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Abstract: In this paper, a hybrid method based on rough sets and genetic algorithms, is proposed to improve the speed

of robot path planning. Decision rules are obtained using rough set theory. A series of available paths are produced by

training obtained minimal decision rules. Path populations are optimised by using genetic algorithms until the best path is

obtained. Experiment results show that this hybrid method is capable of improving robot path planning speed.
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1 Introduction

Robots are an outgrowth of traditional mechanisms
and modern electronics technologies. The use of robots
is becoming more and more popular. It is therefore
necessary to improve their performance. Among fac-
tors for robot performance, path planning is of great
importance.

At present, path planning methods can be divided
into two categories: traditional methods and intelligent
methods. Traditional methods include gradient, grid,
enumeration, man-made potential, and graph methods,
etc. However, the gradient method can easily sink into
a local minimum; graph and enumeration methods can-
not be used to deal with optimisation problems with
high dimensionality; and the potential method can lose
useful solution information. Some common methods
for intelligent path planning, which have been used re-
cently, include fuzzy control, neural networks, and ge-
netic algorithms.

Sugibara and Smith[1], applied genetic algorithms
to robot path planning, and improved performance.
Their algorithms adopted a binary coding system, re-
sulting in increased individual length and complexity of
planning. Surmann et al.[2], proposed a path planning
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method using fuzzy control. Eight ultrasonic sensors
were used to provide information about the environ-
ment, for path planning by a navigator based on fuzzy
control. An accurate path could be obtained quickly
using this method, although complexity increased con-
siderably when the number of barriers in the envi-
ronment increased; therefore decreasing path planning
speed. Yu et al.[3], employed neural networks in robot
path planning in order to increase speed of planning,
however their method is only applicable for situations
in which the position of barriers is known; preventing
it from conducting real time planning.

Genetic algorithms, are more useful than other
methods. However, gaining a population randomly
may lead to a large search space, and low ability to
delete redundant individuals, both of which affect plan-
ning speed. This shortcoming of genetic algorithms is
clear, especially when an environment is complicated
or there are two or more robots. In recent years, rough
set theory has become a new research focus in artificial
intelligence, for pattern recognition, machine learning,
knowledge representation, knowledge discovery and de-
cision analysis, etc.

This paper proposes a new hybrid method for robot
path planning, based on rough sets and genetic algo-
rithms, and described using a warehouse transport ap-
plication. Rough set theory is introduced to improve
population initialisation, when a genetic algorithm is
used in order to improve the speed of robot path plan-
ning. Minimal decision rules are obtained using rough
sets, from which a series of possible paths are pro-
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duced. Path populations are optimised, using genetic
algorithms, and an optimal path selected. A simula-
tion system has been built to demonstrate this path
planning process, and to obtain an optimal path.

2 Rough set algorithm

In recent years, rough set theory has become a new
research focus in artificial intelligence for systematic
analysis, and has been used in pattern recognition, ma-
chine learning, knowledge representation, knowledge
discovery and decision analysis, etc[4].

2.1 The knowledge representation system

When dealing with intelligent data, it is necessary
to use symbols to represent knowledge. The basic com-
position of knowledge representation systems is a set of
research objects, in which knowledge is represented us-
ing basic characters and attribute values. A knowledge
representation system can be expressed by:

S =< U,C,D, V, f >

where S indicates the system, U is the set of objects,
C ∪ D = A is the set, the subset C and D are condi-
tion and result attributes respectively, V = ∪a∈∧Va is
the set of attribute values, Va indicates the category of
a ∈ A, and f : U × A→ V is an information function,
which appoints the attribute value of each object x in
U .

This definition of a knowledge representation sys-
tem can be expressed conveniently using tables. This
method of expressing knowledge using tables may be
regarded as a special formal language. When express-
ing the relationship of equivalence using symbols, the
data should be called a knowledge representation sys-
tem (KRS), or an attribute values table of an informa-
tion system.

2.2 The simplification of knowledge and
core

When rough set theory is applied, it is necessary to
delete abundant basic categories, and frequently to sim-
plify knowledge while keeping an initial category in the
knowledge base. In expressing the idea of knowledge
simplification, two basic concepts, simplification and
core, are very important. Based on these two concepts,
abundant attributes are analysed, and knowledge han-
dled, simultaneously. First, repetitive examples and
abundant attributes are deleted, then, a minimal sim-
plification is made in terms of logical rules gained. Fi-
nally, minimal rules are drawn to deal with the data.

