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Modeling and Control of Hybrid Machine Systems
— a Five-bar Mechanism Case

Hongnian Yu∗
Faculty of Computing, Engineering and Technology, Staffordshire University, Stafford ST16 9DG, UK

Abstract: A hybrid machine (HM) as a typical mechatronic device, is a useful tool to generate smooth motion, and combines
the motions of a large constant speed motor with a small servo motor by means of a mechnical linkage mechanism, in order
to provide a powerful programmable drive system. To achieve design objectives, a control system is required. To design a
better control system and analyze the performance of an HM, a dynamic model is necessary. This paper first develops a
dynamic model of an HM with a five-bar mechanism using a Lagrangian formulation. Then, several important properties
which are very useful in system analysis, and control system design, are presented. Based on the developed dynamic model,
two control approaches, computed torque, and combined computed torque and slide mode control, are adopted to control
the HM system. Simulation results demonstrate the control performance and limitations of each control approach.
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1 Introduction

Robotics and intelligent machines have been identi-
fied as one of the five main important application areas
for control technology, in a recent expert meeting of the
control community[1]. The ideas and experiences from
research in robotics and intelligent machines can be ap-
plied in the design, modelling, analysis, and control of
hybrid machines (HMs). An HM is a useful tool to gen-
erate smooth motion, and is an adjustable mechanism
with two motors, a constant velocity (CV) motor, and
a servo-motor, which produces a programmable range
of highly nonlinear output motions[2∼4]. HMs transmit
power from the servo and CV motors, and power sav-
ings are obtained over the case where an output shaft
is directly linked with a servomotor[5]. Meanwhile, the
size of servomotor used in HMs can be minimized in
comparison to the size of motor required to drive a
load directly.

Output motion containing a dwell, is widely em-
ployed in common industrial applications, such as cut-
ting, printing, and stamping. A cut-to-length machine
is investigated in [4]. An HM for producing a recipro-
cating motion is studied in [2]. An HM with a five-bar
mechanism is investigated in [3]. The optimal design
for an HM with a four-bar mechanism for path genera-
tion, and motions with reduced harmonic content, is in-
vestigated in [6]. To produce more complicated paths,
an HM with a five-bar mechanism was also optimally
designed in [6]. An HM with a seven-bar mechanism
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was developed in [4]. Kinematics optimization for an
HM with a seven-bar mechanism, using fuzzy logic and
a neural network, was studied in [5], while basic con-
trol issues based on a simplified dynamic model were
discussed in [7]. The benefits of using HMs, and a com-
parison of torques produced by a direct servo motor and
an HM, were investigated in [7]. This work showed that
an HM required less torque and less power than a di-
rect drive motor when producing a required motion, as
shown in Fig. 1.

A dynamic model plays a very important role in
terms of system validation, analysis, and control sys-
tem design. However, unlike robots with open-chain
mechanisms, the derivation of dynamic equations of
motion for a generic HM suitable for control system
design, is still an active research topic; because of the
complexity of the kinematics and dynamics analysis in-
volved. The development of a dynamic model for HMs
has received intensive research in recent years[6∼12]. An
approximated dynamic model of an HM with a seven-
bar mechanism was proposed in [7]. A full dynamic
model was developed using a Lagrangian formulation
in [8,9]. However, the developed model requires further
validation. Modelling of an HM with a five-bar mecha-
nism was investigated in [6,10] using a model reduction
approach. In [6,12,13], several basic control approaches
were proposed, based on the model in [6]. In this paper,
we follow the procedures proposed in [8,9] to develop
the kinematics and dynamic model for an HM with a
five-bar mechanism. One of the main aims is to provide
a validation means for the model developed in [8].

Based on the developed dynamic model, two well
known control approaches are adopted to control a
five-bar HM. The first approach is computed torque
control[14], which gives excellent control performance
when there is no uncertainty. However, it is sensitive
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to model uncertainty and other disturbance. The sec-
ond approach is combined computed torque and sliding
mode control[15], which provides good control perfor-
mance when there is uncertainty.

This paper provides two contributions. First, a full
dynamic model of an HM system with a five-bar mech-
anism is provided. The modelling method is based
on a Lagrangian formulation. As a result, systematic
and quantitative HM dynamics, i.e. a relation between
the Lagrangian formulation (including the inertial ma-
trix, the vector of centripetal and Coriolis torque, and
the vector of gravitational torque) and linkages is pre-
sented. The properties of the dynamic model are sum-
marised. The second, is that two control approaches
are applied for controlling an HM system based on the
developed dynamic model. Simulation results show the
effectiveness of the investigated HM and control ap-
proaches.

