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Product Quality Prediction by a Neural Soft-Sensor Based

on MSA and PCA
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Abstract: A novel soft-sensor model which incorporates PCA (principal component analysis), RBF (Radial Basis Function)
networks, and MSA (Multi-scale analysis), is proposed to infer the properties of manufactured products from real process
variables. PCA is carried out to select the most relevant process features and to eliminate the correlations of input variables;
multi-scale analysis is introduced to acquire much more information and to reduce uncertainty in the system; and RBF

networks are used to characterize the nonlinearity of the process. A prediction of the melt index (MI), or quality of
polypropylene produced in an actual industrial process, is taken as a case study. Research results show that the proposed
method provides promising prediction reliability and accuracy.
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1 Introduction

Neural network systems have been widely used to
model and control dynamic processes, because of their
extremely powerful adaptive capabilities in response to
nonlinear behavior. As a result, neural systems can
mimic high-level cognitive tasks present in human be-
havior, and operate in ill-defined and time-varying en-
vironments with a minimum amount of human inter-
vention. For example, they are capable of (i) learning
from interaction with an environment, without restric-
tion; to capture any kind of functional relationship be-
tween information patterns, if enough training infor-
mation is provided, (ii) generalize learnt information
to similar situations never seen before, and (iii) pos-
sess a good degree of fault tolerance, mainly due to
their intrinsic massively parallel layout. These proper-
ties make neural computing appealing to many fields
of engineering[1,2].

Complex systems are characterized by their hier-
archical multi-scale nature, with respect not only to
space, but also to time, showing dissipative structures
induced by inherently nonlinear, and non-equilibrium
interactions; and are stabilized by exchanging energy,
matter, and information with their surroundings. A
multi-scale approach is able to acquire much more in-
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formation, and greatly reduce uncertainty in a system;
which has led to an increase in the attention given to
them from many branches of science and fields in en-
gineering, including mathematics, chemistry, physics,
astronomy, geology, biology, ecology and applied fields
such as materials, mechanics, image analysis, compu-
tational methods, atmospheric science, and chemical
engineering, etc[3,4].

The application of neural systems and MSA, is es-
pecially interesting for the control and optimization of
chemical plants, since the kind of time-dependent prob-
lems dealt with in process engineering are highly non-
linear and uncertain, therefore, it is difficult to obtain
detailed predictions from first principle models in real
time[5∼8]. A specific area of intrinsic interest in chem-
ical manufacturing processes is the prediction of the
quality of final products. This is even more vital in
cases where it is difficult to implement reliable and fast
on-line analyzers to measure relevant product proper-
ties, and to establish appropriate control strategies for
production. Such situations can lead to the significant
production of off-grades, especially during on-line op-
erations involved to change product specifications. An
alternative is to develop on-line estimators of product
quality, based on available process information. One of
the most powerful and increasingly used methodologies
is inferential measurement. This method involves the
forecasting of product quality, or difficult to measure
process indicators, from other more reliable or easily
performed plant measurements, such as pressure, flow
rate, concentration or temperature[9].

The purpose of the current study is to develop a
virtual soft-sensor to infer product quality from other
more easily measured process variables, using neu-
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ral network architectures, as well as PCA and MSA.
Until now, little literature concerning the integra-
tion of PCA, MSA and neural networks has been re-
ported. The networks considered here are RBF net-
works, whose global convergence and short training
time make them a primary choice for process prod-
uct quality prediction[10]. The virtual soft-sensor de-
veloped in this work, has been applied to infer the Melt
Index (MI) of polypropylene grades measured on-line
in operating plants. Its performance is illustrated and
evaluated with a case study of polypropylene quality in-
ference. Obtained results are discussed, and conclud-
ing remarks about the design and implementation of
the virtual sensor system are presented.

2 Data preprocessing

Inferential measurement systems based on neu-
ral networks are mostly developed using “data-based”
methodologies, i.e. models used to infer the value of
target variables are developed using ‘live’ plant data
measured from a process plant. This implies that in-
ferential systems are heavily influenced by the quality
of the data used to develop their internal models. Con-
sequently, the first step in building an inferential mea-
surement system, is the preprocessing of data. Dur-
ing this stage, the selection of the most relevant infor-
mation with which to develop a model, is performed.
Moreover, as the values are heterogeneous, they must
be scaled into a range suitable for data processing.

