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Abstract An integrated method that implements multivari-
ate statistical analysis and ML methods to evaluate ground-
water quality of the shallow aquifers of the Djerid and Kebili 
district, Southern Tunisia, was adopted. An evaluation of 
their suitability for irrigation and/or drinking purposes is 
necessary. A comprehensive hydrochemical assessment 
of 52 samples with entropy weighted water quality index 
(EWQI) was also proposed. Eleven water parameters were 
calculated to ascertain the potential use of those resources 
in irrigation and drinking. Multivariate analysis showed 
two main components with Dim1 (variance = 62.3%) and 
Dim.2 (variance = 22%), due to the bicarbonate, dissolu-
tion, and evaporation and the intrusion of drainage water. 
The evaluation of water quality has been carried out using 
EWQI model. The calculated EWQI for the Djerid and 
Kebili waters (i.e., 52 samples) varied between 7.5 and 
152.62, indicating a range of 145.12. A mean of 79.12 
was lower than the median (88.47). From the calculation 
of EWQI, only 14 samples are not suitable for irrigation 
because of their poor to extremely poor quality (26.92%). 
The bivariate plot showed high correlation for EWQI ~ TH 
(r = 0.93), EWQI ~ SAR(r = 0.87), indicating that water 
quality depended on those parameters. Different ML algo-
rithms were successfully applied for the water quality clas-
sification. Our results indicated high prediction accuracy 
(SVM > LDA > ANN > kNN) and perfect classification for 
kNN, LDA and Naive Bayes. For the purposes of develop-
ing the prediction models, the dataset was divided into two 

groups: training (80%) and testing (20%). To evaluate the 
models’ performance, RMSE, MSE, MAE and  R2 metrics 
were used. kNN  (R2 = 0.9359, MAE = 6.49, MSE = 79.00) 
and LDA (accuracy = 97.56%; kappa = 96.21%) achieved 
high accuracy. Moreover, linear regression indicated high 
correlation for both training  (R2 = 0.9727) and testing data 
(0.9890). This well confirmed the validity of LDA algorithm 
in predicting water quality. Cross validation showed a high 
accuracy (92.31%), high sensitivity (89.47%) and high speci-
ficity (95%). These findings are fundamentally important for 
an integrated water resource management in a larger context 
of sustainable development of the Kebili district.

Keywords Water-resources management · Multivariate 
analysis · Machine learning · Kebili and Djerid shallow 
aquifers · EWQI · Water classification

1 Introduction

In arid and semi-arid regions, the population rely mainly 
on groundwaters. These resources are fundamentally 
important for several applications, mainly irrigation and 
drinking. It can be considered as the most available for 
humans (Isaac Sajan and Christopher 2023). Overexploi-
tation of available and non-renewable resources, in con-
junction with climatic changes, and rising agriculture and 
industry demands have led to challenging water resource 
management (Dassi 2011; Tarki et al. 2012; Khalfi et al. 
2021a; Goodarzi et al. 2022). Thus, assessing water qual-
ity is an important issue for the sustainable management of 
the available resources. Some strategies and approaches to 
evaluate water potential use and valorisation are based on 
numerous indicators, of which the most used index is the 
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water quality index (WQI). It was developed to summarise 
the pollution status and quality of a given water body for 
domestic and drinking purposes. Water quality index was 
usually calculated to eclectically evaluate the suitability 
of these resources for the desired use. The intricate tap-
estry of water quality necessitates accurate and efficient 
assessment methods. Traditionally, water quality indices 
(WQIs) have served as valuable tools, aggregating diverse 
parameters into a single, interpretable score. However, 
the limitations of conventional WQIs, including subjec-
tive weighting schemes and inadequate consideration of 
complex relationships between parameters, are increas-
ingly recognized. This burgeoning field witnesses a trans-
formative convergence of WQI development and machine 
learning (ML) techniques. Recent studies like Uddin et al. 
(2023b) and Sajib et al. (2023) showcase the development 
of novel WQI models using data science approaches and 
ML-powered groundwater assessment tools. Notably, 
Uddin et al. (2024), Sajib et al. (2023) delve into opti-
mizing existing WQI models through ML, highlighting 
the potential for enhanced accuracy and predictive power. 
This section delves into this exciting intersection of WQIs 
and ML. We explore the latest advancements in develop-
ing data-driven WQI models: Examining how research-
ers utilize ML algorithms to build robust and adaptable 
WQIs that capture the intricate dynamics of water quality 
(Uddin et al. 2023a; Sajib et al. 2023). We can cite how 
optimizing traditional WQI models such as how inves-
tigating ML techniques are employed to refine existing 
WQIs, addressing limitations like subjectivity and static 
weighting (Uddin et al. 2023b, 2023c). The main event is 
how to predict water quality and how ML algorithms are 
harnessed to forecast water quality changes, enabling pro-
active management and pollution prevention (Georgescu 
et al. 2023).