(a) Servo motor torque

(b) Servo motor power

Fig. 1 Comparison of the torque and power produced by a

direct servo motor and an HM

The paper is organized as follows: Section 2 devel-
ops the kinematics and dynamics for a five-bar mecha-
nism. The dynamics development is based on a La-

grangian formulation. The computation procedures
and properties of the developed dynamic model are
also presented. Two control approaches are presented
in Section 3. When the parameters of the HM are
known, the computed torque control approach pro-
vides a good control policy and generates good track-
ing performance. However, when the HM parameters
are unknown or changing with the environment, the
computed torque control approach cannot provide an
acceptable result. The sliding mode control approach
is a good and simple robust control policy which can
overcome system uncertainty well. To demonstrate the
above argument, simulation results are presented in
Section 4. Conclusions are given in Section 5.

2 Modelling an HM

This section concentrates on the development of the
kinematics and dynamics for the five-bar HM shown in
Fig. 2. Based on the developed model, several proper-
ties which will be used in the control system design in
Section 3 are also provided.

Fig. 2 An HM with a five-bar mechanism

2.1 Lagrangian equation

The general equation of motion for a mechanical
linkage system, which is the basic structure of an HM,
can be conveniently expressed through the application
of Lagrangian equations[14]. Lagrangian equations for
an HM are shown in Fig. 2, and can be written

d
dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= τi (1)

where L = K − P is known as a Lagrangian function;
K and P are respectively the total kinetic energy and
potential energy of the linkage system, and τi is the
generalised force or torque associated with the gener-
alised co-ordinate qi (angular displacement (rad)). The
system has five links, L1, · · · , L5. Since link 5 is fixed,
it can be neglected in the development of the dynamic
equations. Let qi denote the angle with respect to the
reference position of the link parallel to, and having
the same direction as the x co-ordinate shown in Fig. 2.
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Then the kinetic energy of the HM system is:

K =
1
2

4∑
i=1

[Iiq̇
2
i + mi(ẋ2

i + ẏ2
i )] =

1
2
Q̇T

12DQ̇12 (2)

where Ii includes the inertia of the motor armature,
the inertia of the load, and the inertia of the linkages,
xi is the x co-ordinate of mass centre of linkages Li, yi

is the y co-ordinate of mass centre of linkages Li, mi

is the mass of linkage Li, Q12 = [q1 q2]T is a vector
which represents two independent joints (inputs), i.e.
the inputs from the server and CV motor respectively,
and D is the generalised inertia matrix (which will be
developed later). Potential energy is:

P =
4∑

i=1

migyi = gMTY (3)

where g is gravity acceleration, M = [m1 m2 m3 m4]T
is the mass vector, and Y = [y1 y2 y3 y4]T. By inserting
(2) and (3) into (1) we have:

DQ̈12+ḊQ̇12− ∂K

∂Q12
+

∂P

∂Q12
= DQ̈12+CQ̇12+G = τ12

(4)

where CQ̇12 = ḊQ̇12 − ∂K

∂Q12
is a vector containing

the effects of the Coriolis and centripetal torque, G =
∂P

∂Q12
is a vector of gravity torque, and τ12 = [τ1 τ2] is

a vector of the generalised torque of joints one and two,
respectively. Our objective in dynamic development is
to determine the details of the representation of D, C,
and G in (4), for the HM shown in Fig. 2.

2.2 Kinematics of an HM

There is a loop L1L3L4L2L5 in the HM shown in
Fig. 2, which can be used to set up kinematic equations.
Two equations from the loop are:

L1C1 + L3C3 − L2C2 − L4C4 − L5 = 0 (5)
L1S1 + L3S3 − L2S2 − L4S4 = 0 (6)

where Ci = cos(qi) and Si = sin(qi) for simplicity rea-
sons. Equations (5) and (6) can be used to determine
the kinematics of the HM shown in Fig. 2.

2.2.1 Computation of q3 and q4

This HM has two degrees-of-freedom, and four joint
variables q1, q2, q3, and q4. As discussed earlier, only q1

and q2 are independent, while the rest of the joints (q3

and q4) are functions of joints q1 and q2. The objective
of this section is to find a representation for joints q3

and q4 in terms of q1 and q2. Using (5) and (6) and a
simple algebra, we can find representations of q3 and
q4 in terms of q1 and q2 as:

q3 = arctan
(

A

C

)
− β1 (7)

where a = L1C1 − L5 − L2C2, b = L1S1 − L2S2, A =
L2

4−(a2+b2+L2
3), C = 2L3

√
a2 + b2, β1 = arctan(a/b).

