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Abstract: Behaviour-based approach plays a key role for mobile robots to operate safely in unknown or dynamically

changing environments. We have developed a hybrid control architecture for our autonomous robotic fish that consists of

three layers: cognitive, behaviour and swim pattern. In this paper, we describe some main design issues of the behaviour

layer, which is the centre of the layered control architecture of our robotic fish. Fuzzy logic control (FLC) is adopted here

to design individual behaviours. Simulation and real experiments are presented to show the feasibility and the performance

of the designed behaviour layer.

Keywords: Behaviour-based design, robotic fish, fuzzy logic.

1 Introduction

The biologically inspired or behaviour based ap-
proach has been widely adopted in the design of robotic
systems, including design of mechanical structure,
robot locomotion, navigation algorithm and multi-
robot cooperation. A number of biologically inspired
robot systems have been built over the last twenty
years, such as the robot phonotaxis by Horchler[1] and
biomimetic “robo-lobsters” by Grasso[2]. It has advan-
tages of easy design, quick response, model-free, and
robustness. It enables a mobile robot to operate in dy-
namic or unpredictable environments and can quickly
response to the changes in the real world. An early
successful example is a cleaning robot which can find
and retrieve soda cans in an office environment[3].

Up to now, majority of robotic fish research
work has been focused on the fish-like propul-
sion mechanism[4,5], the fin material[6], remote
operation[7], multi-agent cooperation[8] and the me-
chanical structures[9]. There is no researcher who
has developed behaviour-based architecture for au-
tonomous robotic fish until now. Based on behaviour-
based approach, our robotic fish is designed to au-
tonomously swim and navigate in unknown and dy-
namical environments. Behaviour-based control is a
key to deal with the dynamic factor in the real world.

The individual behaviour can be normally described
as β : s → a which means that given stimulus s the be-
haviour yields response a according to mapping β. Th-
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ere are several kinds of mathematical methods to de-
scribe β, which can be classified into two groups:
Discrete Encoding and Continuous Encoding. In
the discrete encoding, β is a collection of IF-THEN
rules. The general form of these rules is[10]: IF an-
tecedent THEN consequence. The antecedent is a list
of preconditions that are related with stimulus s and
the consequence is one of possible responses. The an-
tecedent and the consequence could be classical logic
like left bumper is ON, and they also could be vaguely
defined logic associated with a degree of truth, e.g. the
left obstacle is far in 0.6 degree of truth. The latter
formation is called fuzzy logic. There are many ex-
amples on both the classical logic[11,12] and the fuzzy
logic[13,14]. The advantage of discrete encoding is that
the relationship between antecedents and consequences
is explicit and near to human natural language. So it is
easy to combine human prior knowledge with the robot
control. However, the disadvantage is that the limited
number of antecedents is unable to represent all situa-
tions that the robot encounters, i.e. the generalization
problem.

In contrast, the continuous encoding allows a robot
to have an infinite space of potential stimulus and con-
tinuous response. Potential Field Method is one of the
most common methods for implementing the mapping
β. It was proposed for generating smooth trajectories
for mobile robots by Khatib[15]. This method treats
goals as attractors and obstacles as repulsers. The at-
tractor generates an attraction potential force on the
robot and the repulser generates a repulsion force. The
magnitude of the force is inverse-proportional to the
distance between the robot and the goal/obstacle and
the force direction points from the obstacle to the robot
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or from the robot to the goal. The vector summation
of all potential forces from goals and obstacles con-
sists of the moving direction and the moving speed
for the mobile robot. Several researchers adopted the
potential field method. For example, Borenstein[16]

proposed a Virtual Force Field for obstacle avoidance,
which lies in the integration of Certainty Grids for ob-
stacle representation and Potential Fields for naviga-
tion. Slack[17] defined Navigational Templates(NATs)
to describe continuous pathways in navigation space
and Zapata[18] proposed Deformation Zones for colli-
sion avoidance for fast mobile robot (>5 m/s).

For the robotic fish situation, fuzzy logic, or dis-
crete encoding, is better for the individual behaviour
design because it has good reputation on dealing with
uncertainty in sensory information and motor execu-
tion. Moreover, fuzzy logic provides a convenient way
to incorporate human knowledge on the controller de-
sign. We will discuss it in details in Section 2.