In complex industrial processes, such as chemical
processing plants, the number of plant variables that
can be measured is large, and the sampling rate used
for these measurements may be high. This implies that
variables may be highly co-related, and lead to the gen-
eration of large datasets containing a large amount of
features. In such a situation it would be very use-
ful to have an “intelligent system” capable of selecting
the most relevant features, and examples, from all of
the available information; with the purpose of optimiz-
ing resources needed to build an accurate and reliable
model for the process under consideration. In the pro-
cess of building an inferential measurement system, a
reduction in the dimensions of the input space would
simplify the input layer of the architecture, and reduce
the time needed for training.

2.1 Selection of variables

A sensitivity analysis to reduce the dimensions of
the input space could be performed by using projection
techniques, which implies the definition of new com-
bined variables. This approach typically uses statis-
tical analysis (descriptive statistics, cross-correlations,
factorial analysis, and PCA, etc.) to find relationships
between variables, and to select new representative pro-

totypes from subsets of related variable combinations.
This process entails the projection of the input space
into a lower dimension output space, without a loss
of significant information. PCA is introduced in this
work, for this purpose.

2.2 Training set

As some variables are more relevant than others,
and also some input patterns of data may be more
unique than others and should be considered for train-
ing, then the appropriate selection of patterns for train-
ing is one of the most important tasks in machine learn-
ing. Different strategies can be used for the selection
of the most suitable training set of data, from all avail-
able process information. One method to construct
a training set, consists of the selection of data from
a time series of recorded plant data. While retaining
the remaining data sequence, to test the performance
of a sensor. This facilitates the representation of data,
and evaluation, as if a sensor were operating under real
plant conditions, predicting a target property sequen-
tially over time.

3 Soft-sensor architecture

3.1 Multi-scale analysis

At first, two intimately related functions are de-
fined, namely, the scaling function ϕ(x) and its cor-
responding wavelet function ψ(x). A multi-resolution
analysis is defined using a nested sequence of closed
subspace {Vj}j∈Z . Each subspace Vj of scale j is
spanned by a set of scaling functions {ϕj,k(x), ∀k ∈ Z}:

Vj = {ϕj,k(x)|ϕj,k(x) = 2
j
2ϕ(2jx− k)}. (1)

A mutually orthogonal complement of Vj in Vj+1

is denoted by the subspace Wj , associated with multi-
resolution analysis such that:

Vj+1 = Vj +Wj (2)

where + is a direct sum.
Similar to Vj , Wj is formed by another orthogonal

basis:

Wj = {ψj,k(x)|ψj,k(x) = 2
j
2ψ(2jx− k)}. (3)

where ψ(x) is the mother wavelet.
In 1989, Mallat proposed a fast decomposition al-

gorithm to extract a wavelet coefficient based on MRA.
∀f ∈ L2(R), if cj,k is a projection coefficient from f to
Vj , and dj,k is a projection coefficient from f to Wj ,
then:

f =
∑

k∈Z

cj,kϕj,k =
∑

k∈Z

cj−1,kϕj−1,k +
∑

k∈Z

dj−1,kψj−1,k

(4)
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cj−1,k = 〈
∑

l

cj,lϕj,l, ϕj−1,k〉 =
∑

l

〈ϕj,l, ϕj−1,k〉cj,l

=
∑

l

hl−2kcj,l (5)

dj−1,k = 〈
∑

l

cj,lϕj,l, ψj−1,k〉 =
∑

l

〈ϕj,l, ψj−1,k〉cj,l

=
∑

l

gl−2kcj,l (6)

and finally, the Mallat algorithm, or pyramid fast de-
composition algorithm, is obtained[11]:

{
Cj−1 = HCj

Dj−1 = GCj

. (7)

3.2 Architecture

Assume a data set S = {(X,Y )k; k = 1, 2, · · · , N},
where N is the number of sample data points, and
X = (x1, x2, · · · , xn), Y = (y1, y2, · · · , ym), where n
and m represent the numbers of input and output vari-
ables.

As shown in Fig.1, the first selection procedure is
performed by PCA to obtain the most relevant features
of input variables. All new variables are decomposed
by wavelet theory to scale J , where A represents ap-
proximate information, while D represents detailed in-
formation. Each pair of scaled information is used to
form a sub RBF network in the training procedure. Fi-
nally, multi-scale reconstruction is carried out to obtain
a model output.

