a
deviation

δ(t) �= δ�, δ� = [δ�T
1 , . . . , δ�T

M ]T∈ R
v (10)

changing the behavior of system (1) such that this no longer
satisfies its purpose appropriately.

Remark 4. Depending on the number of signals δρ(t) �= δ�
ρ

causing a fault by (10), F may be of both single- and
multiple-fault type. More precisely, if δρ(t) �= δ�

ρ is con-
tained in δ(t) just once, the fault F is a single-fault. On
the other hand, F is a multiple-fault if there are at least
two signals δρ(t) �= δ�

ρ contained in δ(t).

As an important implication of Definition 1, the case of
system (1) operating subject to several faults F is ruled out.
Therefore, a potential fault F can be treated again as an
element of a set of N ≥ M single- or multiple-fault candi-
dates Fν . As regards the set defined by Fν , ν ∈ {1, . . . , N},
the following assumption, similar to Assumption 1, will be
used.

Assumption 2. The set

F =
˘Fν , ν ∈ {1, . . . , N}¯

, N ≥M (11)

containing N candidates Fν for a potential single- or
multiple-fault F is known and complete.

Remark 5. The above assumption is similar to Assump-
tion 1, hence it is worth to allude to the explanatory notes
of Remark 1.

In the following, to any fault Fν and to the fault-free case,
an operating mode of system (1) is related. The resulting
N + 1 operating modes are closer specified by the following
definition.

Definition 2. The system Σ is defined to operate in
the fault-free operating mode z(t) = m0, if, for all ν ∈
{1, . . . , N},

Σ
`
δν(t) = δ�

ν

´ ≡ ˘
Σ̃0 := Σ̃

`
ξν(t) = 0

´¯
. (12)

The system Σ is defined to operate in the ν-th single- or
multiple-faulty operating mode z(t) = mν , if

Σ
`
δν(t) �= δ�

ν

´ ≡ ˘
Σ̃ν := Σ̃

`
ξν(t) �= 0

´¯
(13)

where only one operating mode is allowed to be present
at the same time. Thereby, δ�

ν denotes the value of δν(t)
in the fault-free condition and z(t) ∈ Z = {mσ}N

σ=0 is a
discrete-state variable taking values of the set of all possible
operating modes Z.

According to Definition 2, any operating mode mσ is de-
fined by a corresponding continuous augmented dynamics
Σ̃σ contained in (9) as a special case. Each of these dynam-
ics can be selected from (9) by switching a mode-specific
equality constraint

E
`
z(t) = mσ

´
x̃(t) = 0 ⇒ x̃σ(t) ∈ X̃σ ⊆ R

ñ (14)

constraining mismatched fault-states ξρ(t) contained in x̃(t)
to zero. Thereby, E(z(t)) ∈ E = {S0, . . . , SN}, where Sσ ∈

m1 m0 m2

X̃1

X̃0 X̃2

ξ1

ξ2

x

Rñ

Fig. 3 Nondeterministic automaton and related structured

augmented state space of an exemplary single-fault scenario
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N z(t)

ξ1(t) ξN(t)

u(t) y(t)

φ1 φN

ψ1 ψN

Σ

Σ̃σ

δ1(t) δN (t)
u(t),
x(t)

u(t),
x(t)

H
Fig. 4 Structured augmented state model

Rñ×ñ is a mode-specific diagonal matrix with elements
sσ ∈ {0, 1}. By this means, the augmented state space Rñ

gets structured into subspaces X̃σ restricting possible aug-
mented state trajectory evolutions mode-specifically (see
Fig. 3, right figure). Hence, the structured continuous dy-
namics of the potential faulty system (1) is given by

Σ̃σ :

8>><
>>:

˙̃x(t) = f̃
`
x̃(t), u(t)

´
, x̃(0) = x̃0 (15a)

E
`
z(t)= mσ

´
x̃(t) = 0 ⇒ x̃σ(t) ∈ X̃σ ⊆ Rñ (15b)

y(t) = h̃
`
x̃σ(t), u(t)

´
. (15c)

An important role in structuring the Rñ is played by the
rule type of switching z(t). We therefore suggest to em-
ploy a nondeterministic automaton directly expressing an
assumable fault scenario (the most commonly encountered
is certainly a single-fault scenario (see Fig. 3, left figure).
The nondeterministic automaton is described by the tuple

N ˙
Z, G : Z �→ Z, z0

¸
(16)

where G is the discrete-state transition matrix with ele-
ments gab ∈ {0, 1} and z0 = z(0) is the initial discrete-state.

Based on (15) and the nondeterministic automaton (16),
the structured augmented state model (see Fig. 4) can be
described as follows.