Among various sources of water on Earth, ground-
water can be considered the most available for humans 
(Isaac Sajan and Christopher 2023). Large quantities are 
mainly consumed by increased agricultural and industrial 
demands. Those applications may exert a deleterious effect 
on water. Thus, assessing water quality is an important 
issue for the sustainable management of the available 
resources. In arid and semi-arid regions, the population 
rely mainly on groundwater to supply drinking and agri-
culture needs.

According to Kumari and Rai (2020), more than 60% of 
groundwater is being pumped for drinking purposes; 20% 
for irrigation, and about 15% for industrial applications. 
Those overall percentages vary considerably with a huge 
stress on the hosting aquifers. Active measures to moni-
tor groundwater in desert areas are usually shaped by local 
geo-environmental features and climate (i.e., hydrogeology, 

structures, evaporation, rock-water interaction, and weather-
ing). In addition, the application of chemical fertilizers and 
harmful pesticides in agriculture has affected groundwater 
quality (Kumari and Rai 2020). Tunisia has been working 
for decades to develop strategies and action plans to ration-
alize the process of managing water resources. Gaaloul 
(2011) collected the available datasets on water resources 
in Tunisia. He stated that southern districts suffer from low 
annual rainfall (150 mm/year) and high evapotranspiration 
(≥ 2500 mm/year). Such irregular rainfall come to worsen 
an already dire situation of aridity and desertification-prone 
soils. Groundwater resources are mainly embedded in the 
southern underground exceeding 30% (221.36 million  m3) 
of the total phreatic aquifers reserves and 59.7% (722.2 106 
 m3) in the deep aquifers of the Sahara Aquifer System (i.e., 
Continental Intercalaire and Complex terminal). The water 
of Plio-quaternary shallow aquifers is being used for irriga-
tion and drinking purposes (Gaaloul 2011). He concluded 
that water issue, in the next 30 years, requires flexible and 
forward-thinking measures that may assist a thoughtful 
assessment, planning, conservation, and management. Sub-
sequent trials were made to evaluate water resources status 
in the Kebili district, Southern Tunisia, where date palm 
agriculture is dominating the scenery with more than 1.4 
million palm trees. Besser and Hamed (2019) ran a system-
atic analysis of water samples from the well-known Creta-
ceous aquifers. They recommended immediate prevention 
actions to predict and measure water quality coupled with 
systematic monitoring of the available resources in Kebili, 
especially oilfields.

Similarly, Haj-Amor et al. (2017) undertook a compre-
hensive study of the impact generated by excessive irriga-
tion of date palms with low-quality water on soil salinity 
and shallow groundwater properties. They focussed on Douz 
oasis where low-quality irrigation water has led to high soil 
salinization risk. They urged local authorities and con-
cerned farmers to develop effective strategies for water and 
soil management in the context of sustainable development. 
Another work was conducted by Dhaouadi et al. (2020) to 
explore the geochemical properties of water and its suitabil-
ity for agriculture. The Sahara Aquifer System (SAS) was 
found to be affected by different anthropogenic factors. They 
concluded that the groundwater chemistry of the “continen-
tal intercalaire” cannot be used for agricultural purposes. In 
their recent work on ecologic and economic perspectives for 
sustainable agriculture in the arid climate of southern Tuni-
sia, Besser et al. (2021) recommended some tips to prevent 
land degradation because of inefficient water management. 
Their attention has been directed to the SAS deep aquifer; 
they urged institutional and political actions for rehabilita-
tion efforts. A study by Tarki et al. (2012) found that the 
water quality of the shallow aquifer in Chott Djerid had huge 
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spatial variation from location to location. Water quality was 
generally better in the piedmont of the Dahar Mountains, 
where the aquifer is recharged by fresh groundwater. Water 
quality was worse in the areas closer to Chott Djerid, where 
the aquifer is more saline. The study also found that water 
quality of the shallow aquifer in Chott Djerid was declin-
ing over time, perhaps because of the increasing demand 
for water, degradation of the natural environment, and the 
discharge of untreated wastewater.