3 Derivation of decision rules for robot
paths

3.1 Workspace of the robot

This research considers a warehouse environment,
in which a robot is used to transport goods. There
are a number of modelling methods for path planning
in mobile robots, such as grids, and images of peak
methods, etc. A grid method does not have a relation-
ship with the topology structure of barriers[5], search
space is very large, and there are problems of calcu-
lation efficiency. The image pattern of peak method,
depends on t-structure as a high level description of
the environment, and can lead to an exact solution in
path planning. However, when the number of obsta-
cles increases, or the shape of obstacles is complex, the
complexity of path planning algorithms increase expo-
nentially, and the problem may become unsolvable.

This research therefore adopts the grid method,
which divides the workspace of a mobile robot into a
series of grid squares, with two-value information to de-
scribe the location of each square. For convenience of
use, the workspace of the mobile robot is divided into
many square grids of the same size, (a non-square rect-
angle can be filled up with squares). The size of grids
must be appropriate, to ensure that the robot can pass
through them with acceptable accuracy. The sequence
law of grids is employed, as shown in Fig.1, where a
grid is coded from 1 to 100. The grid square marked S
is the start point for the robot, and G the goal point.

Fig.1 Workspace of the mobile robot represented by a grid

3.2 Construction of a decision table

The workspace of a robot can be indicated in a grid.
Assuming the sequence number of the present location
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of a robot is pi (except boundary points), and the se-
quence number of the goal grid square is 99, there are 8
possible directions that the robot may move, as shown
in Fig.2.

Fig.2 Direction of robot moves

These 8 directions, are regarded as condition at-
tributes (i.e. C = {X1, X2, X3, X4, X5, X6, X7, X8})
to be quantified; condition attributes are expressed us-
ing a value from 1 to 3. Therefore, an initial decision
table is established as shown in Table 1.

Table 1 Initial decision table for path planning

U X1 X2 X3 X4 X5 X6 X7 X8 Y

1 2 2 2 1 1 1 1 1 1

2 2 2 2 1 1 1 1 2 1

3 2 2 2 1 1 1 1 3 1

4 2 2 2 2 1 1 1 1 1

5 2 2 2 2 1 1 1 2 1

6 2 2 2 2 1 1 1 3 1

7 2 2 2 3 1 1 1 1 1

8 2 2 2 3 1 1 1 2 1

9 2 2 2 3 1 1 1 3 1

10 2 2 2 1 1 2 1 1 1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
4374 1 3 3 3 3 3 3 3 8

3.3 Simplification of the decision table

Simplification of a decision table, reduces condition
attributes, while retaining solution calculation ability.
The simplification of a decision table is performed using
the following steps:

1) Simplify condition attributes, i.e. delete some
columns in the decision table,

2) Delete repetitive rows, and
3) Delete abundant attribute values.
The simplification of condition attributes, involves

the need to delete some condition attributes while
maintaining the consistency of the decision table. That
is, after one of the condition attributes is deleted, the

table is checked to see if a condition attribute in the
same row can yield the same decision value as before.
In a compatible data table, an optimum attribute set
can be selected using rough set theory.

Quality: If C = {X1, X2, · · · , Xn} is the attribute
set, and ∩(C − {Xi}) = ∩C, then Xi can be omitted
from C; otherwise, Xi cannot be omitted from C.

First, repetitive samples in a decision table are
merged, then attributes of samples are simplified, based
on their characteristics, to delete every attribute col-
umn. The consistency of the decision table is then
checked. After calculation, attribute {X4}, {X6}, and
{X8} are considered abundant attributes, and should
be deleted. Finally, repetitive rows in the decision table
are merged once more.

The number of samples is decreased to 162 after
deleting abundant attributes, as shown in Table 2.

Table 2 Decision table with abundant attributes deleted

U X1 X2 X3 X5 X7 Y

1 2 2 2 1 1 1

2 2 2 2 1 2 1

3 2 2 2 1 3 1

4 2 2 2 2 1 1

5 2 2 2 2 2 1

6 2 2 2 2 3 1

7 2 2 2 3 1 1

8 2 2 2 3 2 1

9 2 2 2 3 3 1

10 1 2 2 1 1 2

· · · · · · · · · · · · · · · · · · · · ·
162 1 3 3 3 3 8

3.4 Minimal decision rules

It is clear that not all decision rules are necessary
for decision algorithms. Some rules can be deleted, and
the decision process not be affected, as in the method
described below:

Order F is a basic algorithm, S = (U,A) is a knowl-
edge representation system, and F possesses basic rule
sets with the same result ψ, which can be represented
as Fψ . The cause sets of decision rules belonging to
Fψ, can be represented as Pψ.