Inserting (7) into (6), we have:

q4 = arctan
(

b + L3S3

a + L3C3

)
. (8)

2.2.2 Computation of
∂qi

∂q1

and
∂qi

∂q2

for i = 3, 4

Taking the partial differentiation of (5) and (6) with

respect to q1, and considering that
∂q2

∂q1
= 0; since q1

and q2 are independent of each other, we have:

L1S1 + L3S3
∂q3

∂q1
− L4S4

∂q4

∂q1
= 0

L1C1 + L3C3
∂q3

∂q1
− L4C4

∂q4

∂q1
= 0.

Solving these two equations gives:
⎡
⎢⎣

∂q3

∂q1
∂q4

∂q1

⎤
⎥⎦ = L1

[ −L3S3 L4S4

−L3C3 L4C4

]−1 [
S1

C1

]
= L1A

−1
34 Sc1

(9)

where A34 =
[ −L3S3 L4S4

−L3C3 L4C4

]
and Sc1 = [S1 C1]T.

Taking the partial differentiation of (5) and (6) with

respect to q2, and considering
∂q1

∂q2
= 0, we have:

⎡
⎢⎣

∂q3

∂q2
∂q4

∂q2

⎤
⎥⎦=−L2

[−L3S3 L4S4

−L3C3 L4C4

]−1 [
S2

C2

]
=−L2A

−1
34 Sc2

(10)
where Sc2 = [S2 C2]T.

2.2.3 Computation of q̇3 and q̇4

Taking the derivatives of (5) and (6) with the re-
spect to time, gives:

L1S1q̇1 = L2S2q̇2 + L3S3q̇3 − L4S4q̇4 = 0
L1C1q̇1 − L2C2q̇2 + L3C3q̇3 − L4C4q̇4 = 0.

Writing the above equations in vector form gives:

[
q̇3

q̇4

]
=

[ −L3S3 L4S4

−L3C3 L4C4

]−1 [
L1S1 −L2S2

L1C1 −L2C2

] [
q̇1

q̇2

]
.

Let Q34 = [q3 q4]T, and A12 =
[

L1S1 −L2S2

L1C1 −L2C2

]
.

Then the above equation can be written

Q̇34 = A−1
34 A12Q̇12. (11)
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In system design, it is necessary to avoid singular val-
ues of A34, therefore its inverse is used in (9)∼(11). We
can set q3 �= q4 to avoid the singular value issue[5]. The
singular value issue was not discussed in [12,13].

2.2.4 Computation of ẋi and ẏi where i =
1, 2, 3, 4

From Fig. 2, we can easily obtain:

x1 = Lc1C1, y1 = Lc1S1

x2 = Lc2C2, y2 = Lc2S2

x3 = Lc3C3 + L1C1, y3 = Lc3S3 + L1S1

x4 = Lc4C4 + L2C2, y4 = Lc4S4 + L2S2

(12)

where Lci(i = 1, 2, 3, 4) are the distances from the joint
to the centre of mass for the ith link. Taking the deriv-
ative with time for the above equations, we have:

ẋ1 = −Lc1S1q̇1, ẏ1 = Lc1C1q̇1

ẋ2 = −Lc2S2q̇2, ẏ2 = Lc2C2q̇2

ẋ3 = −Lc3S3q̇3 − L1S1q̇1, ẏ3 = Lc3C3q̇3 + L1C1q̇1

ẋ4 = −Lc3S4q̇4 − L2S2q̇2, ẏ4 = Lc4C4q̇4 + L2C2q̇2.

The above equations can be rewritten in vector form
as:

Ẋ12 =
[

ẋ1

ẋ2

]
= −

[
Lc1S1 0

0 Lc2S2

] [
q̇1

q̇2

]
= −AsQ̇12

(13)

Ẏ12 =
[

ẏ1

ẏ2

]
=

[
Lc1C1 0

0 Lc2C2

] [
q̇1

q̇2

]
= AcQ̇12.

(14)

Using (11), we have:

Ẋ34 =
[

ẋ3

ẋ4

]
= −(As34A

−1
34 A12 + As)Q̇12

(15)

Ẏ34 =
[

ẏ3

ẏ4

]
= (Ac34A

−1
34 A12 + Ac)Q̇12 (16)

where

As =
[

Lc1S1 0
0 Lc2S2

]

Ac =
[

Lc1C1 0
0 Lc2C2

]

As34 =
[

Lc3S3 0
0 Lc4S4

]

Ac34 =
[

Lc3C3 0
0 Lc4C4

]
.