4 Case study: a soft-sensor for melt in-
dex in a propylene polymerization plant

4.1 Problem statement

The quality of polypropylene produced is deter-
mined essentially by the MI, which is measured by
the flow rate of polymer through a die. The on-line
measurement of this quantity is difficult, and requires
close human intervention because the extrusion die of-
ten fools and blocks[12]. As a result, in most plants, the
MI is evaluated off-line with an analytical procedure
that takes almost 1 hour to complete in a laboratory,
leaving the process without any real-time quality in-
dicator during this period. Consequently, a model for
estimating MI on-line would be very useful, both as an
on-line sensor, and as a forecasting system. In addi-
tion, it would allow the supervision of the overall pro-
cess, and avoid mismatches of product quality during
product grade transitions. Fig.2 summarizes the main
characteristics of polymer plants studied. Several sets
of real data corresponding to several production cycles
are analyzed. The MI values used are calibrated us-
ing off-line determinations. Changes in MI correspond
to changes in the physical or chemical characteristics
of the desired product. A pool of process information,
formed by 9 process variables (pressure, flow rate, and
temperature, etc.) was chosen to develop the virtual
sensor.

4.2 Virtual sensor implementation

Fig.2 shows current sensor implementation within
the process flow sheet. It can receive real-time readings
of process variables, as well as the feedback signals of
downstream on-line analyzers. Once trained, this vir-
tual device uses only real time measurements of the se-
lected process variables made by process sensors at any
time; to infer the value of the product target property
when leaving the reactor. Output can be redirected as
information to a plant operator, or to a control sys-
tem, to maintain optimal plant operation for a given

Fig.1 Soft-sensor architecture
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product quality.

The aim of the current study is to implement a vir-
tual sensor to predict the quality of polypropylene, i.e.
the target variable MI, based on the state of the plant.
The virtual sensor behaves as a black-box model, which
relates the MI of the product to other process variables
measured when the corresponding production cycle be-
gan.

4.3 Preprocessing of variables

Data used for training and testing the virtual sen-
sor was acquired from historical logs, recorded in a
real propylene polymerization plant for the 9 process
variables and MI. Data was filtered to discard abnor-
mal situations, and to improve the quality of the in-
ference system. Input and output variables were nor-
malized, with respect to their maximum operational
values. Data from the time records of process vari-
ables, and MI, were separated into training, test, and
generalization sets. The aim of the selection procedure
was to preserve the time-series structure of recorded
plant data. It should be noted that the test sets were
obtained from the same batch as the training set, while
the generalization set was derived from another batch.
The PCA method mentioned earlier, for the selection
of the most relevant features or input variables, was
applied to reduce the size of the data set, and the time
needed to adapt the virtual sensor.

5 Results and discussion

Models without PCA and MSA, were developed
to compare the performance of the soft-sensor under
consideration. The above mentioned data preprocess-
ing techniques, we developed to reduce the number of
variables, and were applied during the selection of the
training set. Results obtained for all models consid-
ered, are summarized in the following section.

5.1 Models with reduced and complete
sets of variables (PCA-MS-RBF and MS-
RBF)

A reduction in the number of input variables has
the advantage of (i) producing a lower dimension prob-
lem, (ii) cuts back any noise that could contaminate
the measurement of discarded variables, and (iii) avoids
variables that might provide conflicting information
with respect to more relevant variables in relation to
a target MI. The current PCA-MS-RBF model is built
with 7 variables. Table 1 summarizes the performance
of models developed with the reduced and complete
sets of input process variables, after training with the
sequential sets of data described previously. The ab-
solute and relative mean errors listed in Table 1, indi-
cate that a reduced set model functions better than a
complete set model overall; with absolute mean error
for the former being 0.0701, and for the latter being
0.1102. An increase of approximately 40% in predic-
tion accuracy is obtained when the variable reduction
technique is applied. Maximal errors, also listed in Ta-
ble 1, are of the same order of magnitude as the mean
errors for both models with sequential training. The

Fig.2 Propylene polymerization plant diagram

Table 1 Absolute and relative mean errors for the test set,
predicted by models built with reduced and complete sets of process variables

Mean error Maximal error

Abs Rel (%) Comparison (%) Abs Rel (%) Comparison (%)

PCA-MS-RBF 0.0701 2.87 62.66 0.1720 6.69 46.72
MS-RBF 0.1102 4.58 100.00 0.3065 14.32 100.00
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better performance of PCA-MS-RBF is clearer in the
time-sequence of the measured MI, as shown in Fig.3,
where the model yields consistently good predictions.

