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Abstract The high Ba–Sr rocks can provide significant 
clues about the evolution of the continent lithosphere, but 
their petrogenesis remains controversial. Identifying the 
Late Cretaceous high Ba–Sr granodiorites in the SE Lhasa 
Block could potentially provide valuable insights into the 
continent evolution of the Qinghai-Tibet Plateau. Zircon 
U–Pb ages suggest that the granodiorites were emplaced 
at 87.32 ± 0.43 Ma. Geochemically, the high Ba–Sr grano-
diorites are characterized by elevated  K2O +  Na2O con-
tents (8.18–8.73 wt%) and  K2O/Na2O ratios (0.99–1.25, 
mostly > 1), and belong to high-K calc-alkaline to shosho-
nitic series. The Yonglaga granodiorites show notably high 
Sr (653–783 ppm) and Ba (1346–1531 ppm) contents, plus 
high Sr/Y (30.92–38.18) and (La/Yb)N (27.7–34.7) ratios, 
but low Y (20.0–22.8 ppm) and Yb (1.92–2.19 ppm) con-
tents with absence of negative Eu anomalies (δEu = 0.83–
0.88), all similar to typical high Ba–Sr granitoids. The vari-
able zircon εHf(t) values of − 4.58 to + 12.97, elevated initial 
87Sr/86Sr isotopic ratios of 0.707254 to 0.707322 and low 
εNd(t) values of − 2.8 to − 3.6 with decoupling from the Hf 
system suggest that a metasomatized mantle source included 
significant recycled ancient materials. The occurrence of 
such high Ba–Sr intrusions indicates previous contributions 

of metasomatized mantle-derived juvenile material to the 
continents, which imply the growth of continental crust 
during the Late Cretaceous in the SE Lhasa. Together with 
regional data, we infer that the underplated mafic magma 
provides a significant amount of heat, which leads to partial 
melting of the juvenile crust. The melting of the metaso-
matized mantle could produce a juvenile mafic lower crust, 
from which the high Ba–Sr granitoids were derived from 
reworking of previous mafic crust during the Late Creta-
ceous (ca. 100–80 Ma) in the SE Lhasa.

Keywords Late Cretaceous · High Ba–Sr granodiorites · 
SE Lhasa · Growth of continental crust · Juvenile crust

1 Introduction

The Qinghai-Tibet Plateau has played a significant role in 
recent Earth evolution and climate change, but the compli-
cated geological processes of the Qinghai-Tibet Plateau are 
still hotly debated in recent years (Ma et al. 2022; Zhang 
et al. 2017). There is a consensus that the origin of the Qing-
hai-Tibet Plateau can be attributed to the collision between 
India and Asia during the Late Cenozoic period (Haider 
et al. 2013; Hetzel et al. 2011; Liu et al. 2014; Zhang et al. 
2004), following Mesozoic continental accretion, subduc-
tion, and crustal thickening (Decelles et al. 2007; Murphy 
et al. 1997).

The Lhasa terrane (LT) represents the final continental 
fragment integrated into the plateau during the Late Meso-
zoic era (Chen et al. 2015; Yin and Harrison 2000; Zhu 
et al. 2011) and has gone through noteworthy S–N crustal 
thickening and shortening during the Late Cretaceous before 
the collision between India and Asia (Decelles et al. 2007; 
Kapp et al. 2007; Murphy et al. 1997; Pan et al. 2014; Yin 
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and Harrison 2000). Responding to tectonic processes, Late 
Cretaceous magmatism occurred in the LT and has been 
thought to be related to either the subduction of the Neo-
Tethyan Ocean lithosphere or to crustal thickening (Chen 
et al. 2015; Ma and Yue 2010; Pan et al. 2014). Recently, 
the Late Cretaceous (~ 80 Ma) felsic magmatism reported in 
the LT is thought to be related to the subducted Neo-Tethys 
oceanic slab (Chapman et al. 2018; Wang et al. 2019, 2021). 
Some workers have argued that the Late Cretaceous (~ 90 
Ma) adakitic, Mg-rich, and K-rich rocks in the LT resulted 
from the lithospheric delamination underneath the thickened 
crust after the collision of Lhasa-Qiangtang Blocks (Chen 
et al. 2015; Ji et al. 2021; Li et al. 2013; Liu et al. 2017; 
Sun et al. 2015a, b, 2020; Wang et al. 2014; Yi et al. 2018; 
Zhao et al. 2008), but this explanation has been challenged 
based on evidence from zircon xenocrysts in Lhasa ultra-
potassic magmas (Liu et al. 2014). It is noteworthy that the 
majority of Late Cretaceous magmatism in central Lhasa 
terrane (CLT), northern Lhasa terrane (NLT), and southern 
Qiangtang terrane (SQT) has been attributed to the rework-
ing of juvenile crust through partial melting of pre-existing 
underplated lower crust (Wang et al. 2021; Tang et al. 2019). 
Moreover, the role of mantle-derived magmas and whether 
crustal reworking or growth occurred in the SE Lhasa dur-
ing the Late Cretaceous period (ca. 100–80 Ma) are poorly 
known. Therefore, Late Cretaceous potassium-rich high 
Ba–Sr granodiorites may offer valuable insights into mag-
matic evolution associated with mantle-derived materials. 
In this paper, our studies provide bulk-rock chemical, iso-
topic and in situ zircon Hf isotopic and U–Pb age data to 
constrain: (1) the petrogenesis of high Ba–Sr granodiorites; 
and (2) the possible geodynamic processes at depth after 
final Lhasa-Qiangtang amalgamation in the Qinghai-Tibet 
Plateau.

2  Geological setting and petrography

The Qinghai-Tibet Plateau constitutes a significant compo-
nent of the Tethyan-related orogenic collage of the predomi-
nantly EW trending Himalaya, Qiangtang, Lhasa, Songpan-
Ganzi, and Kunlun-Qiadam terranes. These terranes are 
demarcated by the Yarlung-Zangbo (YZ), Bangong-Nujiang 
(BN), Kunlun, and Jinsha suture zone (Fig. 1a) (Yin and 
Harrison 2000).

The LT lies between the BN suture to the northern and 
the YZ suture to the southern (Fig. 1a) (Chiu et al. 2009). 
Its detachment from Gondwana occurred during the Permian 
to Triassic period, succeeded by a northward movement 
and eventual convergence with the Qiangtang terrane (QT) 
during the Late Jurassic period to Early Cretaceous period 
(Kapp et al. 2005, 2007; Zhu et al. 2011). The LT has been 
shown to contain three distinct magmatic belts (Fig. 1b) 