2.2.5 Computation of
∂yi

∂q1

and
∂yi

∂q2

From (12), and considering that q1 and q2 are inde-
pendent of each other, we have the following:

∂y1

∂q1
= Lc1C1,

∂y1

∂q2
= 0

∂y2

∂q1
= 0,

∂y2

∂q2
= Lc2C2

∂y3

∂q1
= Lc3C3

∂q3

∂q1
+ L1C1,

∂y3

∂q2
= Lc3C3

∂q3

∂q2

∂y4

∂q1
= Lc4C4

∂q4

∂q1
,

∂y4

∂q2
= Lc4C4

∂q4

∂q2
+ L2C2.

Rewriting the above equations in vector form gives:

∂Y12

∂q1
=

[
Lc1C1

0

]
= Lc1C1B1 (17)

∂Y12

∂q2
=

[
0

Lc2C2

]
= Lc2C2B2 (18)

∂Y34

∂q1
=

[
Lc3C3 0

0 Lc4C4

]
=

⎡
⎢⎣

∂q3

∂q1
∂q4

∂q1

⎤
⎥⎦ +

[
L1C1

0

]
=

L1Ac34A
−1
34 Sc1 + L1C1B1 (19)

∂Y34

∂q2
=

[
Lc3C3 0

0 Lc4C4

]
=

⎡
⎢⎣

∂q3

∂q2
∂q4

∂q2

⎤
⎥⎦ +

[
0

L2C2

]
=

− L2Ac34A
−1
34 Sc2 + L2C2B2 (20)

2.3 Dynamic model of an HM

In this section, we will develop the dynamics of an
HM using the kinematics described in Section 2.2.

2.3.1 Dynamic model

Kinetic energy (2) can be rewritten

K =
1
2

4∑
i=1

[Iiq̇
2
i + mi(ẋ2

i + ẏ2
i )] =

1
2
Q̇T

12I12Q̇12 +
1
2
Q̇T

34I34Q̇34 +
1
2
ẊT

12M12Ẋ12+

1
2
ẊT

34M34Ẋ34 +
1
2
Ẏ T

12M12Ẏ12 +
1
2
Ẏ T

34M34Ẏ34

where I12 = diag[I1 I2], I34 = diag[I3 I4], M12 =
diag[M1 M2], M34 = diag[M3 M4]. Using the re-
sults obtained in Section 2.2, kinetic energy can be
written:

K =
1
2
Q̇T

12I12Q̇12 +
1
2
Q̇T

12A
T
12A

−T
34 I34A

−1
34 A12Q̇12+

1
2
Q̇T

12A
T
s M12AsQ̇12+

1
2
Q̇T

12(As34A
−1
34 A12+As)TM34(As34A

−1
34 A12+As)Q̇12+

1
2
QT

12A
T
c M12AcQ̇12+

1
2
Q̇T

12(Ac34A
−1
34 A12+Ac)TM34(Ac34A

−1
34 A12+Ac)Q̇12 =

1
2
Q̇T

12DQ̇12 (21)
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K can also be represented as:

K =
1
2
[(I1 + m1L

2
c1 + m3L

2
1)q̇

2
1 + (I2 + m3L

2
c2+

m4L
2
2)q̇

2
2 + 2m3L2Lc4C1−3q̇1q̇3 + (I3 + m3L

2
c3)q̇

2
3+

2m4L2Lc4C2−4q̇2q̇4 + (I4 + m4L
2
c4)q̇

2
4 ]. (22)

Using (22), we have:

∂K

Q12
=

⎡
⎢⎣

∂K

∂q1
∂K

∂q2

⎤
⎥⎦ =

[−2m3L1Lc3S1−3q̇1 0
0 −2m4L2Lc4S2−4q̇2

]
Q̇34+

⎡
⎢⎢⎣
[∂q3

∂q1

∂q4
∂q1

] [
2m3L1Lc3S1−3q̇1 0

0 2m4L2Lc4S2−4q̇2

]