The study concluded that urgent action is needed to 
improve water quality of the shallow aquifer in Chott Djerid. 
In addition, Haj-Amor et al. (2017) studied the effects of 
excessive irrigation of date palm on soil salinization, and 
groundwater of the Kebili shallow aquifers. Later on, the 
impact of irrigation water quality and farmers’ practices on 
agriculture sustainability in Kebili arid land was evaluated 
by Dhaouadi et al. (2020)

These studies provide further insights into the status of 
the Kebili shallow aquifers and the challenges they faces. 
They also provide recommendations for how to manage the 
aquifer sustainably.

Water quality is a measure of the physical, chemical, and 
biological characteristics of water. It is important for both 
human health and the environment. Water quality is espe-
cially important for irrigation and drinking water, as it can 
directly affect human health and crop yields.

There are different methods for water quality assessment; 
the most common include physical properties of water (e.g., 
temperature, turbidity, and color), chemical methods (con-
centration of chemicals in water, such as dissolved oxygen, 
pH, and nutrients), biological methods (measure the abun-
dance of aquatic organisms) and remote sensing methods.

The best method for water quality assessment depends on 
the specific purpose of the assessment. For example, if the 
goal is to assess the suitability of water for drinking, then 
physical and chemical methods would be most appropriate. 
In some cases, a combination of methods may be used to get 
a more comprehensive assessment of water quality.

Tunisia is facing several water quality challenges, includ-
ing pollution from agriculture, industry, and sewage. Artifi-
cial intelligence (AI) is a promising tool for helping Tunisia 
monitor and manage its water resources more effectively. 
Little is being done to use AI for water quality prediction in 
Tunisia. Nevertheless, attempts to use AI to predict water 
quality are being made. For instance, Msaddek et al. (2022) 
used AI for fractured aquifer vulnerability mapping. Smida 
et al. (2023) developed a model that can predict the quality 
of groundwater used for irrigation. The system uses inte-
grated data from hydrogeological, hydrogeochemical, and 
GIS to develop a spatial database that was, in turn, processed 
by multicriteria analysis and artificial neural network to pre-
dict the risk of groundwater contamination. Tunisian gov-
ernment is also exploring the use of AI for water quality 

prediction. In 2022, the government launched a project to 
develop a national water quality monitoring and prediction 
system using AI. The system is expected to be operational 
in 2024. However, these studies considered the use of AI 
models trained on specific datasets; it might not generalize 
well to different regions or water bodies with unique charac-
teristics, like Kebili aquifers. This can lead to inaccurate pre-
dictions. Those complex AI models were difficult to inter-
pret, understand, and to apply in a generalized predictive 
strategy. Therefore, we proposed effective AI models with 
high-quality data for training and validation. Data collec-
tion on water quality followed strict guidelines for sampling 
and handling in the Kebili area (Kraiem et al. 2014). The 
choice of AI algorithms holds great promise for improving 
water quality monitoring and management in Tunisia, espe-
cially in the Kebili aquifers. We used both supervised and 
unsupervised algorithms for a comprehensive classification/
prediction of water samples from the Kebili dataset. These 
are simple and handy tools for an accurate prediction of the 
Kebili water quality.

AI-based water quality prediction systems have the poten-
tial to help Tunisia to (1) identify and address water quality 
problems, (2) optimize water management and allocation 
and (3) protect public health and the environment.

However, some challenges need to be addressed before 
that  AI-based water quality prediction systems can be 
widely deployed in Tunisia. One challenge is the lack of 
high-quality water quality data. Despite these challenges, 
the potential benefits of using AI for water quality predic-
tion in Tunisia are significant. AI can help Tunisia to better 
manage its water resources and to protect public health and 
the environment.

AI-based water quality prediction systems, that can be 
used in Tunisia, include (1) water quality forecasting (An 
AI algorithm to forecast water quality conditions for future 
dates); (2) pollution source tracking (tracking the sources 
of water pollution), and (3) an early warning system for 
water pollution. An AI-based system could be used to moni-
tor water quality and to alert managers to potential pollu-
tion events. This would allow managers to take preventive 
measures to protect public health and the environment, and 
develop targeted pollution control measures and water man-
agement plans for informed decisions about water use.

One study, conducted by the National Agency for Water 
and Wastewater, found that the water table in the Kebili shal-
low aquifer has declined by an average of 2 m per year since 
1980. The study also found that the concentration of salinity 
in the aquifer has increased by an average of 10 mg per liter 
per year since 1980.