Definition 3. A structured augmented state model is de-
scribed by a hybrid automaton

H˙
χ(t), u(t), y(t), Σ̃σ,E,N , χ0

¸
(17)

which is a tuple of the hybrid state χ(t) = 〈z(t), x̃(t)〉 with
initial value χ0 = 〈z(0), x̃(0)〉, the set E of N + 1 switching
matrices Sσ, and the tuple 〈u(t), y(t), Σ̃σ,N〉.
Remark 6. The structure of the automaton (16) can be
easily adapted to any arbitrary multiple-fault scenario, i.e.,
where a fault may occur, remain and may cause a consecu-
tive fault.

3 Fault diagnosis

In this section, the fault diagnosis of the structured aug-
mented system is considered. As in most practical applica-
tions the vector of measurements is taken with a sampling
rate dT at discrete-time, further considerations are based

on the following continuous-discrete form of (17), given by

HdT

˙
χ(t), u(t), yk, Σ̃

dT
σ ,E,N , χ0

¸
(18)

where

Σ̃dT
σ :

8><
>:

˙̃x(t) = f̃
`
x̃(t), u(t)

´
, x̃(0) = x̃0

E
`
z(t)= mσ

´
x̃(t) = 0

yk = h̃
`
x̃σ,k, uk

´ (19)

and yk := y(k dT ), x̃σ,k := x̃σ(k dT ), and uk := u(k dT ).
For the sake of well-posedness of (18), the following as-
sumption will be made.

Assumption 3. The sampling rate dT is chosen ade-
quately; such that (18) remains diagnosable and the con-
tained nondeterministic automaton N is able to switch
maximum once within the intervals [k dT, (k + 1) dT ].

Based on (18), the fault diagnosis problem consists in es-
timating the hybrid state χk containing the complete infor-
mation for fault-isolation and -identification (determining
the fault-magnitude) in zk, x̃k respectively. As (18) allows
switching among the operating modes mσ, the hybrid es-
timator has to track possible trajectories involving mode
changes Xk = {χ0, . . . , χk} and determine their estimates
X̂k = {χ̂0, . . . , χ̂k}. Against this background, the fault di-
agnosis problem can be stated as follows.

Problem 1. Given the continuous-discrete structured aug-
mented state model (18), the continuous-time input tra-
jectory Uk = u(t0, tk), and the discrete-time measurement
sequence Yk = {y1, . . . , yk}, determine the optimal hybrid
state trajectory

X̂ (ζ)
k : ζ = arg min

j={1,...,λk}
Ψ

(j)
k (20)

where Ψ
(j)
k = C`X̂ (j)

k ;Yk, Uk

´
defines the path cost of the

j-th trajectory hypothesis X̂ (j)
k quantifying the level of

agreement between X̂ (j)
k and Yk, Uk.

Remark 7. Since it is dealt with a set of trajectory hy-
potheses, a superscript index in parentheses is used, for
example, X̂ (j)

k , to refer to the j-th trajectory hypothesis

X̂ (j)
k = {. . . , χ̂(i)

k−1, χ̂
(j)
k } that estimates a possible trajec-

tory up to time k. This trajectory hypothesis includes the
hybrid estimate χ̂

(j)
k at its fringe.

The optimal solution of the above stated fault diagno-
sis problem requires to build a full-hypothesis tree (see
Fig. 5) which encodes the estimates of all possible trajec-

tories of (18). Therefore, any hypothesis X̂ (i)
k−1 is extended

with respect to the topology (given by the transition ma-
trix G, with elements gab) of the automaton N by pos-

sible successor states χ̂
(j)
k and new trajectory hypotheses

X̂ (j)
k = {. . . , χ̂(i)

k−1, χ̂
(j)
k } are obtained. The resulting λk

hypotheses are ranked according to their path costs Ψ
(j)
k .

The fringe estimates χ̂
(j)
k and their associated costs Ψ

(j)
k

are calculated according to the following two step process
(see Fig. 6):

1) The first step deduces possible transitions ẑ
(i)
k−1 =

ma → ẑ
(j)
k = mb, a, b ∈ {0, . . . , N}, and predicts λk tra-
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χ̂
(1)
0

χ̂
(3)
1

χ̂
(2)
1

χ̂
(1)
1

χ̂
(1)
2

χ̂
(2)
2

χ̂
(3)
2 X̂ (3)

2 ,Ψ
(3)
2

χ̂
(4)
2

χ̂
(5)
2

χ̂
(6)
2

χ̂
(7)
2

Fig. 5 Exemplary full-hypothesis tree and trajectory path for

behavior X̂ (3)
2 with cost Ψ (3)