[∂q3
∂q2

∂q4
∂q2

] [
2m3L1Lc3S1−3q̇1 0

0 2m4L2Lc4S2−4q̇2

]
⎤
⎥⎥⎦Q̇34

= Cs34Q̇34 + C34Q̇34 =

(Cs34 + C34)A−1
34 A12Q̇12 = CKQQ̇12 (23)

where

Cs34 =
[−2m3L1Lc3S1−3q̇1 0

0 −2m4L2Lc4S2−4q̇2

]

C34 =⎡
⎢⎢⎣

[ ∂q3
∂q1

∂q4
∂q1

] [
2m3L1Lc3S1−3q̇1 0

0 2m4L2Lc4S2−4q̇2

]

[ ∂q3
∂q2

∂q4
∂q2

] [
2m3L1Lc3S1−3q̇1 0

0 2m4L2Lc4S2−4q̇2

]
⎤
⎥⎥⎦=

⎡
⎢⎢⎣
(L1A

−1
34 Sc1)T

[
2m3L1Lc3S1−3q̇1 0

0 2m4L2Lc4S2−4q̇2

]

(L1A
−1
34 Sc2)T

[
2m3L1Lc3S1−3q̇1 0

0 2m4L2Lc4S2−4q̇2

]
⎤
⎥⎥⎦

CKQ = (Cs34 + C34)A−1
34 A12.

From (21), we can easily obtain:

D = I12 + (A−1
34 A12)TI34A

−1
34 A12 + AT

s M12As+

(As34A
−1
34 A12 + As)TM34(As34A

−1
34 A12 + As)+

AT
c M12Ac + (Ac34A

−1
34 A12+

Ac)TM34(Ac34A
−1
34 A12 + Ac). (24)

Taking the time derivative of D, we have:

Ḋ = 2(A−1
34 A12)TI34A

−1
34 (Ȧ12 − Ȧ34A

−1
34 A12)+

2AT
s M12Ȧs + 2(As34A

−1
34 A12 + As)TM34((Ȧs34−

As34A
−1
34 Ȧ34)A−1

34 A12 + As34A
−1
34 Ȧ12 + Ȧs)+

2AT
c M12Ȧc + 2(Ac34A

−1
34 A12 + Ȧs)M34((Ȧc34−

Ac34A
−1
34 Ȧ34)A−1

34 A12 + Ac34A
−1
34 Ȧ12 + Ȧc)

where

Ȧ12 =
[

L1C1q̇1 −L2C2q̇2

−L1S1q̇2 L2S2q̇2

]

Ȧs =
[−Lc1C1q̇1 0

0 −Lc2C2q̇2

]

Ȧc =
[−Lc1S1q̇1 0

0 −Lc2S2q̇2

]

Ȧs34 =
[

Lc3C3q̇3 0
0 Lc4C4q̇4

]

Ȧc34 = −
[

Lc3S3q̇3 0
0 Lc4S4q̇4

]

Ȧ34 =
[−L3C3q̇3 L4C4q̇4

L3S3q̇3 −L4S4q̇4

]
=

[
Q̇T

34A−34

Q̇T
34A3−4

]
.

Let D =
[

d11 d12

d12 d22

]
, and we have:

Ḋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̇T
12

⎡
⎢⎣

∂d11

∂q1
∂d11

∂q2

⎤
⎥⎦ Q̇T

12

⎡
⎢⎣

∂d12

∂q1
∂d12

∂q2

⎤
⎥⎦

Q̇T
12

⎡
⎢⎣

∂d12

∂q1
∂d12

∂q2

⎤
⎥⎦ Q̇T

12

⎡
⎢⎣

∂d22

∂q1
∂d22

∂q2

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

ḊQ̇12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̇T
12

⎡
⎢⎣

∂d11

∂q1
∂d11

∂q2

⎤
⎥⎦ Q̇T

12

⎡
⎢⎣

∂d12

∂q1
∂d12

∂q2

⎤
⎥⎦

Q̇T
12

⎡
⎢⎣

∂d12

∂q1
∂d12

∂q2

⎤
⎥⎦ Q̇T

12

⎡
⎢⎣

∂d22

∂q1
∂d22

∂q2

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Q̇12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̇T
12

⎡
⎢⎣

∂d11

∂q1

∂d12

∂q1
∂d11

∂q2

∂d12

∂q2

⎤
⎥⎦ Q̇12

Q̇T
12

⎡
⎢⎣

∂d12

∂q1

∂d22

∂q1
∂d12

∂q2

∂d22

∂q2

⎤
⎥⎦ Q̇12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∂K

∂Q12
=

1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̇T
12

⎡
⎢⎣

∂d11

∂q1

∂d12

∂q1
∂d12

∂q2

∂d22

∂q2

⎤
⎥⎦ Q̇12

Q̇T
12

⎡
⎢⎣

∂d11

∂q2

∂d12

∂q2
∂d12

∂q2

∂d22

∂q2

⎤
⎥⎦ Q̇12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
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1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̇T
12