The rest of this paper is organized as follows. Sec-
tion 2 presents the structure of the hybrid control archi-
tecture and its content. Behaviour layer, one of layers
in the architecture, is discussed in details according to
its components and functions. Section 3 addresses the
design procedure of each individual behaviour. Simula-
tion experiments show their performance in the simu-
lator. In Section 4, experimental results of real robotic
fish show the feasibility and performance of the be-
haviour layer. Finally, conclusions and future work are
given in Section 5.

2 Control architecture and behaviour
layer

Our robotic fish is controlled under a hybrid con-
trol architecture[19] which is presented in Fig. 1. It con-
sists of three layers: Cognitive Layer, Behaviour Layer
and Swim Pattern Layer. The centre of the architec-
ture is the behaviour layer where most instant decisions
are made. The swim pattern layer is at the bottom
of our three-layer architecture, which consists of all
swim patterns for basic control purpose. Five swim
patterns are designed here, namely Cruise-Straight,
Ascend/Descend, Coast, Sharp-Left/Right-Turn and
Cruise-in-Left/Right-Turn. Each swim pattern is a se-
ries of joint motion functions which control the tail
joints to realize an associative movement in order to
propel or maneuver the robotic fish. In the behaviour
layer, states and actions are directly related to the
robot physical sensors and swim patterns. In the cog-
nitive layer, states related with high-level activities are
abstracted from the behaviour layer and actions are
correspond to behaviour coordination which directs the
emergent result of several behaviours.

Fig. 1 The hybrid control architecture for our robotic fish

The configuration of the behaviour layer is pre-
sented in Fig. 2. It consists of three modules: 1) per-
ception, 2) individual behaviours and 3) behaviour co-
ordination. The perception module has two tasks: 1)
to remove noise from raw sensor data and 2) to con-
vert the filtered sensor data to physical meaningful val-
ues according to the control parameters set by the cog-
nitive layer. These values are input signals of indi-
vidual behaviours. For example, the perception mod-
ule calculates the depth difference between the robotic
fish depth and the desired depth for the keep-level be-
haviour controller.

Fig. 2 Configuration of the behaviour layer

In terms of individual behaviours, all their pro-
totypes come from the inspiration of real fish be-
haviours, particularly the carangiform fish, like carp,
behaviour. On their design, continuous encoding meth-
ods do not fit here because of numerous special situ-
ations of the robotic fish in contrast to common mo-
bile robots. For example, our robotic fish lacks either
long-range (>1 m) sensors or computer vision to mea-
sure its relative position to goals/obstacles. To detect
goal/obstacle, it is only equipped with four short-range
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(<0.4 m) infrared sensors (IRs) due to the limited space
in the fish head. They can roughly detect the obsta-
cle in front/left/right/bottom of a robotic fish. The
IR sensor information also contains uncertainty caused
by the fish head swag during swimming. The unsteady
water flow also affects infrared light emitted by IR sen-
sors. So, discrete encoding methods, the fuzzy logic
especially, is applied on the individual behaviour de-
sign. In the fuzzy logic, linguistic, not numerical, vari-
ables are used, which mimic human thinking. The prior
knowledge is incorporated into the system in this way.
The parameters to define the fuzzy logic are easy to
be learnt online because there is no complex analyti-
cal equation to be solved. Also, many successful fuzzy
logic applications[20,21] have shown its robustness.

The fuzzy logic controllers (FLCs) for individual
behaviours are designed based on the Mamdani’s prin-
ciple which was proposed in 1975[22]. Each behaviour
receives input signals from the perception module, pro-
cesses them by a fuzzy controller and generates a re-
sponse. A typical fuzzy controller is constructed by
four parts: a Fuzzifier, a Fuzzy Rulebase, a Fuzzy
Logic Inference Engine and a Defuzzifier. The Fuzzifier
translates the input signals into linguistic values, i.e.
fuzzy input variables, by membership functions. The
Fuzzy Logic Inference Engine evaluates the set of fuzzy
rules defined in the Fuzzy Rulebase, identifies the rules
that apply to the current input variables and calculates
the output linguistic values, i.e. the fuzzy output vari-
ables. The Defuzzifier translates the output variable
to a crisp control signal, i.e. behaviour response.