2 for the automaton, exemplified in

Fig. 3 (ẑ(1)
0 = m0)

jectory hypotheses

X̂ (j)

k|k−1 =
n
. . . , χ̂

(i)
k−1=

˙
ẑ
(i)
k−1= ma, ˆ̃x

(i)
a,k−1

¸
,

χ̂
(j)

k|k−1
=

˙
ẑ
(j)
k = mb, ˆ̃x

(j)

b,k|k−1

¸ o. (21)

Thereby, the j-th prior fringe estimate χ̂
(j)
k|k−1 is a tuple of

the mode estimate ẑ
(j)
k = mb and the continuous augmented

state ˆ̃x
(j)

b,k|k−1 of the prediction ˆ̃x
(i)
a,k−1 → ˆ̃x

(j)

b,k|k−1. This is

obtained by integrating the augmented dynamics f̃ subject
to the equality constraint (14) as

E(ẑ
(j)
k = mb) ˆ̃x

(i)
a,k−1 = 0

ˆ̃x
(j)
b,k|k−1 = ˆ̃x

(i)
a,k−1+

Z tk

tk−1

f̃
`
x̃(t), u(t)

´
dt
. (22)

2) The second step takes the current measurement yk

into account. It performs the correction of the predicted
continuous state estimate ˆ̃x

(j)

b,k|k−1 → ˆ̃x
(j)
b,k. The cost of the

corrected trajectory hypothesis X̂ (j)
k =

˘
. . . , χ̂

(j)
k =

˙
ẑ
(j)
k =

mb, ˆ̃x
(j)
b,k

¸¯
is calculated recursively by

Ψ
(j)
k := Ψ

(j)
k|k−1 + ∆C(j)

k , (23)

where Ψ
(j)

k|k−1 = Ψ
(i)
k−1 + P(j)

k is the predicted cost in-

cluding the deterministic weight P(j)
k serving for penal-

izing the corresponding mode transition ma → mb, and

ni

n′
j nj

Ψ
(i)
k−1

P(j)
k

∆C(j)
k

χ̂
(i)
k−1=

˙
ẑ
(i)
k−1= ma, ˆ̃x

(i)
a,k−1

¸
χ̂

(j)
k|k−1=

˙
ẑ
(j)
k = mb, ˆ̃x

(j)
b,k|k−1

¸

Ψ
(j)

k|k−1 Ψ
(j)
k

χ̂
(j)
k

Fig. 6 Two-step recursion in optimal hybrid estimation

∆C(j)
k = C`

yk; χ̂
(j)

k|k−1
, uk

´
is a cost term which quantifies

the level of agreement between the prior hybrid state esti-
mate χ̂

(j)
k|k−1 and uk, yk.

Remark 8. As the number of involved trajectory hypothe-
ses λk is exponential in the number of considered time steps
k, an optimal solution of the fault diagnosis problem is com-
putationally intractable. Therefore, the use of sub-optimal
estimation approaches is indispensable for practical appli-
cations. In literature, this problem has been addressed by
a variety of authors, e.g. [6,15,16].

4 Simulation results

Let us consider the three-tank system illustrated in Fig. 7
(for further discussions regarding this well-known fault di-
agnosis benchmark, the interested reader is directed to
[9,17-20]). The three tanks, T1, T2, and T3 are identical and
are cylindrical in shape with a cross section A = 4·10−2 m2.
The cross section of the pipes connecting the tanks is
S = 1.6 · 10−4 m2, and the liquid levels in the three tanks
are denoted by x1, x2, and x3 (in (m)) respectively. The
incoming flow rates supplied by the pumps 1 and 2 are de-
noted by u1 and u2 (in (m3/s)) respectively.

By using balance equations and Torricelli’s rule, the non-
linear dynamics of the three-tank is obtained as

ΣdT :

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

u′
1 = u1 + δ1

u′
2 = u2 + δ7

ẋ1 =
1

A

`
u′

1 − q1(x1, x2, δ3)
´

ẋ2 =
1

A

`
q1(x1, x2, δ3) − q2(x2, x3, δ6) − δ5

´
ẋ3 =

1

A

`
u′

2 + q2(x2, x3, δ6) − q3(x3)
´

y1 = x1 + δ2

y2 = x2 + δ4

y3 = x3 + δ8

where x = [x1 x2 x3]
T denotes the state vector, u = [u1 u2]

T

denotes the input vector, and y = [y1 y2 y3]
T is the vector of

measurements, taken with a sampling rate dT = 1 seconds
at discrete-time (to simplify matters, it is refrained from
explicitly denoting the time-dependencies of continuous-
/discrete-time-variant variables). The flow-rates q1 and q2
between the tanks and the outflow-rate q3 are given by

q1 = c sign(x1 − x2)(S − δ3)
p

2g|x1 − x2|
q2 = c sign(x2 − x3)(S − δ6)

p
2g|x2 − x3|

q3 = c S
p

2gx3.