Fig.3 A comparison of measured MI time-records with

predictions obtained using PCA-MS-RBF and MS-RBF

To illustrate the universality of the proposed model,
a detailed comparison of the generalization set is pre-
sented in Table 2. It should be noted that its perfor-
mance is consistent with the test result above, with a
slight drop in predictive precision. The absolute mean
error of PCA-MS-RBF is 0.1105, compared to 0.1641
for MS-RBF, which shows an increase of 30% in predic-
tion accuracy. Maximal errors have a similar result of
0.1727 compared to 0.2417, in which accuracy increases
by approximately 30%.

5.2 Models with and without MSA (PCA-
MS-RBF and PCA-RBF)

Table 3 summarizes the results predicted by mod-

els developed with and without MSA. Multi-scale de-
composition of information has the advantage of (i) ob-
taining much more information and (ii) reducing uncer-
tainty in the system. Here, MSA is carried out using
a Daubechies 3 wavelet, with a scale set to 5. The av-
erage performance indicates that PCA-MS-RBF yields
better results than PCA-RBF, with the absolute mean
error of the former being 0.0701, and the latter being
0.1016. An error decrease of approximately 30% is ob-
tained by applying MSA. The maximal errors listed in
Table 3 are of the same order of magnitude as the ab-
solute mean errors. The effect of MSA is clearer in the
tendency of the measured MI, as shown in Fig.4.

Fig.4 A comparison of measured MI time-records with

predictions obtained using PCA-MS-RBF and PCA-RBF

Similarly, a detailed comparison of the generaliza-
tion set is carried out. Table 4, accordingly shows
results for the test set. PCA-MS-RBF yields predic-
tions with an average absolute error of 0.1105, which
is much better than the corresponding 0.1719 obtained

Table 2 Absolute and relative mean errors for a generalization set, predicted by
models built with a reduced and complete set of process variables

Mean error Maximal error

Abs Rel (%) Comparison (%) Abs Rel (%) Comparison (%)
PCA-MS-RBF 0.1105 4.33 67.55 0.1727 6.72 70.59

MS-RBF 0.1641 6.41 100.00 0.2417 9.52 100.00

Table 3 Absolute and relative mean errors for a test set predicted using models with and without MSA

Mean error Maximal error

Abs Rel (%) Comparison (%) Abs Rel (%) Comparison (%)
PCA-MS-RBF 0.0701 2.87 68.82 0.1720 6.69 57.87

PCA-RBF 0.1016 4.17 100.00 0.2891 11.56 100.00

Table 4 Absolute and relative mean errors for a test set predicted using models with and without MSA

Mean error Maximal error

Abs Rel (%) Comparison (%) Abs Rel (%) Comparison (%)
PCA-MS-RBF 0.1105 4.33 64.63 0.1727 6.72 60.87

PCA-RBF 0.1719 6.70 100.00 0.2859 11.04 100.00
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from PCA-RBF. Similar behavior is observed in terms
of the maximal error obtained.

6 Conclusions

A neural network multi-scale analysis based
methodology, to design and build a virtual sensor to
infer product quality from process variables, has been
developed and tested. Since the out-performance of a
soft-sensor with respect to the linear correlation of vari-
ables, is evident in this case, PCA has been proved to be
effective in estimating the relevance of certain features;
and to select from this quantitative information, the
minimum number of variables needed as input to the
sensor. The soft-sensor has been trained, using data se-
lected in sequential order from the time records of vari-
ables within a pool of available plant information. As
a proof-of-concept of the generic virtual sensor model,
soft-sensors without the PCA and MSA procedure were
also simultaneously tested. The PCA-MS-RBF model,
with all process variables measured at the beginning of
the production cycle considered as input, predicted MI
with a relative mean error of approximately 3% when
appropriately trained, compared to an average error of
approximately 5 and 4% respectively, obtained from
corresponding MS-RBF and PCA-RBF models. The
obtained results, indicate that the proposed method
provides prediction reliability and accuracy; and is ca-
pable of learning relationships between process vari-
ables measured at the beginning of a production cycle
and the quality of a final product.
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