During the design of a fuzzy controller, its param-
eters and membership function shape are selected ac-
cording to the following two factors:

1) Computation Time: To realize the real-time con-
trol and quick response ability, it is necessary to reduce
the complexity of algorithm. The factors affecting the
level of complexity includes the number of the fuzzy
input and output variables, the form of membership
functions, the rule number in a rulebase, etc. So, using
simply form membership functions and small fuzzy rule
sets could save the computation time.

2) Online Learning Issue: One of the hardest prob-
lems in the online learning is related to the dimension
of parameters to be learnt. The exponential growth of
hypervolume as a function of dimensionality drags the
learning speed and is a well-known problem of “Curse
of dimensionality”[23]. So, the parameter number in an
FLC should be limited as less as possible because these
parameters will be learned or adjusted online.

After the construction of individual behaviours, the
behavior coordination module merges the responses of
all individual behaviours into an emergent response.

Then it outputs the response to swim pattern layer
which drives servo motors in a robotic fish. In this pa-
per, vector summation coordination method is chosen,
where each individual behaviour has assigned a gain
value and the productions of the gains with behaviour
outputs for all individual behaviours are summed up as
the emergent response[10].

3 Design of robotic fish behaviours

The behaviours for the robotic fish are designed
based on the real fish behaviours rather than man-
made machines such as the submarine. Each behaviour
we designed is inspired by real fish. The following be-
haviours are implemented:

1) Keep-level : It is most efficient for long distance
swimming, i.e. from point a to point b at the same
level.

2) Avoid-obstacle: This behaviour is to get away
from other fishes, predators, rocks, etc. A significant
feature of this behaviour is that a fish changes its swim-
ming direction (pitch, roll and yaw angles) to avoid ob-
stacles rather than slows down or stops. This is because
changing direction is much easier than braking.

3) Follow-wall : Fish swims along with the surface
of rocks to patrol its territory and find food. On the
other hand, this behaviour helps a fish to explore an un-
known environment in a safe way because it decreases
the risk of predator attacking.

4) Wandering: Fish uses it for relaxation. The
robotic fish applies this behaviour to swim around to
find potential interesting things.

5) Seek-goal : Food, mate and home are the main
goals for a fish. For the robotic fish, the charging sta-
tion is one of goals and the tank wall is also a goal
when it implements the tank exploration task. This
behaviour enables a robotic fish to find a way to the
charging station.

6) Rescue: In some dangerous situations, if a fish
can not get itself out of trouble by other behaviours,
rescue behaviour will be applied. Likewise, the robotic
fish implements this behaviour if it faces uncontrollable
situations such as servo motors malfunction, the ex-
treme high internal temperature, etc. It will stop doing
all other behaviours and only empty the water chamber
to float up slowly.

7) Feed : The behaviour allows a fish to find food.
For example, a shark chases a small fish and swallows
it. For the robotic fish, feed behaviour enables it to
adjust its gesture toward a charging station to charge
its battery.

It should be noticed that we have only presented
the design of three behaviours in this paper because of
the limited space. A comprehensive introduction will



J. D. Liu and H. Hu/Biologically Inspired Behaviour Design for Autonomous Robotic Fish 339

be presented in a forthcoming paper.

3.1 Design of follow-wall behaviour

This behaviour is to keep the robotic fish at a cer-
tain distance from the wall or obstacle edges based on
the information gathered by IR sensors.

Our robotic fish has four IR sensors (GP2D12) to
detect the objects at the directions of left, front, right
and bottom. The arrangement of these IR sensors is
shown in Fig. 3. Three IR sensors are arranged to be
45 degrees between each other to sense the reflected
infrared light from front-left, front and front-right ob-
jects. One IR sensor points to the bottom direction.
Their detection range is from 0.02 m to 0.4 m. Note
that the IR sensor range has been normalized into [0,1].
If the distance of an object from the IR is more than
0.4 m or less than 0.02 m, its output is 0, otherwise
its output is inversely proportional to the distant, i.e.
from 1 to 0 according to from 0.02 m to 0.4 m. The
normalized IR sensor output is called “IR Intensity”,
which is denoted as {dl, df , dr, db} for left, front, right
and bottom IR, respectively.