.

Thereby, c = 0.8 denotes a nondimensional outflow coeffi-
cient, and g is the gravity acceleration.

In the following, the case of abrupt faults satisfying a
classical single-fault scenario is considered (the case of other
faults, like incipient, periodic or multiple faults, is com-
pletely analogous and is not addressed here for the sake of
brevity). The set F is defined by the following eight fault
candidates:

1) Input-faults F1,7 (actuator faults in pumps 1 and 2).
Two simple additive actuator faults in pumps 1 and 2 are
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T1 T2 T3

u′
1 u′

2

u1 u2

y1 y2 y3

x1

x2

x3

A

S q1 q2 q3

Pump 1 Pump 2

F1

F3 F6

F2 F4

F5

F7

F8

Fig. 7 The three-tank system

considered. Due to the input-faults Fi, i = 1, 7, the incom-
ing supply flow rates u′

i = ui + δi, deviate by δi from the
nominal input values ui.

2) Output-faults F2,4,8 (defective sensors in tanks 1,2,
and 3). Three simple additive sensor faults in tanks 1,2 and
3 are considered. Due to the sensor-faults Fi, i = 2, 4, 8,
the measured values of the liquid levels yi = xi + δi deviate
by δi from the real levels xi.

3) System-faults F3,6 (plugging between tanks 1 and 2,
and between tanks 2 and 3). Possible plugging of the con-
nection pipes between the three tanks is modeled by the
deviations δi, i = 3, 6, reducing the corresponding cross
sections to (S − δi).

4) System-fault F5 (leakage in tank 2). It is assumed
that the leak is circular in shape and of unknown effective
area ξ5. If δ5 denotes the outflow rate which is due to the
leak, this is given by the nonlinear function δ5 = ξ5

√
2gx2.

According to the foregoing considerations of Section 2,
the above introduced faults are now represented by the fol-
lowing dynamical exosystems:

∆i :

(
ξ̇i = 0

δi = ξi

, i = 1 − 4, 6 − 8, ∆5 :

(
ξ̇5 = 0

δ5 = ξ5
p

2gx2

.

The unstructured augmented expression Σ̃dT , with ex-
tended state x̃ = [x1 x2 x3 ξ1, . . . , ξ8]

T, can be easily de-
rived by augmenting system ΣdT with the eight exosystems
∆1−8. Adding the switched equality constraint

E(z = mσ) x̃ = 0 ⇒ x̃σ, E(z) ∈ E

where E =
˘
S0 = diag(01×3 11×8), . . . , S8 =

diag(01×3 11×7 0)
¯
, yields the structured augmented ex-

pression Σ̃dT
σ . As regards the assumed single-fault sce-

nario, the corresponding nondeterministic automaton N
contains eight fault-modesm1−8 that are radiating-adjusted
around the fault-free operating mode m0 (a similar fault-
scenario considering two fault-modes is outlined in Fig. 3).
The initial hybrid state of the structured augmented sys-
tem HdT is chosen as χ0 = 〈z0, x̃0〉, where z0 = m0 and
x̃0 = [0.36 0.32 0.20 01×8]T. The flow rates supplied by
the pumps 1 and 2 are chosen as u1 = 10−4(m3/s) and

u2 = 7 · 10−5(m3/s).
For computing the fault diagnosis of HdT , i.e., for deter-

mining the hybrid state estimates χ̂
(ζ)
k , a sub-optimal K-

step focused hybrid estimation scheme with κ, η = 1 leading
estimates and a fixed window size of K = 2 is employed.
The estimator is initialized by χ̂0 = χ0. The cost ∆C(j)

k of
the continuous correction-step is calculated by

∆C(j)
k =

˛̨˛̨
ε
(j)
k

˛̨˛̨2
Λ

(j)−1
k

where ε
(j)
k = yk − h̃(ˆ̃x

(j)
k|k−1, uk, ẑ

(j)
k ) denotes the measure-

ment residual with associated covariance matrix Λ
(j)
k , both

computed by an unscented Kalman observer. An exhaus-
tive discussion of the sub-optimal K-step focused hybrid es-
timation scheme as well as the employed unscented Kalman
observer is clearly beyond the scope of this paper. For de-
tailed discussions, the interested reader is referred to [6,21-
23], respectively.