Another study, conducted by Gaaloul (2011), found that 
the Kebili shallow aquifer is vulnerable to pollution from 
agricultural runoff and industrial wastewater. The study also 
found that the aquifer is at risk of salinization.
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Improving water quality of Chott Djerid is, therefore, a 
complex challenge, but it is essential to protect the environ-
ment and human health in the region. Despite the challenges, 
there are several ongoing efforts to improve water quality 
of Chott Djerid. These efforts are being led by the Tuni-
sian government, as well as by international organizations 
such as the United Nations Environment Programme. The 
goal is to make Chott Djerid a more sustainable and liveable 
environment. The declining water table and the deteriorat-
ing water quality in the Kebili shallow aquifer pose some 
challenges, including reduced availability for drinking and 
irrigation. This is a problem for the growing population 
and the agricultural sector. The increasing salinity of water 
makes it unsuitable for drinking and irrigation. Therefore, 
adequate measures have been proposed to address the chal-
lenges facing the Kebili and Djerid shallow aquifers (More 
efficient water management practices, reducing pollution, 
and protecting the aquifer from drainage water intrusion 
(Kraiem et al. 2012).

To meet those challenges, AI has the potential to be a 
valuable tool for helping Tunisia monitor and manage its 
water resources more effectively. In this context, the pre-
sent study has been undertaken to propose (1) an integrated 
approach of geochemical analysis of 52 samples, (2) evalua-
tion of EWQI model and traditional water quality parameters 
(i.e., WQI, KR, SAR, MR, PI, TH, RSC, SSP, RSBC, NaR) 
and (3) application of convenient algorithms was proposed. 
Machine learning tools were applied to the hydrogeochemi-
cal properties and relevant indices for an accurate prediction 
of groundwater quality.

2  Study area and site description

Chott Djerid is a salt lake located in the south-central part 
of Tunisia. It is the largest salt lake in Tunisia and the third-
largest salt lake in Africa. The lake is about 500 km long 
and 200 km wide. It is a terminal lake that has no outlet 
to the sea. The water in the lake is constantly evaporating, 
leaving behind salts and minerals, making the water very 
salty and alkaline, with high concentrations of dissolved sol-
ids, including calcium, magnesium, sodium, and chloride. 
Numerous oases that are supported by groundwater surround 
the lake. The water quality of the whole Chott Djerid depres-
sion is generally poor with high concentrations of dissolved 
solids.

In the Kebili area, shallow aquifers have been under 
increasing pressure in recent years due to population growth 
and increased agricultural activity. As a result, the water 
table has been declining and the quality of water has dete-
riorated. For instance, several pressure factors negatively 
affect water quality such as low rainfall (aridity), climate 
change (Uddin et al. 2021), intensive irrigation practices 

(Haj-Amor et al. 2017), overgrazing (Dhaouadi et al. 2021, 
2022), inadequate sanitation and limited wastewater treat-
ment infrastructure (Kachroud et al. 2019; Goodarzi et al. 
2022; Uddin et al. 2022), among others.

Numerous studies have been conducted on the Kebili 
shallow aquifer to assess its status and to identify potential 
threats. These studies have shown that the aquifer is overex-
ploited and water quality is declining.

The study area belongs to Southwestern Tunisia, sur-
rounding the well-known Chott Djerid depression. It is bor-
dered by the northern Chott range to the north, the Tebaga 
mountainous chain to the northeast, and the Tozeur uplift to 
the west; It opens on the oriental Erg southwards (Fig. 1).

3  Materials and methods

3.1  Samples collection and analysis

A set of 52 water samples were collected in the shallow 
aquifers of the Kebili district. The water sample was poured 
and stored in a 1.5 L polyethylene bottle and cooled to 4 
℃ until analysis for the desired physico-chemical param-
eters. Diluted nitric acid (10%) drops were added to obtain 
sub-samples for cationic (i.e., Na, K, Mg, Ca) analyses. 
The assessment of geochemical characteristics is crucial 
in developing strategies to protect water resources in this 
region. A clean, sanitized water sample bottle, a disinfectant, 
and a pair of gloves were used during the collection of water 
samples. Water was first filtered through a 0.45 µm pore size 
acetate filter. Then, in-situ measurements of electric conduc-
tivity (EC), temperature (T), and pH were evaluated using 
a HI 9828 Multiparameter meter portable device (Hanna 
Instruments, France). Chemical analysis was performed as 
described by Kraiem et al. (2014). Briefly, bicarbonates were 
ascertained by titration, as described elsewhere (Bradbury 
and Baeyens 2009). Major elements and nitrates concentra-
tions were measured by a high-performance liquid chroma-
tograph equipped with a Super-Sep column for anions.