It should be noticed that IR sensors can not detect
the obstacle in their dead-zone and the glasses wall. To
deal with this problem, accelerometer sensor is applied
to detect the collision between the robotic fish and ob-
stacle, and the IR intensity {dl, df , dr} is rectified to
be a new value according to the collision direction and
strength |b|. The IR intensity db is rectified by the
depth zf of the robotic fish when it is very close to the
tank bottom. See (1) for the rectification procedure.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dl = 1, df = 1 if | b | > ∆| b | and collision is

left side

dr = 1, df = 1 if | b | > ∆| b | and collision is

right side

db = 1 if zf < ∆zf

(1)
where ∆| b | and ∆zf

are collision thresholds. zf is
calculated from the pressure sensor data.

Fig. 4 shows a block diagram of follow-wall be-
haviour. The left, right and bottom IR sensor data
are the input of the perception module. The front IR
is ignored here because it provides less information on
side walls. One more input Wd is added to define the
relative position of the wall to the robotic fish. It is
appointed by cognitive layer and defined in (2). For
instance, if Wd = 1, the robotic fish should follow the
wall on its left side. The perception module outputs an
IR intensity ds which is either dl or dr depending on Wd

by (3). Through the fuzzy controller, the output ω′
d is

tweaked by Wd to calculate ωd = Wdω
′
d which is one of

inputs of the Bev coordination module. Swim pattern
Sp is generated and finally executed on the robotic fish.
Another output of the perception module is db which
is the intensity of the bottom IR which affects another
fuzzy controller output—Pt.

Wd =
{

1 leftside

−1 rightside
(2)

ds =
{

dl, if Wd = 1

dr, if Wd = −1
(3)

Fig. 3 The IR sensors arrangement

on the robotic fish

Fig. 4 The fuzzy logic representation of follow-wall

behaviour

The form of the membership functions could be
Gaussian, trapezoid, sharp peak, triangular, S-type,
Z-type, etc. Taking into consideration of calculation
costs and the learning procedure in future, Triangu-
lar, S-type and Z-type functions are chosen for the
robotic fish due to their simpleness and many success-
ful applications[20]. The mathematic expressions of the
membership function in the fuzzifier are given as fol-
lows, for a triangular function:

µij(ui) =
⎧
⎨

⎩

1 − 2 |ui − mij |
σij

, mij − σij

2
< ui < mij +

σij

2
0, otherwise (4)
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for a S-type membership function:

µij(ui) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, ui < mij − σij

2
1, ui > mij

1 − 2 |ui − mij |
σij

, otherwise

(5)

for a Z-type membership function:

µij(ui) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 ui < mij

0, ui > mij +
σij

2

1 − 2 |ui − mij |
σij

otherwise

(6)

where i = (1, 2) is the number of input signals and
j = (1, 2, 3) is the number of terms of the fuzzy input
variable. µij(ui) is the membership function to calcu-
late the degree of truth for the statement that the ith
input is the jth fuzzy term. For example, µ13 is as-
sociated with the statement that ds is near. ui is the
ith crisp input signal to the fuzzy controller, {u1, u2}
= {ds, db}. mij is the centre of the membership func-
tion according to µij . σij is the width of the member-
ship function. Fig. 5 shows the membership function of
follow-wall.

The rulebase for fuzzy inference engine is listed in
Table 1 which shows that ds and db independently af-
fect ω′

d and Pt. The COG method is selected for de-
fuzzification (7).

ω′
d =

6∑

k=1

v1
kqk

6∑

k=1

qk

, Pt =

6∑

k=1

v2
kqk

6∑

k=1

qk

(7)

qk = min{µ1k1 , µ2k2} (8)

where v1
k and v2

k denote the estimated value of the kth
rule output, which is related to the centre of member-
ship functions of the fuzzy output variables ωd and Pt.
qk is conjunction degree of the IF part of the kth rule,
which is calculated by min(·) operation because AND
operator is applied. µiki is the degree of the member-
ship for the ith input contributing to the kth rule, ki is
the number of terms of an input variable corresponding
to the ith input in the kth rule. µiki is 1 if the corre-
sponding input in Table 1 is “N/A”. For example, for
the 2nd rule, k1 = 2, µ2k2 = 1.

To prove the feasibility of follow-wall behaviour, it
is tested in a simulator proposed in [24]. All param-
eters of follow-wall behaviour are given as same as in
this section. The experiments are done without the
cognitive layer. Assume Wd = −1 for follow-wall be-
haviour, i.e. the robotic fish is appointed to follow the

right side wall. The desired distance is 0.3 m to side
walls and to the bottom.