Fig. 8 outlines the excellent results, achieved with this
sub-optimal fault diagnosis scheme in the application to
the three-tank system. This has been imposed by the eight
single-faults F1−8 occurring under the terms of the test-
sequence as outlined in Table 1. Beyond the limitation
imposed by the unstructured augmented state observabil-
ity, the suggested approach is able to detect, isolate, and
identify the faults F1−8. The operating modes m0−8 are
estimated without significant time-delays (see Fig. 8 (a)).
The estimates of the fault-magnitudes ξ1−8 determine an
accurate fault-identification (see Fig. 8 (b)). The internal
model formulation gives also estimates of the real values
y′k = [x1,k x2,k]T despite of the output-faults F2,4,8 - which
may be very useful, e.g., for fault-tolerant control. More-
over, ξ̂1−8 can be used for determining physically motivated
thresholds for monitoring critical or dangerous plant oper-
ation. As can be noticed from Fig. 8 (c), the number of
performed continuous observation-steps is variant in time
and significantly underruns the constant number of nine
observation-steps which would have been required to cal-
culate using a classical observer-bank approach. Hence, in
off-line applications, a given sequence of measurements Uk

and Yk can be evaluated much faster than using a classical
observer-bank approach.

Table 1 Overview of the performed test-scenario (thereby, ton
and toff denote the time of fault-activation and -deactivation,

respectively)

Fault/Mode Fault magnitude ton (s) toff (s)

F1/m1 ξ1 = 10−5
“

m3
s

”
150 300

F2/m2 ξ2 = 0.04 (m) 400 550

F3/m3 ξ3 = 4 · 10−5
“
m2

”
650 800

F4/m4 ξ4 = 0.04 (m) 900 1 050

F5/m5 ξ5 = 3 · 10−5
“
m2

”
1 150 1 300

F6/m6 ξ6 = 3 · 10−5
“
m2

”
1 400 1 550

F7/m7 ξ7 = 10−5
“

m3
s

”
1 650 1 800

F8/m8 ξ8 = 0.03 (m) 1 900 2 050

5 Conclusions

In this paper, the fault diagnosis of nonlinear systems
using structured augmented state models has been consid-
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(a)

(b)

(c)

Fig. 8 Fault diagnosis of the three-tank system. (a) Correct and estimated mode sequence (fault isolation); (b) Correct and

estimated (normalized) fault magnitudes (fault identification); (c) Number of performed continuous observations

ered. To negotiate the limitation on the number of diagnos-
able faults (which is imposed by the unstructured state ob-
servability), an assumable single- or multiple-fault scenario
serves for realistically delimiting the state space of the un-
structured model. Based on the structured augmented state
model, the fault diagnosis problem has been characterized
and extensively discussed from an optimal hybrid state es-
timation point of view. The use of modern sub-optimal
focused hybrid estimation techniques has been motivated
and exemplified for the fault diagnosis of the three-tank
benchmark. These not only enable the diagnostic function-
ality to switch back to the fault-free mode in case that a
fault is recovered (which is not possible if a classical bank of
observers is employed) but also allow to overcome computa-
tional burdens of the observer-bank approach and improve
the achievable diagnosis performance. Advantageous prop-
erties of the unstructured internal model formulation have
been maintained and the problem of conservativeness has
been vanquished. As the suggested approach is not only
simple to apply but also able to detect, isolate, and iden-
tify single- and multiple-faults for SISO- and MIMO-type
nonlinear systems, the considerable class of fault diagnosis
problems is large.
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[13] J. Aβfalg, F. Allgöwer, M. Fritz. Constrained Derivative-
free Augmented State Estimation for a Diesel Engine Air
Path. In Proceedings of the IFAC Symposium on System
Identification, New Castle, Australia, pp. 1382-1387, 2006.

[14] J. Aβfalg, F. Allgöwer. Fault Diagnosis with Structured
Augmented State Models: Modeling, Analysis, and Design.
In Proceedings of the IEEE Conference on Decision and
Control, San Diego, USA, pp. 1165-1170, 2006.

[15] G. Ackerson, K. Fu. On State Estimation in Switching En-
vironments. IEEE Transactions on Automatic Control, vol.
15, no. 1, pp. 10-16, 1970.

[16] H. A. Blom, Y. Bar-Shalom. The Interacting Multiple
Model Algorithm for Systems with Markovian Switching
Coefficients. IEEE Transactions on Automatic Control, vol.
33, no. 8, pp. 780-783, 1988.

[17] R. Isermann. Supervision, Fault Detection, and Fault Di-
agnosis Methods – An Introduction. Control Engineering
Practice, vol. 5, no. 5, pp. 639-652, 1997.
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