⎡
⎢⎣

∂d11

∂q1
∂d12

∂q1

⎤
⎥⎦ Q̇T

12

⎡
⎢⎣

∂d12

∂q1
∂d22

∂q1

⎤
⎥⎦

Q̇T
12

⎡
⎢⎣

∂d11

∂q2
∂d12

∂q2

⎤
⎥⎦ Q̇T

12

⎡
⎢⎣

∂d12

∂q2
∂d22

∂q2

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Q̇12.

Using the above two equations, we have:

ḊQ̇12 − ∂K

∂Q12
=

1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̇T
12

⎡
⎢⎣

∂d11

∂q1

2
∂d11

∂q2
− ∂d12

∂q1

⎤
⎥⎦ Q̇T

12

⎡
⎢⎣

∂d12

∂q1

2
∂d12

∂q2
− ∂d22

∂q1

⎤
⎥⎦

Q̇T
12

⎡
⎢⎣

2
∂d12

∂q1
− ∂d11

∂q2
∂d12

∂q2

⎤
⎥⎦ Q̇T

12

⎡
⎢⎣

2
∂d22

∂q1
− ∂d12

∂q2
∂d22

∂q2

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Q̇12.

Therefore, C in (4) is:

C =

1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̇T
12

⎡
⎢⎣

∂d11

∂q1

2
∂d11

∂q2
− ∂d12

∂q1

⎤
⎥⎦ Q̇T

12

⎡
⎢⎣

∂d12

∂q1

2
∂d12

∂q2
− ∂d22

∂q1

⎤
⎥⎦

Q̇T
12

⎡
⎢⎣

2
∂d12

∂q1
− ∂d11

∂q2
∂d12

∂q2

⎤
⎥⎦ Q̇T

12

⎡
⎢⎣

2
∂d22

∂q1
− ∂d12

∂q2
∂d22

∂q2

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

Ḋ − CKQ. (26)

Using the results in Section 2.2.5, the terms of gravity
torque are:

G =

⎡
⎢⎣

∂P

∂q1
∂P

∂q2

⎤
⎥⎦ =

⎡
⎢⎣

g(Mg12
∂Y12

∂q1
+ Mg34

∂Y34

∂q1
)

g(Mg12
∂Y12

∂q2
+ Mg34

∂Y34

∂q2
)

⎤
⎥⎦ =

[
gLc1C1Mg12B1 + gL1Mg34(Ac34A

−1
34 Sc1 + C1B1)

gLc2C2Mg12B2 + gL2C2Mg34B − gL2Mg34Ac34A

]

(27)

where Mg12 = [m1 m2], and Mg34 = [m3 m4].
We can summarise the procedures of computing the

dynamics of HM (4) as follows:
1) Input the parameters of the mechanical linkage

system, Li, Lci, mi, Ii, for i = 1, 2, 3, 4.
2) Loop: Perform the following computation, for

t = 1, 2, · · · , N

a) Input the two independent joint variables q1 and
q2, velocity q̇1 and q̇2, acceleration q̈1 and q̈2.

b) Compute the other joint variables q3 and q4 using
(7) and (8).

c) Compute D using (24).
d) Compute C using (26).
e) Compute G using (27).
f) Compute τ12 using (4).
The above procedures are very useful for system

analysis, simulation study, and controller design.

2.3.2 Properties

It can be proved that (4) has the following proper-
ties:

a) Inertia matrix D is symmetric, positive definite,
and bounded above and below, i.e. DT = D, XTDX >
0 (X is an arbitrary vector), and there exist constants
dm and dM , such that dmI � D � dMI (I is a 2 × 2
identity matrix).

b) Matrices D and C satisfy:

Q̇T
12(Ḋ − 2C)Q̇12 = 0.

c) The term CQ̇12 has:

‖CQ̇12‖ � d‖Q̇12‖2

where d is a scalar constant.
d) The gravity term G is bounded above, i.e.:

‖G‖ � dq

where dg is a scalar constant.
e) Dynamics (4) defines a passive mapping from the

input τ12 to the generalised velocity Q̇12, i.e.:∫ t

0

Q̇T
12(u)τ12(u)du � 0

f) Dynamics (4) can be linearised in terms of un-
known (or uncertain) parameters as follows:

τ12 = DQ̈12 + CQ̇12 + G = ΘW + W0.