Fig. 5 Membership functions of the input and output

variables for follow-wall. mij , nls: the centres of

membership functions. µ: degree of truth. (a) The IR

intensity ds; (b) The yaw angle ω′
d relative to the current

swimming direction (c) The position of pitch weights Pt

Table 1 Rulebase for follow-wall fuzzy controller

Rule Input Output

No. ds db ω′
d

Pt

1 N N/A RS N/A

2 M N/A Z N/A

3 F N/A LS N/A

4 N/A N N/A PS

5 N/A M N/A Z

6 N/A F N/A NS

N: near, M: middle, F: far, RS: right small turn, LS: left

small turn, Z: zero, PS: positive small(ascent), NS: negative

small(descent), N/A: none such input or output for the rule

Fig. 6(a) shows the 3D trajectory of a simulated fish
with follow-wall behaviour. Figs. 6(b) and (c) show the
trajectory projection on the xy plane and the xz plane
together with the desired trajectory and depth. Fig. 7
shows the mean square error between the experimental
trajectory and the desired one. These illustrate that
when the wall is on the right side, the robotic fish can
follow it and keep a constant distance to the wall with-
out bumping. However, the sharp changing of trajec-
tory at the corner in Fig. 6(b) shows that the robotic
fish can not avoid corners as it can not recognise the
corner only with follow-wall behaviour.

3.2 Design of keep-level behaviour

The aim of keep-level behaviour is to keep the
robotic fish at a desired depth in water. Assume that
zf is the measured depth of the robotic fish and za is
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the desired swimming depth. The robotic fish should
satisfy

|zf − za| = |ze| < dz (9)

(a) 3D view

(b) xy plane view

(c) xz plane view

Fig. 6 The trajectory of a simulated fish with the

follow-wall behaviour

(a) xy plane error

(b) z coordination error

Fig. 7 The mean square error of the simulated fish

trajectory

where ze is the depth difference and dz is a small pos-
itive number of the permitted error. The output of
keep-level behaviour is used to control the position Pt

of the pitch control weights inside the robotic fish head.
So that the fish is able to ascent and descent.

Following the general fuzzy controller ruler, ze and
że are selected as input signals of keep-level behaviour.
Considering the definition of ze in (9), że can be re-
placed by żf . A block diagram of the keep-level fuzzy
controller is shown in Fig. 8. Here, the pressure sen-
sor data is proportional to the robotic fish depth from
water surface.

Similar to the follow-wall fuzzy controller in Sec-
tion 3.1, triangular functions (4), S-type (5) and Z-type
(6) functions are chosen to represent fuzzy membership
functions for fuzzy input variables {u1, u2} = {ze, żf}
and output variables. The membership functions for
inputs ze, że, and output Pt are shown in Fig. 9.

Nine rules are generated by prior knowledge given
in Table 2. The logic operator “AND” connects each
antecedent, i.e. “IF ze is low AND żf is down”. Then
the consequence is “THEN Pt is PositiveBig”.
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Fig. 8 The fuzzy logic representation of keep-level

behaviour

Fig. 9 Membership functions of the input and output

variable. mij , nls: the centres of membership functions. µ:

degree of truth. (a) Membership function of the depth

difference ze; (b) Membership function of the changing

speed of depth żf and (c) Membership function of the

position of pitch weights Pt

Table 2 Rulebase for keep-level fuzzy controller

Rule Input Output

No. ze żf Pt

1 LO D PB

2 LO L PS

3 LO U Z

4 ZO D PS

5 ZO L Z

6 ZO U NS

7 H D Z

8 H L NS

9 H U NB

LO: low, ZO: zero, H: high, D: swim down, L: swim level, U:

swim up, PB: positive big, PS: positive small, Z: zero, NS: neg-

ative small, NB: negative big

In the defuzzifier module, the “centre of gravity
(COG)” method is used to combine the outputs rep-
resented by the implied fuzzy set from all rules to gen-
erate the gravity centroid of the possibility distribution
for Pt. It is calculated by

Pt =

9∑

k=1

vkqk

9∑

k=1

qk

(10)

qk = min{µ1k1 , µ2k2} (11)

where all variables have the same definitions as in (7)
and (8).