(Chiu et al. 2009): extensive Linzizong volcanic successions 
and Gangdese batholiths, spanning from the Cretaceous to 
the Early Tertiary, are widely distributed in the southern 
Lhasa terrane (Harris et al. 1990; Ji et al. 2009a; Lee et al. 
2009; Mo et al. 2007; Wang et al. 2022a, b; Wen et al. 2008a, 
b), and are considered to be the result of northward sub-
duction of Neo-Tethyan oceanic lithosphere. There are also 
plentiful Mesozoic igneous rocks in the sub-terranes of NLT 
and CLT (Chiu et al. 2009; Chu et al. 2006; Guynn et al. 
2006; Harris et al. 1990; Xu et al. 1985; Zhu et al. 2009a), 
the former associated with closure of the Bangong-Nujiang 
Tethyan ocean has been associated with the northern mag-
matic belt (Chen et al. 2014; Chiu et al. 2009; Hu et al. 2022; 
Qu et al. 2012; Sui et al. 2013; Zhu et al. 2009a, b, 2011, 
2013, 2015). About the development of the Meso-Tethys, it 
is commonly believed that the Meso-Tethys oceanic plate 
underwent northward subduction beneath the QT margin 
located in the south (Li et al. 2013, 2016; Liu et al. 2017; 
Ji et al. 2021; Zhang et al. 2017). The collision between 
the QT and the LT during the Late Cretaceous followed the 
closure of Meso-Tethys and resulted in the thickening of the 
southern margin of the QT and the northern margin of the 
LT. The subsequent delamination of thickened lithosphere 
triggered a series of post-collisional magmatic events (Chen 
et al. 2015; Li et al. 2013; Ma et al. 2010; Meng et al. 2014; 
Qu et al. 2006; Sun et al. 2015a, b, 2020; Wang et al. 2014; 
Yi et al. 2018; Yu et al. 2011; Liu et al. 2017).

In SE Lhasa, a wide range of Cretaceous granitoids 
crop out in a NW–SE belt SW trending of the BN suture 
zone (Chiu et al. 2009; Pan et al. 2004; Zhu et al. 2009b), 
enclosed by the metamorphic rocks of Proterozoic, Devo-
nian, and Carboniferous-Permian periods. These granitoids 
are predominantly found as batholiths, primarily distributed 
in the Bomi and Chayu regions (commonly referred to as 
Bomi-Chayu batholiths) (Chiu et al. 2009; Lin et al. 2013). 
They mainly comprise monzogranites and granodiorites, 
with minor occurrences of mafic enclaves and dioritic veins 
(Pan et al. 2004; Zhu et al. 2009b). This study focuses on the 
Yonglaga granitoid (Fig. 1c), located in the east of Gong-
shan County. It has a rounded, elongated shape aligned with 
the SE section of the Bomi-Chayu batholiths, positioned 
between the BN suture and the Jiali fault (Fig. 1b, c) (Chiu 
et al. 2009; Zhu et al. 2009b).

As is typical in the SE Lhasa Block, the granodiorites are 
poorly exposed. They are emplaced into Paleozoic (mainly 
Carboniferous) metasedimentary rocks, are undeformed and 
their margins are sharp but rarely chilled. High-Mg basal-
tic diorites are closely associated in the western margin of 
the granodiorites, also with sharp contacts, and both facies 
are elongated along the structural fabric of the surrounding 
metasediments (Fig. 1c). The Yonglaga high Ba–Sr grano-
diorites are fine-grained and mainly composed of quartz 
12%–15%, alkali feldspar 28%–33%, sodic plagioclase 
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40%–45%, hornblende ~ 5% and biotite ~ 5%, with acces-
sory minerals such as zircon, apatite, titanite, magnetite, 
and other Ti–Fe oxides (Fig. 2).

3  Analytical methods

Bulk-rock samples were trimmed to remove weathered sur-
faces and cleaned with deionized water. They were then 
crushed and powdered through a 200 mesh screen using a 
tungsten carbide ball mill. Major elements were analyzed by 
X-ray fluorescence (XRF) spectrometry (Rikagu RIX 2100) 
at the Guizhou Tuopu Resource and Environmental Analysis 

Center, Institute of Geochemistry, Chinese Academy of 
Sciences in Guiyang, China. Analyses of USGS and Chi-
nese national rock standards (GSP-2, BCR-2, and AGV-2) 
reveal analytical precision and accuracy for major elements 
typically better than 5%. Trace elements were determined by 
inductively coupled plasma mass spectrometry (ICP-MS) at 
the Guizhou Tuopu Resource and Environmental Analysis 
Center, Institute of Geochemistry, Chinese Academy of Sci-
ences in Guiyang, China. A Bruker Aurora M90 ICP-MS 
was used, following the methodology described by Qi et al. 
(2000). Powders were dissolved in a high-pressure PTFE 
bomb using an  HNO3 + HF mixture at 185 °C for 36 h. The 
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ICP-MS analyses have a relative accuracy and precision of 
approximately ± 5% to ± 10% for the majority of elements.

Bulk-rock Sr–Nd isotope measurements were conducted 
at the State Key Laboratory of Continental Dynamics, 
Northwest University, Xi’an, China, using a Nu Plasma HR 
multi-collector mass spectrometer, following a methodol-
ogy similar to that described in Chu et al. (2009). Sr and 
Nd isotopic fractionation was adjusted to 87Sr/86Sr = 0.1194 
and 146Nd/144Nd = 0.7219, respectively. JMC-Nd and NIST 
SRM-987 were used as certified reference standard solu-
tions for the ratios of 143Nd/144Nd and 87Sr/86Sr, respectively. 
AGV-2, GSP-2, and BHVO-2 were utilized as the reference 
materials.

The Yonglaga pluton was the source of two ~ 5 kg sam-
ples at different sampling locations, from which zircons were 
extracted separately. The separation of zircon grains was 
achieved using conventional techniques involving heavy 
liquid and magnetic methods. Selected zircon grains were 
manually chosen and mounted on epoxy resin discs, fol-
lowed by polishing carbon coating. The internal structure 
was assessed using cathodoluminescence (CL) before con-
ducting U–Pb analyses. Zircon U–Pb analyses used laser 
ablation ICP-MS with an Agilent 7500a ICP-MS instru-
ment and a 193-nm laser at the State Key Laboratory of 
Continental Dynamics, Northwest University in Xi’an, 
China. The analytical method was based on the approach 
of Yuan et al. (2004). The GLITTER program was used to 
determine the ratios of 206Pb/238U and 207Pb/206Pb, which 
were subsequently adjusted for accuracy using the Harvard 
zircon 91500 as an external calibration standard. These 
adjustment factors were subsequently utilized to rectify any 
potential discrepancies caused by instrumental mass bias 
and variations in elemental and isotopic distribution at dif-
ferent depths. The method described in Andersen (2002) was 

applied to assess the common Pb contents. ISOPLOT (ver-
sion 3.0) (Ludwig 2003) was employed for age calculations 
and plotting of Concordia diagrams. The errors provided in 
tables and figures correspond to a confidence level of 2σ.

In situ zircon Hf isotopic analyses used a Neptune MC-
ICP-MS with a 193-nm laser. The laser operated at a repeti-
tion rate of 10 Hz and an energy level of 100 MJ, while the 
spot sizes were maintained at 32 μm. The detailed analytical 
technique follows Yuan et al. (2008). During the analysis, 
the 176Hf/177Hf and 176Lu/177Hf ratios of the standard zircon 
(91500) were found to be approximately 0.282294 ± 15 (2σ, 
n = 20) and 0.00031 respectively, which are similar to the 
widely accepted values of 0.282302 ± 8 and 0.282306 ± 8 
(2σ) obtained using the solution method (Goolaerts et al. 
2004). The definitions of εHf(t) value,  fLu/Hf ratio, single-
stage model age  (TDM1), and two-stage model age  (TDM2) are 
provided with reference to Zheng et al. (2008).