When |s∨Pψ ≡ ∨{Pψ-{θ}}, the basic decision rules
θ → ψ in F can be omitted, where ∨Pψ is the de-
composition of all formulas. Otherwise, basic decision
rules in F cannot be omitted, and the decision rule set
Fψ regarded as independent. If all rules of the subset
F ′
ψ, of the decision rule set Fψ , are independent, and

|s∨Pψ ≡ ∨P ′
ψ, then the subset F ′

ψ, of the decision rule
set Fψ , is called the simplification of Fψ . When deci-
sion rules for basic algorithm F are all simplified rules,
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and each basic decision rule θ → ψ in F , then Fψ is
simplified, and the basic algorithm F is minimal.

Table 3 shows minimal decision rules, which cannot
be simplified further.

Table 3 Table of minimal decision rules

U X1 X2 X3 X5 X7 Y

1 2 2 2 1 – 1

2 2 2 2 2 – 1

3 2 2 2 3 – 1

4 2 2 2 – 1 1

5 2 2 2 – 2 1

6 2 2 2 – 3 1

7 1 2 2 1 – 2

8 1 2 2 2 – 2

9 1 2 2 3 – 2

10 1 2 2 – 1 2

· · · · · · · · · · · · · · · · · · · · ·
80 – 1 3 3 3 8

4 Simulation experiments

A hybrid method involving rough sets and genetic
algorithms can be conducted as follows[6∼8]:

1) Establish the work model of a robot in a grid,
within which barriers are generated randomly,

2) Produce randomly, an initial population at a
fixed scale, and train it using rough set path decision
rules to generate a series of paths,

3) Initialise a counter of genetic generations, options
= 0, and

4) Plan a robot path using genetic algorithms, con-
sisting of selection, crossover, and mutation operators,
in which the crossover rate can be defined using the
following self-adaptive selection formula[9∼12]:

pc = k1(fmax − f ′)/(fmax − fmin) + k2

where fmax and fmin are maximal and minimal val-
ues of the fitness function respectively, f ′ the layer of
individuals that cross, and k1 and k2 contraction co-
efficients of the algorithms which satisfy k1 + k2 = 1.
Here, it is assumed that k1 = 0.3 and k2 = 0.7.

Using the algorithms described above, simulation
experiments were carried out. A grid of 10 × 10
squares, was selected to represent the working envi-
ronment of a robot. A population scale was set to 30,
i.e. popsize = 30, and the length of individuals was set
to 100, i.e. stringlength = 100.

In addition, a mutation rate of 0.01 was used. The
position and number of barriers was generated ran-
domly, as shown in Fig.3. The result in Fig.3(a) is
gained using 13 generations, i.e. options = 13, where
the quantity of barrier is za = 35, and the fitness func-
tion value f = 0.1786. In Fig.3(b), the result is gained

using 10 generations, i.e. options = 10, where the
quantity of barrier is za = 32, and the fitness func-
tion value f = 0.1734.

(a)

(b)

Fig.3 Simulation results

The path planned, can backtrack voluntarily when
a barrier blocks the way ahead and start searching new
paths, as shown in grid square (5.5, 4.5) in Fig.3(a),
and grid square (3.5, 5.5) in Fig.3(b).

The relationship between genetic generation and fit-
ness for the two situations in Fig.3, are shown in Fig.4
respectively. From the figures, it can be seen that the
fitness of Fig.3(a) became stable after 13 generations,
while for Fig.3(b) fitness became stable after 10 gener-
ations.

The proposed hybrid method, was used to plan a
work model in which there were 10, 15, 20, 25 and 30
barriers respectively, in which the position of barriers
was generated randomly. Simulation results are sum-
marised in Table 4. The table also shows results gained
using a traditional genetic algorithm method, with the
same parameters as the new method, to provide a com-
parison between the two. In the table, f̄ is the average
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fitness value, fopt optimum fitness value, and N̄opt the
average number of generations before an optimum re-
sult was reached. Method 1, is a traditional genetic
algorithm method which uses binary coding[1], while
method 2, is the proposed new hybrid method. It is
clear that the new hybrid method has a faster plan-
ning speed than the traditional algorithm, while still
obtaining an optimal path.

(a)

(b)

Fig.4 Relationship between genetic generation and fitness

Table 4 Comparative results between the new method and

a traditional method

Number of f̄/fopt[%] N̄opt

barriers Method 1 Method 2 Method 1 Method 2

10 99.999 99.85 125 12

15 99.813 99.36 212 15

20 99.821 99.31 378 22

25 99.796 99.02 295 19

30 99.797 99.42 439 24

5 Conclusions

This paper has proposed a new hybrid method
based on rough sets and genetic algorithms, for robot

path planning. Rough set theory is suitable for dealing
with large amounts of incomplete data, while genetic
algorithms provide good search ability in large state
spaces. Incorporating the strengths of the two meth-
ods, the proposed new hybrid method has improved
speed in robot path planning.
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