3.3 Design of avoid-obstacle behaviour

The objective of the avoid obstacle behaviour is to
keep the robotic fish away from other static or moving
objects during its swimming. The robotic fish, different
from most of others mobile robots in the world, moves
in a 3D space. It must deal with obstacles locating
at all directions including its left, front, right, above
and below. Since the robotic fish only swims forward,
it is unnecessary to avoid obstacles at the back of the
robot. Additionally, the obstacles above the robotic
fish are not taken into account at the moment because
our robotic fish has no sensor to monitor the top direc-
tion.

Fig. 10 shows a block diagram of the avoid-obstacle
behaviour. The input signals come from four IR sen-
sors, the pressure senor and the accelerometer. The
output signals of the fuzzy controller are the yaw an-
gle ωd relative to the current fish heading and pitch
weights position Pt.

Fig. 10 The fuzzy logic representation of avoid-obstacle

behaviour

Similar to the keep-level fuzzy controller in Section
3.2, triangular functions (4), S-type (5) and Z-type (6)
functions are chosen to represent fuzzy membership
functions for fuzzy input variables {u1, u2, u3, u4} =
{dl, df , dr, db} and output variables {ωd, Pt}. Fig. 11
shows the definitions of fuzzy sets. The rulebase for
the fuzzy inference engine is listed in Table 3. The
COG method is selected for defuzzification.

ωd =

16∑

k=1

v1
kqk

16∑

k=1

qk

, Pt =

16∑

k=1

v2
kqk

16∑

k=1

qk

(12)

qk = min{µ1k1 , µ2k2 , µ3k3 , µ4k4} (13)

where all variables have the same definitions as in (7)
and (8).
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Fig. 11 Membership functions of the input and output

variables. mij , nls: the centres of membership functions.

µ: degree of truth. (a) IR intensities dl, df , dr, db; (b) The

yaw angle ωd relative to the current swimming

direction;(c) The position of pitch weights Pt

Table 3 Rulebase for avoid-obstacle fuzzy controller

Rule Input Output

No. dl df dr db ωd Pt

1 N N N N LS PB

2 N N N F LS NB

3 N N F N RB PS

4 N N F F RB Z

5 N F N N LS PB

6 N F N F LS NB

7 N F F N RS PS

8 N F F F RS Z

9 F N N N LB PS

10 F N N F LB Z

11 F N F N LB PS

12 F N F F LB Z

13 F F N N LS PS

14 F F N F LS Z

15 F F F N Z PS

16 F F F F Z Z

N: near, F: far, LB: left big turn, LS: left small turn, Z: zero, RS:

right small turn, RB: right big turn, PB: positive big (ascent),

PS: positive small (ascent), NS: negative small (descent), NB:

negative big(descent)

To prove the feasibility of both keep-level behaviour
and avoid-obstacle behaviour, simulation is carried out.
In the simulator, the water tank is designed in 3 m long,
3 m wide and 1.5 m deep. The robotic fish starts at
the point (0.5,0.5,0.2) and heads to 10 degrees to x-axis.
The pitch angle in the initial time is 0. Three colum-
niform obstacles with 0.2 m diameter are put in water
at positions (1.5,1.5,1.0), (2.8,1.5,1.0) and (0.2,0.2,0.2).
They are named as obstacles 1,2,3 in the order of ap-
pearance above. Fig. 12 shows the initial condition for
all experiments.

Fig. 12 The initial condition of simulation environment

(3D view)

All parameters of both keep-level behaviour and
avoid-obstacle behaviour are given as same as Section
3.2 and Section 3.3. The experiments are done with-
out cognitive layer because the main purpose is to test
the behaviour layer. Assume that the desired depth
za = 1 for keep-level behaviour. The gain values in
behaviour coordination are (1.0,0) for avoid-obstacle
behaviour and (0.0,1.0) of keep-level behaviour. The
avoid-obstacle behaviour horizontally controls ωd and
the keep-level behaviour controls Pt. Fig. 13 shows
the 3D trajectory and its projection on the xy plane.
These two figures illustrate that the robotic fish can
deal with most of obstacles by using the avoid-obstacle
behaviour. However, the robotic fish still can be stuck
in a corner occasionally, i.e. the discontinuous trajec-
tory at the bottom-left corner in Fig. 13.