4  Results

Major and trace element results can be found in Table 1, the 
whole-rock Sr–Nd isotopic results are listed in Table 2, and 
zircon Hf isotopes are presented in Table 3. The zircon U–Pb 
ages can be accessed from the Supplementary Dataset Table.

4.1  Zircon U–Pb age

Relevant zircons are examined in the Gongshan region in SE 
Lhasa (Fig. 3a). Detailed information on sampling locations, 
lithology, and dating outcomes can be found in Figs. 1, 2, 
and 3 as well as the Supplementary Dataset Table.

Zircon grains from the Yonglaga granodiorite 
(YLG15-1) are euhedral, prismatic, and mostly have 

Fig. 2  Field photographs and photomicrographs of the Yonglaga high Ba–Sr granodiorites in the SE Lhasa Block, China
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Table 1  The major (wt%) and trace element (ppm) results of rocks from Yonglaga pluton

Sample High Ba–Sr granodiorites

YLG15-1 YLG15-2 YLG15-3 YLG15-4 YLG15-5 YLG15-6 YLG15-7 YLG15-11 YLG15-12

SiO2 63.74 63.96 64.24 63.30 63.17 64.56 64.19 64.55 64.28
TiO2 0.45 0.44 0.43 0.45 0.48 0.44 0.48 0.45 0.45
Al2O3 16.43 16.32 16.41 16.59 16.47 16.37 16.47 16.23 16.13
Fe2O3T 4.33 4.29 4.19 4.41 4.53 4.19 4.42 4.12 4.19
MnO 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06
MgO 1.49 1.48 1.43 1.51 1.54 1.45 1.55 1.48 1.49
CaO 3.25 3.17 3.03 3.20 3.30 3.06 3.22 3.08 3.13
Na2O 4.07 4.16 3.85 4.29 4.20 3.93 3.99 4.08 4.13
K2O 4.49 4.45 4.80 4.40 4.53 4.79 4.44 4.10 4.10
P2O5 0.41 0.39 0.39 0.37 0.37 0.39 0.36 0.34 0.34
LOI 1.09 1.15 1.13 0.97 0.85 1.00 1.10 1.47 1.70
TOTAL 99.82 99.88 99.97 99.56 99.51 100.25 100.29 99.96 100.00
Li 28.6 27.8 27.1 20.8 23.0 26.5 22.6 26.1 27.1
Be 3.56 3.73 3.35 3.43 3.39 3.26 3.37 3.44 3.54
Sc 5.34 5.44 5.27 5.53 6.10 5.26 5.89 5.58 5.63
V 56.5 57.4 54.1 52.8 54.5 54.6 53.9 49.8 51.8
Cr 7.65 7.89 7.30 10.0 11.8 7.15 11.4 14.6 11.9
Co 15.5 14.6 26.0 16.1 24.5 19.6 23.4 18.3 20.2
Ni 5.69 5.72 5.77 6.25 6.42 5.46 6.32 8.50 6.99
Cu 4.18 4.24 4.39 3.53 3.15 4.46 3.26 2.57 2.63
Zn 40.4 42.0 40.0 39.8 37.9 39.7 38.6 31.7 32.3
Ga 18.9 19.5 18.7 18.5 18.6 18.6 18.6 18.2 18.4
Ge 1.40 1.35 1.40 1.35 1.43 1.40 1.40 1.39 1.39
Rb 179 184 182 170 175 182 176 167 170
Sr 754 783 748 709 712 750 721 653 658
Y 20.5 20.5 20.0 20.1 22.8 20.3 21.2 21.1 21.1
Zr 241 244 254 243 268 241 265 243 242
Nb 14.2 14.0 14.0 12.0 14.3 14.2 13.1 14.1 13.9
Cs 4.86 4.98 4.90 4.43 4.61 4.89 4.69 4.36 4.46
Ba 1413 1448 1525 1347 1373 1518 1381 1348 1346
La 96.9 84.2 85.5 80.7 92.5 82.3 80.4 74.7 77.7
Ce 169 150 152 144 165 147 145 136 140
Pr 16.8 14.8 15.1 14.3 16.8 14.7 14.8 13.8 14.0
Nd 54.4 50.8 51.0 49.2 55.6 49.7 50.4 48.6 48.7
Sm 7.54 7.25 7.25 7.07 8.03 7.09 7.31 7.23 7.15
Eu 1.82 1.80 1.74 1.77 1.94 1.74 1.84 1.74 1.75
Gd 5.86 5.62 5.57 5.49 6.20 5.46 5.67 5.55 5.52
Tb 0.72 0.70 0.69 0.68 0.77 0.68 0.71 0.71 0.70
Dy 3.64 3.59 3.52 3.53 4.04 3.55 3.75 3.72 3.65
Ho 0.69 0.69 0.66 0.67 0.76 0.67 0.71 0.70 0.70
Er 2.03 1.99 1.94 1.94 2.19 1.93 2.04 2.04 1.99
Tm 0.30 0.30 0.29 0.29 0.33 0.29 0.30 0.31 0.30
Yb 2.01 2.00 1.97 1.92 2.17 1.93 2.03 2.02 2.02
Lu 0.32 0.31 0.31 0.30 0.34 0.30 0.32 0.32 0.31
Hf 5.70 5.73 5.94 5.54 6.06 5.54 5.91 5.46 5.47
Ta 1.07 1.04 1.09 0.81 1.05 1.11 0.93 1.06 1.04
Pb 19.5 20.7 21.0 18.1 18.1 20.5 19.2 18.6 18.9
Th 38.3 41.3 40.4 31.2 34.7 35.2 35.3 30.8 32.5
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clear oscillatory zones (Fig. 3a), typical of magmatic zir-
cons. The twenty-eight reliable analyses show high Th 
(435–2382 ppm) and U (538–1361 ppm) with Th/U ratios 
of 0.61–1.80. The data form a coherent group yielding 
206Pb/238U ages from 85.2 ± 0.8 to 89.4 ± 1.0 Ma, with 
a weighted mean age of 87.32 ± 0.43 Ma (MSWD = 1.7, 
n = 28, 2σ), taken to indicate the crystallization age 
(Fig. 3b).

4.2  Major and trace element geochemistry

The  g ranod io r i t e s  have  compara t ive ly  un i -
for m  S iO 2 (63 .17wt%–64.56wt%) ,  wi th  h igh 
 Na 2O (3 .85wt%–4.29wt%)  and   K 2O contents 
(4.10wt%–4.82wt%) (Fig. 4a, b). They plot within the 
domains of high Ba–Sr granites and high Sr/Y and adakitic 
rocks in the CLT, NLT and SQT, and show a shoshonitic 
affinity which is similar to the typical high Ba–Sr rocks 
(Fig. 4a, b). They also have low  TiO2, CaO,  Fe2O3T, MnO, 
 P2O5, and MgO with  Mg# of 44.2–45.6 (Fig. 4c and 7), 
but exhibit moderate  Al2O3 contents of 16.13–16.59 wt% 
with A/CNK (molar  Al2O3/CaO +  Na2O +  K2O) ratios of 
0.92–0.97 (Fig. 4d). Figure 5a shows positive anoma-
lies for Rb, U, Th, Pb, and Nd, and depletions in P, Ti, 
Nb, and Ta. Figure 5b shows high total REE contents 
(297–362 ppm) and fractionated LREE/HREE with high 
(La/Yb)N (27.7–34.7) and small negative Eu anomalies 
(δEu = 0.83–0.88). Both the major and trace elements 
share similar characteristics with the typical high Ba–Sr 

granites and Late Cretaceous adakites plus high Sr/Y rocks 
in the CLT, NLT, and SQT (Fig. 5, 6 and 7).   