The above properties are very useful in control sys-
tem design, and to validate the design of an HM. Their
proofs are given in Appendix.

3 Control of HM

The highly non-linear nature of HM dynamics (4),
means that a linear control approach will only pro-
vide local and approximate results. In order to ob-
tain global results, more advanced and quite different
techniques from non-linear control theory are required.
Many nonlinear based approaches have been proposed
to control robot manipulators, e.g. geometric control,
computed torque control, and sliding mode control, etc.
In these approaches, a non-linear control law can be
derived either using a feedforward (computed torque),
or a feedback (feedback linearization, inverse dynam-
ics) method, from which the intent of linearization and
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decoupling of non-linear robot dynamics can be estab-
lished. Computed torque (also called inverse dynamics)
is commonly referred to as a special case of feedback
linearization in robot control.

In this section, we introduce two control approaches
to control an HM. One is the popular computed torque
control method, while the other is a combination of
computed torque and sliding mode control.

3.1 Computed torque control of an HM

To control the HM dynamic model (4), a selected
computed torque control law is:

τ12 = DQr + CQ̇12 + G (28)

where Qr = Q̈d12 − Kv ė12 − Kpe12, e12 = Q12 − Qd12,
Qd12 is the desired (or reference) trajectory vector of
Q12, and Kp and Kd are linear control parameters. In-
serting control law (28) into dynamic (4), gives:

D(Q̈12 − Q̈d12 + Kv ė12 + Kpe12) = 0.

Using property (a) in section 2.3.2, we have the follow-
ing error equation:

ë12 + Kv ė12 + Kpe12 = 0. (29)

Therefore, standard control methods from linear con-
trol theory can be used to design gains Kv and Kp, and
to achieve desired tracking performance. If the gain
matrices Kv and Kp are chosen as diagonal matrices
with positive elements, then the closed-loop system is
linear, decoupled, and exponentially stable. This is a
very appealing control approach. However, the chief
drawback of the computed torque control approach
arises from the fact that it relies on an exact cancella-
tion of non-linear terms in order to obtain linear input-
output behaviour. Therefore, we have to combine com-
puted torque control with robust control - sliding mode
control, in order to improve the robustness of the closed
loop system.

3.2 Combining computed torque and slid-
ing mode control for an HM

Since the dynamic parameters of an HM in a real
system are difficult to obtain, we can only use estimated
values. Therefore, the following combined control law
is adopted:

τ12 = τ̂12 + τs = D̂v̇ + Ĉv + Ĝ − Kssgn(s) (30)

where D̂, Ĉ, Ĝ and are estimations of D, C, and
G, v = Q̇d12 − P12e12 is reference desired joint sig-
nal, s = ė12 + P12e12 is reference error, P12 is a pos-
itive matrix selected by a designer, Ks is a positive
sliding gain matrix, and sgn(·) is a signal function.
s = ė12 + P12e12 = 0 is also called the sliding surface
in [6].

Theorem 1. For HM (4), if combined control law
(29) is applied and the following condition satisfied:

ki � |D̃(Q12)v̇ + C̃(Q12, Q̇12)Q̇12 + G̃(Q12)|i +ηi (31)

where D̃ = D̂−D, C̃ = Ĉ −C, G̃ = Ĝ−G, and ηi, are
small positive values, then for a reasonably small pos-
itive constant, all signals in the system are bounded,
and tracking error e12 tends to zero as time tends to
infinity.

Proof. Define a Lypunov-like positive function:

V =
1
2
sTDs.

Taking the derivative of the above equation with re-
spect to time, and using the properties in 2.3.2, control
law (30) and (31) have:

V̇ =sTDṡ +
1
2
sTḊs =

sT(τ12 − CQ̇12 − G − DQ̈d12 + DP12ė12 +
1
2
Ḋs) =

sT(D̂v̇ + Ĉv + Ĝ − Kssgn(s) − Cv − Cs − G−
Dv̇ +

1
2
Ḋs) =

sT(D̃v̇ + C̃v + G̃) −
2∑

i=1

Ksi|si| � −
2∑

i=1

ηi|si|.

Hence si → 0 as t → ∞. This leads to e12 → 0 as
t → ∞. �

4 Simulation study

The purpose of the simulations in this paper is 1) to
test and validate the adopted control approaches, and
2) to compare the combined computed torque control
and sliding model control approach with the computed
torque control approach.