Fig. 13 The trajectory of a simulated robotic fish with the

avoid-obstacle behaviour and the keep-level behaviour

Fig. 14(a) shows the trajectory projection on the
xz plane. It displays the performance of keep-level be-
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haviour. The robotic fish reaches the desired depth
quickly and keeps in that level all the time. There is
0.2 m oscillation amplitude because the behaviour pa-
rameter is decided by prior knowledge at the moment.
Fig. 14(b) shows the IR detection during swimming.
The robotic fish detected the four walls of the water
tank and the two obstacles at the same level with the
desired depth. One exception is the up-right corner in
Fig. 14(b), the robotic fish missed that corner because
avoid-obstacle occurs before the fish reaches the corner.

(a) xz plane view

(b) 3D view of IR sensor data

Fig. 14 The trajectory and IR sensor data of a simulated

robotic fish with the avoid-obstacle behaviour and the

keep-level behaviour

4 Experiments and analyses on real
robots

All of individual behaviours have been designed
based on simulation. To further verify their feasibility,
we have tested them on our G9-series robotic fishes.
Fig. 15 shows its schematic structure. The robotic fish
is equipped with several kinds of sensors to response
to the dynamical changes in its environment, its posi-
tion in the tank, the robot attitude and the internal
status (e.g., the battery voltage). A standard configu-
ration of the robotic fish includes four IR sensors, one
dual-axis accelerometer/inclinometer, one piezoelectric

vibrating gyroscope, one water pressure sensor, three
electric current sensors and three servo turning angle
sensors. It is able to sense obstacles around it within
a range of 40 cm and its depth in the tank. It also can
perceive the pitch/roll angle, the 1-order derivative of
the yaw angle, the turning angle of the tail joints and
the power consumption on them. However, the robotic
fish has no ability to localize itself in the horizontal
plane.

Fig. 15 G9 robotic fish profile

The experimental tank is 5.5 m in length, 1.7 m in
width and 1.7 m in height, which has 1.5 m water in
depth. The front wall is made of transparent glasses
and all other walls are made of concrete. In each test,
one robotic fish is put into the tank and its trajectory is
recorded by a wide angle overhead camera. At the same
time, the onboard pressure sensor data are logged into
an MMC memory card in order to record the swimming
depth history. Several stones are placed near the be-
hind tank wall to be used as still obstacles. Each stone
is about 0.2 m in diameter and 0.2 m in height. Two
particular robotic fishes are used in experiments: G9-2
with blue skin and G9-3 with green skin. Both G9-2
and G9-3 have the same internal mechanical structure,
but different skin size. G9-2 is about 50 cm in length,
20 cm in height and 12 cm in width, while G9-3 is a
little longer which is about 60 cm in length, 22 cm in
height and 12 cm in width.

To see the performance of the proposed individual
behaviours, G9-2 or G9-3 is commanded to implement
a specific task, e.g., to explore the tank border at a
desired depth. In other words, the robotic fish is ex-
pected to keep its depth, follow the right side wall with
a proper distance and avoid bumping with walls and
obstacles. Five particular tests are selected here to
demonstrate the swimming performance. Table 4 lists
all the gain values and the parameters of individual be-
haviours in these 5 tests. Four factors are defined as
follows to evaluate the performance of each test. Table
5 shows the performance of each test according to these
evaluation factors.

1) TOC: Mean Time cost of One Circle swimming,
unit is second
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2) TSC: Mean Time cost Spent in a tank Corner,
unit is second

3) TBW: In one swimming circle, mean Times of
Bumping with Wall/obstacle except for corners

4) MSE: Mean Square Error to the desired trajec-
tory, unit is m2. The reference trajectory is 24 cm away
from the wall.

Table 4 Parameter configuration of experiments

No. GKL GWF GAO za Wd Fish

1 [0,1] [0.5,0] [1,0.3] 0.25 -1 G9-2

2 [0,1] [1,0] [1,0.3] 0.25 -1 G9-2

3 [0,1] [1,0] [1.5,0.3] 0.25 -1 G9-2

4 [0,1] [1,0] [0.5,0.3] 0.25 -1 G9-2

5 [0,1] [1,0] [1,0.3] 1.3 -1 G9-3

G = [gw, gp] are the gain value for ωd and Pt in behaviour co-

ordination. KL denotes keep-level, WF denotes follow-wall, AO

denotes avoid-obstacle. za is the desired depth setting for keep-

level, Wd defined which side of wall to follow in follow-wall

Table 5 Performance of each test in task implement

Test No. TOC(s) TSC(s) TBW MSE(m2)