4.3  Whole‑rock Sr–Nd and zircon Hf isotopes

Whole-rock Sr–Nd isotope results are listed in Table 2. All 
εNd(t) values and initial 87Sr/86Sr isotopic ratios (ISr) are 
computed for the crystallization age and are very similar. 
The high Ba–Sr granodiorites (sample YLG15-1, -2, and 
-3) have ISr ratios ranging from 0.707254 to 0.707322 and 
εNd(t) values ranging from –2.8 to –3.6, with TDM values of 
0.96–1.02 Ga (Fig. 8b).

Zircons Lu–Hf data are presented in Table 3 and Fig. 8a, 
with initial 176Hf/177Hf ratios and εHf(t) values based on 
crystallization age. The zircons display a range of Hf isotopic 
compositions, from − 4.55 to + 13.01 (24 zircons, including 
two negative ones), and Hf model ages of 319–1440 Ma. 
These contrast markedly from the Nd data described above, 
signifying a clear decoupling of Hf and Nd isotope systems 
(Fig. 8c).

5  Discussion

5.1  Petrogenesis of the Yonglaga high Ba–Sr 
granodiorites

The Yonglaga granodiorites analyzed in this study have 
high alkali contents  (Na2O +  K2O = 8.18wt%–8.73wt%, 
Table 1) and LREEs (282–347 ppm), Sr (653–783 ppm), 

Table 1  (continued)

Sample High Ba–Sr granodiorites

YLG15-1 YLG15-2 YLG15-3 YLG15-4 YLG15-5 YLG15-6 YLG15-7 YLG15-11 YLG15-12

U 5.60 7.11 6.26 5.44 5.58 5.64 5.95 5.70 6.12
Mg# 44.5 44.6 44.3 44.4 44.2 44.6 45.0 45.6 45.3
A/CNK 0.94 0.94 0.96 0.94 0.92 0.95 0.96 0.97 0.95
Sr/Y
TZr(℃)

36.7
794

38.2
795

37.4
803

35.2
793

31.2
799

36.9
796

34.1
805

30.9
800

31.2
798

Table 2  The whole-rock Rb–Sr and Sm–Nd isotopic data for rocks from Yonglaga pluton

87 Rb/86Sr and 147Sm/144Nd ratios were calculated using Rb, Sr, Sm and Nd contents analyzed by ICP-MS
T2DM represent the two-stage model age and were calculated using present-day (147Sm/144Nd)DM = 0.2137, (147Sm/144Nd)DM = 0.51315 and 
(147Sm/144Nd)crust = 0.1012. εNd(t) values were calculated using present-day (147Sm/144Nd)CHUR = 0.1967 and (147Sm/144Nd)CHUR = 0.512638. εNd
(t) = [(143Nd/144Nd)sample(t)/(143Nd/144Nd)CHUR(t)-1] ×  104,  T2DM = 1/λ × {1 + [(143Nd/144Nd)sample-((147Sm/144Nd)sample-(147Sm/144Nd)crust) ×  
 (eλt-1)-(143Nd/144Nd)DM]/((147Sm/144Nd)crust-(147Sm/144Nd)DM)}

Sample 87Sr/86Sr 2SE Sr(ppm) Rb(ppm) 143Nd/144Nd 2sm Nd(ppm) Sm(ppm) Model Age (Ga) εNd(t) ISr

YLG15-1 0.708140 0.000006 754 179 0.512429 0.000003 54.4 7.5 0.96  − 2.8 0.707293
YLG15-2 0.708162 0.000005 783 184 0.512398 0.000004 50.8 7.3 1.01  − 3.5 0.707322
YLG15-3 0.708124 0.000007 748 182 0.512388 0.000007 51.0 7.2 1.02  − 3.6 0.707254
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and Ba (1346–1531 ppm), low Nb, Ta and HREEs with 
an absence of negative Eu anomalies (δEu = 0.83–0.88) 
(Fig. 5), all of which suggest distinction from classical 
A-type, I-type, and S-type granites, but similarity with 

typical high Ba–Sr granitoids (Fowler and Henney 1996; 
Fowler et al. 2001, 2008; Jiang et al. 2006, 2012; Peng 
et al. 2013; Qian et al. 2002; Ye et al. 2008). Although they 
could be compared with adakites in many geochemical 

20
6

23
8

Pb
/

U

( b ) YLG15-1

Weighted age=87.32 ± 0.43 Ma
n=28 MSWD=1.7

207 235Pb/ U

92
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Fig. 3  a CL images of representative zircon grains from the high Ba–Sr Yonglaga granitoids, SE Tibet. b LA-ICP-MS zircon U–Pb concordia 
diagram of representative zircon grains from the high Ba–Sr Yonglaga granitoids, China
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characteristics, such as the high Sr and LREEs, low 
HREEs, Nb, and Ta plus lack of negative Eu anomalies, 
there are some significant differences: (1) the notably 
higher alkali contents  (Na2O +  K2O > 8.2) and higher  K2O/
Na2O ratios (0.99–1.25) than adakites  (K2O/Na2O < 0.5); 

(2) a shoshonitic affinity rather than the calc-alkaline trend 
of adakites (Fig. 4b); (3) the presence of coeval high-Mg 
basaltic rocks which do not show adakitic signature (Polat 
and Kerrich 2001; Zhu et al. 2024). Thus, the typical high 
Ba–Sr granite signature can still be recognized despite 
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Fig. 4  a  Na2O +  K2O versus  SiO2 diagram; b  K2O vs  SiO2 diagram; c Mg# versus  SiO2 systematic diagram (from Moyen and Martin 2012); d 
A/NK versus A/CNK diagram for the high Ba–Sr Yonglaga granitoids in the SE Lhasa. Experimentally obtained compositions of partial melts 
by dehydration melting of different source rocks under crustal P–T conditions (0.5–1.5 GPa, 800–1000 °C, Patiño Douce and Beard 1995). The 
data of Late Cretaceous adakites and high Sr/Y rocks are summarized in Table 5
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clear overlap with adakitic rocks (Fig. 6a, b) (Tarney and 
Jones 1994; Ye et al. 2008).

5.1.1  The origin of high Ba–Sr granodiorites

Tarney and Jones (1994) initially suggested three genetic 
models for high Ba–Sr granites: (i) the lower veined lith-
ospheric mantle is enriched by small amounts of carbona-
titic melts from the asthenosphere through penetration; (ii) 
partial melting of the ocean plateaus or subducted ocean 
islands; (iii) hydrous partial melting of underplated mafic 
magmas. Other explanations have been proposed, including 
partial melting of thickened mafic lower crust with partici-
pation of minor LILE-rich appinitic magma (Table 4) (Ye 
et al. 2008); low degree partial melting of the sub-continen-
tal lithospheric mantle (Jiang et al. 2006) with subsequently 
metasomatized by minor crustal materials contamination 
(Fowler and Henney 1996; Fowler et al. 2001, 2008); conti-
nental slab-derived melts (Jiang et al. 2012), and subduction-
related melts or fluids (Qian et al. 2002; Peng et al. 2013). 
Given this ongoing debate, it is important to determine 
whether the high Ba–Sr granodiorites are derived from the 
mantle or crust and investigate any interaction in between.