Simulation studies were conducted using the five-
bar HM shown in Fig. 2. Numerical values for link
parameters used in the simulations were as shown in
Table 1. The estimated values of the link parameters
used in the control law were shown in Table 2. During
simulation, the servo and CV motor were instructed to
complete the following motion:

qd1 = π/8 + 1.5t

qd2 = 0.6 sin(0.5πt) + 0.3 sin(1.5πt) + 0.1 sin(3πt)

Table 1 Parameters for a five-bar HM

Link i Li(m) Lci(m) mi(kg) Ii(kg·m2)
1 0.08 0.006 0.91 0.000 847
2 0.1 0.028 0.28 0.000 63
3 0.25 0.125 0.38 0.004 002
4 0.25 0.125 0.38 0.004 002
5 0.25 - - -



242 International Journal of Automation and Computing 3 (2006) 235-243

Table 2 Estimated parameters for a five-bar HM

Link i Li(m) Lci(m) mi(kg) Ii(kg·m2)
1 0.08 0.006 0.90 0.000 8
2 0.11 0.025 0.29 0.000 6
3 0.24 0.12 0.39 0.004
4 0.26 0.13 0.37 0.003 5
5 0.25 - - -

The trajectories qd1, qd2, qd3, and qd4, are shown in
Fig. 3.

Fig. 3 Desired joints for an HM

4.1 Computed torque control

The parameters of the computed torque control law

were: Kv =
[

10 0
0 40

]
and Kp =

[
50 0
0 100

]
. When

there was no parameter uncertainty, i.e. true link pa-
rameters were used, tracking performance was good.
When estimated link parameters were used, simulation
results were as shown in Fig. 4. It can be seen that
there are significant errors.

Fig. 4 Tracking performance of a computed torque

controller

4.2 Sliding mode control

The parameters of the sliding mode control law

were: P12 =
[

100 0
0 200

]
, Ks =

[
2 0
0 8

]
and η1 =

η2 = 0.4. When the estimated link parameters were
used, the simulation results were shown in Fig. 5. It
can be seen that the tracking performance shown in
Fig. 5 is much better than that shown in Fig. 4.

Fig. 5 Tracking performance of a sliding mode controller

5 Conclusions

In this paper, a general dynamic model for an HM
with a five-bar mechanism has been developed using
a Lagrangian formulation. The dynamic model has
a closed form, and can be used to validate mechan-
ical systems, to design a controller, and to perform
simulation studies. Several important properties have
been obtained from the dynamic model. These prop-
erties, which are similar to those of robot manipula-
tors, can play an important role in advanced control
system design. Furthermore, two popular control ap-
proaches, computed torque control, and sliding mode
control, have been adopted based on the developed dy-
namic model. Simulation results have demonstrated
good control performance.

Appendix

Proofs of the properties presented in Section 2.3.2
are given below. It is easy to prove that D is symmet-
ric, positive definite, and bounded above and below.
The symmetric and positive definite properties of D
are straightforward, since matrices I12, I34, M12, and
M34, are diagonal and positive definite. The bound-
edness of D is due to the fact that all elements of the
matrices in (23) are sine or cosine functions of joint
variables. We have already proved property (a).

Using (25) and (26), we can prove property (b). Us-



H. Yu/Modeling and Control of Hybrid Machine Systems — a Five-bar Mechanism Case 243

ing (24) and (26), and the boundedness of the sine and
cosine functions, we can show property (c).

Property (d) can be shown using (27).
Property (e) may be shown using Hamilton’s equa-

tion of motion[14]. Let Hamilton’s H be:

H = K + P =
1
2
Q̇T

12DQ̇12 + P.

Taking the derivative of the above equation with re-
spect to time, gives:

dH

dt
=Q̇T

12DQ̈12 +
1
2
Q̇T

12ḊQ̇12 + Q̇T
12

∂P

∂Q12
=

Q̇T
12(DQ̈12 +

1
2
ḊQ̇12 +

∂P

∂Q12
). (A1)

Using (4), we have:

Q̇T
12τ12 = Q̇T

12(DQ̈12 + CQ̇12 +
∂P

∂Q12
). (A2)

Comparing (A1) and (A2), and using property (b), we
have

dH

dt
= Q̇T

12τ12.

Integrating the above equation gives:
∫ t

0

Q̇T
12(u)τ12(u)du = H(t) − H(0) � −H(0).

This proves the passivity of the mapping between τ12

and Q̇
[14]
12 .
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