1 202 2.1 0.9 0.243 5

2 181 2.5 2.1 0.147 5

3 170 2.5 1.8 0.250 9

4 205 5.1 4.1 0.121 0

5 190 5.2 0.8 0.051 1

In test 1, G9-2 starts from water surface and its
heading direction is pointing along the right side wall.
Fig. 16(a) shows the 3D trajectory of G9-2. To make
it clear, Fig. 16(b) shows the trajectory projection on
the xy plane. Fig. 16(c) plots the heading direction of
G9-2 during swimming and the position of obstacles
which is indicated by black circle. Figs. 16(b) and (c)
indicate that the robotic fish combined follow-wall and
avoid-obstacle behaviours to follow the right side wall
and avoid obstacles at the same time.

(a) 3D view

(b) xy plane view

(c) xy plane view with heading direction

Fig. 16 The trajectory of tank border exploration in test 1

In test 2, G9-2 starts from water surface and its
heading direction is pointing along the left side wall
rather than the right side wall in test 1. Fig. 17(a)
shows the 3D trajectory G9-2. Fig. 17(b) displays the
trajectory projection on the xy plane. Fig. 17(c) shows
the heading direction of G9-2 during swimming. G9-2
“seeks” the right side wall from “start” point until it
reaches point (2.5,0.2) from where G9-2 followed the
right side wall until end.

(a) 3D view

(b) xy plane view
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(c) xy plane view with heading direction

Fig. 17 The trajectory of tank border exploration in test 2

In test 3, G9-2 starts from the tank bottom and the
gain value gω of avoid-obstacle is increased from 1.0 to
1.5 and gω of follow-wall is kept on 1.0. Fig. 18(a)
shows that G9-2 spent less time in one circle swim-
ming but it is more likely to lose the wall to follow
because avoid-obstacle behaviour has more weights in
behaviour coordination than follow-wall behaviour.

In test 4, G9-2 starts from the tank bottom and the
gain value gω of avoid-obstacle is decreased from 1.5 to
0.5 and gω of follow-wall is kept on 1.0. Fig. 18(b)
shows that G9-2 spent more time in one circle swim-
ming and had smooth trajectory on following wall.
However, lower weights on avoid-obstacle make G9-2
stumble on the bottom-left corner.

In test 5, to evaluate behaviours at different swim-
ming levels with different length of robotic fish, G9-3
green fish is used to implement the tank border ex-
ploration at 1.3 m water level. Fig. 18(c) shows the
performance. Because there is not outstanding obsta-
cle at this level, the trajectory of G9-3 is quite smooth
and close to the desired trajectory. However, due to
longer body of G9-3, it didn’t do very well to deal with
tank corner and spent more time on avoiding corners.

(a) Test 3

(b) Test 4

(c) Test 5

Fig. 18 Swim direction and the xy plane trajectory

projection of tank border exploration in test 3, 4 and 5

From these tests, it can be concluded that 1)
Higher gain value of avoid-obstacle behaviour makes
the robotic fish do better on avoiding obstacles and cor-
ners but it seems to be too sensitive to them, e.g., at the
point (3.3, 1.5) in Fig .18(a) G9-2 did several left hard
turnings to avoid the obstacle and made its trajectory
deflect from the wall; 2) Higher gain value on follow-
wall behaviour makes the robotic fish good at following
wall and keeping trajectory smooth with smaller MSE.
However, the time spent in a corner is significant much
because the robotic fish relied more on follow-wall than
on avoid-obstacle. 3) Fixed gain value in behaviour co-
ordination can not satisfy all kinds of situations during
swimming. If cognitive layer can adaptively change the
gain values depending on the context swimming situa-
tion, the robotic fish would swim much better.

5 Conclusion

In this paper, we mainly discuss the design of the
behaviour layer in the hybrid control architecture of
our robotic fish, including the design of individual be-
haviours. All individual robotic fish behaviours are in-
spired by the real fish behaviours and implemented by
FLCs because FLC has advantage on non-linear con-
trol and real-time implementation. Simulation results
and real robotic fish experiments are given to prove
their feasibility and performance. However, the con-
stant gain value during entire task can not properly
deal with all kinds of situations. An adaptive gain value
is expected to do better, which will be investigated in
the future.
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