The presence of a mafic intrusion near the granitoid 
pluton area. The mafic xenolith and enclave were also not 
detected in the granodiorites, suggesting that a crust-man-
tle magma mixing model lacked geological evidence. Zhu 
et al. (2024) have reported the geochemical characteristics 
of the high-Mg basaltic rocks in the Yonglaga area. The 
age relationships and sharp contacts in the field between 
the high-Mg basaltic rocks and the granodiorites, and the 
notable compositional gap all suggest that the granodior-
ites are unlikely to have formed by simple crystal fractiona-
tion of these basaltic magmas (Fig. 7). Geochemically, the 
Yonglaga granodiorites display a weak correlation between 
 SiO2 and other major elements (Fig. 7), indicating a limited 

role for fractional crystallization during magma evolution. 
On the plots of La/Nb vs. La and Th/Nb vs. Th diagram 
(Fig. 6c, d), the Yonglaga granodiorites show clear linear 
trends, indicating that a partial melting process that plays a 
significant role in their formation rather than the fractional 
crystallization processes. Limited crustal contamination is 
suggested by the significantly higher Ba (1346–1525 ppm) 
and Sr (653–783 ppm) than the average Ba (390 ppm) and 
Sr (325 ppm) of the continental crust (Rudnick and Fountain 
1995), plus Rb/Nb ratios that do not show any obvious cor-
relation with  SiO2. The highest LOI (1.70 wt%) sample has 
lower Ba (1346 ppm) and Sr (658 ppm), suggesting a simi-
larly limited role for alteration in defining the characteristic 
chemistry of the rocks.

The collision zone between LT and QT underwent a gen-
tle collision and slab detachment of a slab during 140–110 
Ma (Chen et al. 2014; Qu et al. 2012; Sui et al. 2013; Zhao 
et al. 2008; Zhu et al. 2009a, b, 2011, 2013, 2015), the non-
marine facies of the BN suture have been present since 
approximately 118 Ma (Kapp et al. 2005, 2007), and the 
unaltered plutons that intrude ophiolitic mélanges of the BN 
suture have zircon U–Pb ages ranging from 116 to 112 Ma 
(Hu et al. 2022), indicating that the BNTO subduction-
related activity would have been unlikely during generation 
and intrusion of the high Ba–Sr granodiorites. Therefore, 
the Yonglaga high Ba–Sr granodiorites are post-collisional 
shoshonitic granitoids during the Late Cretaceous, preclud-
ing a source related to the partial melting of subducted ocean 
islands or plateaus.

The Yonglaga granodiorites have low  Mg# (44.2–45.3) 
values, low Cr (7.65–14.6 ppm) and Ni (5.69–8.50 ppm), 
and elevated  K2O/Na2O ratios (> 0.9). These character-
istics are inconsistent with a direct mantle origin but the 
remelting of mafic lower crust  (Mg# 52–60, Pan et al. 
2014) may produce suitable crust-derived magma. The 
crustal nature of the granodiorites is further supported by 
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the Fig. 5a, which exhibits depletion in P, Nb, and Ti, as 
well as enrichment in K and Sr, akin to those observed in 
average compositions of continental crust (Rudnick and 
Fountain 1995). Additionally, the Ce/Pb (7.3–8.7), Th/U 
(5.4–6.8), and Nb/U (2.2–2.7) ratios exhibit similarities to 
those observed in the lower continental crust (Foley et al. 
2002). Experimental findings have indicated that partial 
melting mafic lower crust could generate magmas with 
elevated (La/Yb)N and Sr/Y ratios and weakly Eu anoma-
lies at the condition of depth ≥ 40 km and pressure ≥ 1.2 
GPa (Fig. 5 and 9) (Petford et al. 1996; Rapp and Watson 
1995), with garnet in the residual assemblage (Petford and 

Gallagher 2001; Rapp et al. 1999, 2002). In summary, the 
petrogenesis of Yonglaga high Ba–Sr rocks can be attrib-
uted to partial melting of the mafic lower crust.

5.1.2  The magma source and decoupling of Hf and Nd 
isotope systems

Previous work demonstrated that the Nd–Hf isotope 
decoupling is common in the magmatic rocks of the SQT 
region during both the Early and Late Cretaceous periods 
(Sun et al. 2021; Wang et al. 2021). Our Sr–Nd–Hf iso-
topic signature is consistent with the range of granites 
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and adakites in the SQT, CLT, and NLT during the Late 
Cretaceous, and also exhibits vital Nd–Hf isotope decou-
pling (Fig. 8). Magma resulting from partial melting of the 
ancient lower crust exhibits more depleted Sr–Nd isotopes 
and demonstrates limited decoupling between Nd and Hf 
isotopes [ΔεHf(t) = 0.7–2.4; Sun et al. 2021]. In contrast, our 
granodiorites exhibit enriched initial 87Sr/86Sr (ISr) ranging 
from 0.707254 to 0.707322, negative εNd(t) values ranging 
from − 2.8 to − 3.6, and a range of εHf(t) values spanning 
from − 4.55 to + 13.01, indicating partial melting of the juve-
nile lower crust (ΔεHf(t) = 3.0–10.3; Sun et al. 2021).

The negative bulk-rock εNd(t) values associated with 
positive εHf(t) values, together with the very different 
model ages derived from each isotopic system, signal unu-
sual decoupling characteristics of Nd–Hf isotopic system 
(Chauvel et al. 2008, 2009). Disequilibrium melting pro-
cesses and mantle source inheritance are both possible 
causes (Tang et al. 2014; Sun et al. 2020). Because our zir-
cons are euhedral, prismatic and mostly have clear oscilla-
tory zoning (Fig. 3a), the disequilibrium melting process 
is unlikely (Tang et al. 2014; Sun et al. 2021; Wang et al. 
2021). However, Nd–Hf isotope decoupling can also indicate 
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a source involving subducted sediment. This model may 
be consistent with the genesis of the granodiorites which 
have noticeable Zr and Hf depletion plus variable zircon Hf 
isotopic compositions but consistent bulk Sr–Nd isotopes 
(Figs. 5a and 8c) (Tang et al. 2014). The “zircon effect” has 
also been used to interpret other igneous rocks during the 
Cretaceous. For example, the Namuqie granite [ISr = 0.7058 
to 0.7067, εNd(t) =  − 1.1 to − 0.8, εHf(t) =  + 2.7 to + 9.5] in 
the SQT, which is derived by partial melting of pre-existing 
juvenile arc crust involving a higher proportion of mature 
crust (20%–40%) (Wang et al. 2021). Another is the Duolong 
andesite in the SQT [ISr = 0.7045–0.7071, εNd(t) =  − 1.8 
to + 3.6, εHf(t) =  + 1.3 to + 12.9], which is derived from 
partial melting of the juvenile crust involving altered oce-
anic basaltic crust, mantle wedge peridotite, and subducted 
sediments (Sun et al. 2021). Thus, the spatial and temporal 
distributions of Yonglaga high Ba–Sr granodiorites are con-
sistent with derivation by partial melting juvenile arc crust, 
indicating the similarity of the juvenile arc crust in the SE 
Lhasa and the SQT.

5.1.3  The reworking of metasomatized juvenile crust

The granodiorites have notably high  K2O contents 
(4.10wt%–4.82wt%),  K2O/Na2O ratios (1.00–1.24),  P2O5 
contents (0.34wt%–0.41wt%), total REE (297–362 ppm) 
and LREE/HREE ratios (Fig. 4 and 5), indicating a shosho-
nitic affinity. High Ba–Sr and shoshonitic granitoids can be 
generated through analogous geological processes (Bersan 
et al. 2020; Tarney and Jones 1994; Fowler et al. 2008). 
The high Ba–Sr granites spatially overlap and adakitic rocks 
in SE Lhasa (Fig. 4, 5, and 9c, d). The Yonglaga grano-
diorites have relatively high Sr/Y (30.92–38.18) and (La/

Yb)N (27.7–34.7) ratios, but they are not plotted into the 
field of adakitic rocks. There has been considerably debated, 
whether the high Sr/Y and (La/Yb)N geochemical indica-
tors can accurately indicate crustal thickening (Moyen 
2009; Wang et al. 2022a, b). The lack of significant correla-
tions between  SiO2 and Sr/Y, as well as  SiO2 and Dy/Yb 
in the Yonglaga granodiorites suggests that the high Sr/Y 
(30.9–38.2) characteristic observed in the Yonglaga granodi-
orites cannot be solely explained by dominant processes like 
fractional crystallization involving garnet/amphibole, or by 
magma mixing. The derived melts from thickened crust will 
exhibit elevated Sr/Y and (La/Yb)N values with a positive 
correlation between La/Sm and Dy/Yb ratios (Wang et al. 
2023). The lack of such a positive correlation in our samples 
suggests that the garnet-bearing thickened crust cannot be 
considered as the source of high Sr/Y characteristic. There-
fore, the Yonglaga granodiorites have high Sr/Y and (La/
Yb)N values, which can be attributed to inheritance from a 
magma source rather than crustal thickening (Moyen 2009). 
Further, for melting taking place within the rutile stability 
range, the resultant melts would display Nb/Ta ratios (> 16) 
that are higher than those of the source (Wang et al. 2023). 
Low Nb/Ta ratios (< 14) in Yonglaga samples suggest that 
the depletion of Nb, Ta, and Ti in Yonglaga granodiorites 
relates to derivation mafic arc lower crustal sources lacking 
residual rutile. On the other hand, the Yonglaga granodior-
ites exhibit fractionated LREE/HREE signature and discern-
able flat HREE-depleted patterns that supports the presence 
of residual garnet ± amphibole in the source (Patino-Douce 
1999) (Figs. 5b and 10a, b).

The geochemical characteristics of the Yonglaga gran-
odiorites are similar to post-collisional suites that have 
been affected by prior subduction events with subsequent 
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metasomatism of the lithospheric mantle. The granodi-
orites have high Ba/Y (60.2–74.8) and low Nb/Y ratios 
(0.60–0.70), suggesting the influence of fluid-related meta-
somatism (Fig. 10c). Similarly, the (Hf/Sm)N versus (Ta/
La)N diagram also shows that the source has undergone 
fluid-related metasomatism (Fig. 10d). Therefore, the high-K 
calc-alkaline to shoshonitic affinity and high Ba–Sr signature 
of our samples can be explained by fluid-related metasoma-
tism in the mantle source of the parent mafic magmas.

The contribution of mature crustal material in the mantle 
source is further evidenced by the uniformly enriched Sr–Nd 
isotopes [ISr = 0.707254–0.707322, εNd(t) =  − 2.8 to − 3.6], 
similar to high Ba–Sr rocks from the Caledonian in British 
which have been explained by mixing between depleted-
enriched mantle and 5%–10% sediment (Fowler et al. 2008, 
noted on Fig. 8b). The high Th/Yb (15.2–20.7) and La/Sm 
(10.3–12.9) ratios in Yonglaga granodiorites also indicate a 
significant contribution from subducted sediments in their 
metasomatized source (Bersan et al. 2020). The presence of 
low Lu/Hf (0.05–0.06) ratios combined with elevated Th/
La (0.38–0.49) and Th/Yb (15.3–20.8) implies the domi-
nance of terrigenous contributions rather than pelagic inputs 
(Fig. 9a and b). The reaction between terrigenous sediment 
and dunite leads to the formation of phlogopite pyroxenites, 
which could produce high-K melts with enriched LILEs 
(Förster et al. 2019). In addition, the carbonate or carbon-
atite involvement to explain the significant increase in Sr 
(~ 1000 ppm) and LREE (La/Yb approximately 10) has been 
proposed (Fowler et al. 2008; Tarney and Jones 1994). The 
relatively high  P2O5 values (0.34wt%–0.41wt%) in our sam-
ples well support the possibility of carbonatite metasoma-
tism (Rudnick et al. 1993).

In summary, the reworking of the juvenile mafic arc lower 
crust (amphibolite source) constitutes a plausible mechanism 
for generating the potassic high Ba–Sr Yonglaga granodi-
orites. The juvenile mafic crust itself was formed through 
the melting of subduction-related metasomatized mantle, 
including a contribution of terrigenous sediments.

5.2  Geodynamic implications

An increasing amount of post-collision silicic magma-
tism has been discovered to be associated with continental 
growth, particularly the high Ba–Sr granitoids derived from 
the mantle (Gómez-Frutos et al. 2023; Fowler et al. 2008). 
However, the significance of the relationship between crust-
derived high Ba–Sr granitoid and continental growth is often 
overlooked due to its indirect association. Numerous Late 
Cretaceous granitoids (ca. 120–100 Ma), derived from the 
melting of juvenile crust, have been documented in the SQT 
(Li et al. 2013; Liu et al. 2014, 2017; Sun et al. 2021). The 
Yonglaga granodiorites show similar zircon Hf isotopic sig-
nature (εHf(t) values =  − 4.55 to + 13.01) with these (εHf(t) Ta
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values =  − 1.3 to + 13.6), suggesting the presence of similar 
juvenile crust in SE Lhasa (Liu et al. 2014, 2017). Sun et al. 
(2021) have argued that the juvenile lower crust in the SQT 
is a mélange of MORB, mantle wedge peridotites, and sub-
ducted sediments. The melting of such mélange protoliths 
plays an important role in Nd–Hf isotopic decoupling and 
adakitic characteristics observed in the Late Cretaceous SQT 
rocks. Although there are recycled sediments at the source, 
the dominant depleted zircon Hf isotopic composition still 
implies significant crustal growth.

The petrogenesis of Yonglaga high Ba–Sr granodiorites 
and the closure of BNTO studies indicate the occurrence of 
post-collision extension during the Late Cretaceous in SE 
Lhasa (Hu et al. 2022; Kapp et al. 2005, 2007). According 
to the extensional setting, upwelling of asthenosphere man-
tle material could cause partial melting of the lithospheric 
mantle and result in the formation of mafic magma. The Late 

Cretaceous Yonglaga basaltic rocks represent underplated 
mafic magma in the lower crust, which could provide a sig-
nificant amount of heat that leads to partial melting of the 
juvenile crust and subsequently resulting in the formation of 
granodiorite (Zhu et al. 2024). The whole-rock Zr saturation 
temperature (794–805 ℃) of the Yonglaga granodiorites fur-
ther indicates the contribution of underplated mafic magma.

A model involving lithospheric delamination has been 
widely proposed to explain the post-collisional magmatic 
activity, in accordance with the inferred crustal thickening 
during the Late Cretaceous (He et al. 2019; Li et al. 2013; 
Lu et al. 2019). Abundant adakitic rocks with high Mg 
and/or  Mg# have been found in central Xizang (Table 5, 
Fig. 1a), including the NLT and CLT (Cao et al. 2022; 
Chen et al. 2015; Li et al. 2013; Ma and Yue 2010; Meng 
et al. 2014; Qu et al. 2006; Sun et al. 2015a, 2020; Wang 
et al. 2014; Yu et al. 2011; Yi et al. 2018; Zhao et al. 
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2008), and SQT (Li et al. 2013, 2016; Liu et al. 2014, 
2017). These have significantly positive zircon Hf isotope 
signatures, suggesting a depleted mantle source. Recent 
studies have provided evidence for a westward migration 
of small-scale lithospheric delamination from the CLT 
and NLT and the SQT during this period (Li et al. 2016; 
Wang et al. 2023; Yi et al. 2018). A plausible geodynamic 
mechanism is lithospheric foundering by Rayleigh–Tay-
lor instability (Houseman and Molnar 1997; Li et  al. 
2016; Yi et al. 2018). Sun et al. (2020) have demonstrated 
that localized mantle convection has partially eradicated 
the lithospheric mantle keel, leading to crustal and lith-
ospheric mantle thinning during the LT and SQT colli-
sion. Such partial lithospheric delamination would have 
resulted in an increased geothermal gradient within the 
lithospheric mantle, thereby inducing the melting of the 
thinned crust. However, the Yonglaga granodiorites and 
coeval mafic rocks do not show adakitic signature (Polat 
and Kerrich 2001; Zhu et al. 2024). As above mentioned, 

the petrogenesis of the Yonglaga granodiorites shows that 
the crust thickness was normal in SE Lhasa during the 
Late Cretaceous. In addition, few reports of adakites in 
the SE Lhasa regionally. When the lithosphere undergoes 
delamination, the thinned crust becomes more susceptible 
to partial melting and results in the formation of large 
areas of magmatic rocks, but the scattered and small-vol-
ume igneous rocks are distributed in the SE Lhasa. There-
fore, our study did not uncover any evidence to support the 
mechanism of both crust thickening and delamination in 
the SE margin of Lhasa. It is worth noting that our sam-
ples exhibit similar Hf isotopic characteristics to coeval 
adakites in the CLT and NLT (Fig. 11a), indicating that 
the similar source from the juvenile crust. But the relative 
lower (La/Yb)N (27.7–34.7) and Sr/Y (30.9–38.2) ratios 
than coeval adakites derived from partial melting thick-
ened lower crust in CLT and NLT, our samples also are 
plotted out of the field of adakitic rocks (Figs. 9c, d and 
11b). Thus, it could be not inferred the crust thickening 
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Table 5  Summary of Late Cretaceous magmatisms in the central and northern Lhasa Terranes and southern Qiangtang block

Location Samples Rock type Dating method Age (Ma) Geochemical 
affinity

Zircon εHf(t) References

Central Lhasa 
Terrane

11BG01-1 Dacite Zircon LA-ICP-MS 
U–Pb

93.8 ± 0.8 High Mg# and 
adakitic affinity

(+ 8.3 to 12.4) Yi et al. (2018)

ZC-18 Granitoids Zircon LA-ICP-MS 
U–Pb

90.7 ± 1.3 High Mg# and 
adakitic affinity

Chen et al. (2015)

LS-P Rhyodacites/dacites Zircon LA-ICP-MS 
U–Pb

89.8 ± 0.9 High Mg# and 
adakitic affinity

(+ 8.90 to + 15.98) Sun et al. (2015a)

LS-74 Rhyodacites/dacites Zircon LA-ICP-MS 
U–Pb

86.8 ± 0.9

MB14-4 Granite Zircon LA-ICP-MS 
U–Pb

83.7 ± 0.5 High Mg# and 
adakitic affinity

(− 7.50 to − 0.2) Meng et al. (2014)

MB14-2 Dioritic enclave Zircon LA-ICP-MS 
U–Pb

85.2 ± 0.4

CQRA09-7 Granite Zircon LA-ICP-MS 
U–Pb

89.9 ± 1.6 High Mg# and Sr/Y 
ratios

Yu et al. (2015)

ZGP06-1 Dacite Zircon SHRIMP 
U–Pb

91.0 ± 0.8 High Mg and 
adakitic affinity

(+ 5.6 to + 8.7) Wang et al. (2014)

RT1 Granite Zircon LA-ICP-MS 
U–Pb

80.0 ± 1.2 High MgO and 
Mg#, high Sr/Y

Zhao et al. (2008)

RT7 Granite Zircon LA-ICP-MS 
U–Pb

79.4 ± 0.9

JB17-03 Andesite Zircon LA-ICP-MS 
U–Pb

87.1 ± 1.1 High MgO and 
Mg#, high Sr/Y

(+ 2.7 to + 5.4) Sun et al. (2020)

JB16-04 Dacite Zircon LA-ICP-MS 
U–Pb

85.1 ± 1.0 High MgO and 
Mg#, high Sr/Y

(+ 2.7 to + 7.1)

JB17-08 Rhyolite Zircon LA-ICP-MS 
U–Pb

81.6 ± 0.5 non-adakitic 
signatures and 
low Mg#

(+ 1.0 to + 3.5)

Northern Lhasa 
Terrane

NSB1 Quartz diorite Zircon LA-ICP-MS 
U–Pb

87.1 ± 0.4 High Sr/Y and 
adakitic affinity

Yao et al. (2013)

CR16 Monzonitic granite 
Porphyry

Zircon LA-ICP-MS 
U–Pb

90.1 ± 1.5 High Mg# and 
adakitic affinity

Qu et al. (2006)

CR27 Diabase Zircon LA-ICP-MS 
U–Pb

87.2 ± 1.6

PM95-15 Quartz monzonite Zircon LA-ICP-MS 
U–Pb

85.60 ± 0.48 High Mg# and 
adakitic affinity

Li et al. (2013)

Iron-deposition Zircon LA-ICP-MS 
U–Pb

85.51 ± 0.77

09ZC-15 Granodiorite Zircon LA-ICP-MS 
U–Pb

92.1 ± 1.2 Wang et al. (2013)

09ZC-02 Granodiorite Zircon LA-ICP-MS 
U–Pb

93.8 ± 1.2

ZC17 Porphyry granite Zircon LA-ICP-MS 
U–Pb

88.0 ± 1.6 High Mg# and 
adakitic affinity

Yu et al. (2011)

GJ-15 Granodiorite Zircon LA-ICP-MS 
U–Pb

86.59 ± 0.49 S-type granites Lu et al. (2011)

GJ-37 Diorite Zircon LA-ICP-MS 
U–Pb

88.99 ± 0.45

GJ-38 Diorite Zircon LA-ICP-MS 
U–Pb

88.74 ± 0.74

2003T468 Volcanic rocks Hornblende 
40Ar/39Ar

91.2 ± 0.2 High Mg and Zr/Y, 
within-plate 
basalt affinity

Ma and Yue. (2010)

Volcanic rocks Rb–Sr 91.0 ± 0.6

DC-29 Andesites and 
rhyolite

Zircon LA-ICP-MS 
U–Pb

94 ± 1 High Sr/Y and 
adakitic affinity

Haider et al. (2013)
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setting but implies the normal crustal setting in the SE 
Lhasa terrane. Considering that our samples were col-
lected from the SE margin of the Lhasa terrane, a hetero-
geneous crustal thickness could have occurred during the 
Late Cretaceous. The central and northern parts of the 
Lhasa terrane are thickened but the SE margin could be 
normal (Fig. 12a).  

Recently, the extension could have been driven by the 
far-field effects of subduction of the Neo-Tethys oceanic 
crust (Wang et al. 2019, 2021). The BN slab break-off dur-
ing the Late Cretaceous (~ 110 Ma) and driven by the far-
field subduction of the Neo-Tethys oceanic crust (Chapman 
et al. 2018). The roll-back of the Neo-Tethyan oceanic slab 

during the Late Cretaceous (~ 85 Ma) could result in scat-
tered and small-volume igneous rocks in the LT and SQT 
(Wang et al. 2021). In addition, most of the Late Cretaceous 
felsic igneous rocks are found from the SQT to the Gangdese 
zone. They were formed at various magmatic temperatures 
(600–900 °C), indicating that their formation could have 
been controlled by the mechanism of the Neo-Tethyan oce-
anic slab (Wang et al. 2021). This mechanism has caused 
the reworking of juvenile crust and triggered shoshonitic 
magmatism in central and eastern Lhasa during the Late 
Cretaceous, which is consistent with the sporadic occurrence 
and limited volume of Late Cretaceous (ca. 100–80 Ma) 
magmatic rocks in the SE Lhasa (Wang et al. 2019, 2021). 

Table 5  (continued)

Location Samples Rock type Dating method Age (Ma) Geochemical 
affinity

Zircon εHf(t) References

YLG15-1 Granite Zircon LA-ICP-MS 
U–Pb

87.3 ± 0.4 High Ba–Sr and 
Sr/Y ratios

(− 4.5 to + 13.0) This study

L-6 Andesite Zircon LA-ICP-MS 
U–Pb

79.9 ± 2.7 K-rich high Sr/Y (− 5.8 to + 0.9) Li et al. (2013)

L-6–01 Andesite Zircon LA-ICP-MS 
U–Pb

75.9 ± 0.49

MDH-U40 Volcanic rocks Zircon LA-ICP-MS 
U–Pb

100.8 ± 0.9 High Sr/Y Li et al. (2016)

MDH-U29 Volcanic rocks Zircon LA-ICP-MS 
U–Pb

102.6 ± 1.6

EU-3 Volcanic rocks Zircon LA-ICP-MS 
U–Pb

96.1 ± 2.4

EU-5 Volcanic rocks Zircon LA-ICP-MS 
U–Pb

100.4 ± 1.1

Southern Qiang-
tang block

08058B Bt-Hbl monzo-
granite

Zircon LA-ICP-MS 
U–Pb

93.3 High Mg# and high 
Sr/Y

(+ 4.5 to + 9.5) Liu et al. (2017)

08059B Bt-Hbl monzo-
granite

Zircon LA-ICP-MS 
U–Pb

83.7

8057 Bt-Hbl monzo-
granite

Zircon LA-ICP-MS 
U–Pb

101 (+ 4.5 to + 8.9)

08058A Bt-Hbl monzo-
granite

Zircon LA-ICP-MS 
U–Pb

101 (+ 1.4 to + 13.6)

09019–1 Granite Zircon LA-ICP-MS 
U–Pb

104 (− 1.0 to + 5.7)

21-DM-02 Rhyolite Zircon LA-ICP-MS 
U–Pb

98.3 ± 0.61 High-K calc-alka-
line series

(− 0.7 to + 2.7) Wen et al. (2023)

16DM17-1 Granite porphyries Zircon SHRIMP 
U–Pb

76.00 ± 0.61 Calc-alkaline 
peraluminous

(+ 9.9 to + 12) Wang et al. (2021)

17NMQ01-5 Granite porphyries Zircon SHRIMP 
U–Pb

78.85 ± 0.87 Calc-alkaline 
strongly peralu-
minous

(+ 5.3 to + 6.6)

17NMQ04-9 Granite porphyries Zircon SHRIMP 
U–Pb

78.15 ± 0.61 (+ 7.0 to + 7.4)

AD-16–2 Volcanic rocks Zircon LA-ICP-MS 
U–Pb

79.6 ± 0.8 High Mg# and 
adakitic affinity

(− 1.3 to + 1.4) Ji et al. (2021)
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Fig. 11  a The Zircon Hf components vs. zircon U–Pb data of in the central and northern Lhasa and southern Qiangtang terranes; b the Sr/Y and 
(La/Yb)N ratios versus longitude data of Late Cretaceous adakites and high Ba–Sr granodiorites in Lhasa terrane
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Fig. 12  a The model of the Late Cretaceous magmatism in the Lhasa terrane; b the model of the Late Cretaceous magmatism in the Lhasa and 
southern Qiangtang terranes following final Lhasa-Qiangtang amalgamation
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Therefore, the far-field effect of Neo-Tethyan oceanic slab 
roll-back during the Late Cretaceous period could lead to 
crustal melting and thus result in the formation of the Yongl-
aga high Ba–Sr granodiorites (Fig. 12b).

6  Conclusions

(1) The high Ba–Sr granodiorites were emplaced at 87 Ma, 
derived from the reworking of the juvenile mafic arc 
lower crust that itself formed by melting of metasoma-
tized mantle.

(2) Their isotopic characteristics are similar to the coeval 
juvenile crust-derived magmatic rocks in the south-
ern Qiangtang terrane, suggesting that the decoupled 
Nd–Hf isotopic system has been inherited from a com-
plexly metasomatized mantle source, which implies the 
growth of continental crust.

(3) The underplated mafic magma provides a significant 
amount of heat, leading to partial melting of the juve-
nile crust and subsequently formation of the high Ba–Sr 
granodiorite.

(4) Both the Late Cretaceous adakitic rocks and high Ba–
Sr granodiorites have similar juvenile crustal sources, 
but they could be derived from heterogeneous thick-
ness. There is crustal thickening and delamination in 
the center of the Lhasa terrane, and the crust thickness 
remains normal at the SE margin.

(5) The Late Cretaceous igneous rocks in Yonglaga were 
formed in a post-collisional extensional setting, which 
was possibly triggered by the far-field effects of the 
subduction of the Neo-Tethyan oceanic crust.
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