To ensure a robust QA/QC measure, we followed a well-
documented procedure; we proceeded to equipment cali-
bration in each sampling campaign. Protocol, as described 
earlier, was meticulously designed from the comprehensive 
sampling technique to data treatment and management. Spe-
cific measures were undertaken for accuracy and precision, 
including analysis of blank samples as control, and measure-
ments in triplicate to get errors and averages. The accuracy 
and precision of the measuring device were evaluated to a 
95% confidence level (error < 5%).

Regression metrics including root mean square error 
(RMSE),  mean absolute error (MAE), and R-squared 
were used to evaluate the performance of models that pre-
dict EWQI values. Accuracy, sensitivity, specificity, and 
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balanced accuracy (i.e., arithmetic mean of sensitivity and 
specificity) were also applied to test the quality and reli-
ability of the models.

Positive Predictive Value (PPV) is an important metric 
used to evaluate the performance of diagnostic tests and 
classification models. It measures the probability that a 
positive test result indicates the presence of the condition. 
Negative Predictive Value (NPV) is another crucial metric 
used to evaluate diagnostic tests and classification models, 
alongside PPV (Çakir et al. 2023).

3.2  Water quality assessment

Water quality was assessed by the assignment of numerical 
values to various water quality parameters (i.e., water quality 
index). This is a useful tool for monitoring water quality over 
time and for comparing the water quality of different water 
bodies. Other water quality parameters included sodium 
absorption ratio (SAR), magnesium ratio (MR), Kelly’s 
ratio (KR), sodium percentage (NR), permeability index 
(PI), residual sodium carbonate (RSC), potential salinity 
(PS), soluble sodium percentage (SSP) and residual sodium 
bicarbonate (RSBC). A detailed description of those indices 
can be found elsewhere (Hassen et al. 2016; Dhaouadi et al. 
2020; Kumari and Rai 2020; Aouiti et al. 2021; Guasmi 
et al. 2022).

3.2.1  EWQI

EWQI is the method used in this study to summarize the 
quality of water by assigning numerical values to various 
water quality parameters (Kumar and Augustine 2022). The 

EWQI is then used to rank the water quality. The weight-
ing factors for the EWQI are usually determined using a 
statistical technique called entropy, which is a measure of 
the uncertainty or randomness of a system. In the context 
of water quality, entropy can be used to measure the uncer-
tainty in the distribution of water quality parameters.

EWQI is a valuable tool for water quality assessment 
because it provides a simple and concise way to commu-
nicate the overall quality of water. It can also be used to 
compare water quality between different water bodies and 
over time. It can be calculated as per Kumar and Augustine 
(2022).

An initial step should be allocated to the construction 
of the Eigenvalue matrix X based on the number of water 
samples (m) and parameters (n).

Then, a standardization of data is needed to cancel the 
effects of magnitude and dimensions.

The standard matrix can be constructed as:

(1)X =

|
|||
||||

x
11

x
12

⋯ x
1n

x
21

x
22

⋯ x
2n

⋮ ⋮ ⋮ ⋮

xm1 xm2 ⋯ xmn

|
|||
||||

(2)yij =
xij − (xij )min

(xij )max
− (xij )min

(3)Y =

|
|||
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y
11

y
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⋯ y
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21
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Fig. 1  Schematic geological map and location of the collected water samples
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The index value (Pij) and information entropy (ej) can 
be calculated.

Quality rating (qj) and entropy weight (Wj) of  jth 
parameter:

where Sj: drinking water standard (WHO 2017) and Cj: 
Value of the chemical parameter.

Finally, the entropy-weighted water quality index (EWQI) 
can be given by the equation.

The choice of the EWQI for Chott Djerid water quality 
assessment offers several advantages over other methods, 
particularly considering the unique characteristics of this 
hypersaline and endorheic lake (Lee et al. 2022; Sangare 
et al. 2023). That is, unlike traditional methods relying on 
expert-assigned weights, EWQI assigns weights based on 
the information inherent in the water quality data, elimi-
nating subjective bias to reflect the actual contribution 
of each parameter to overall water quality (Ahmed et al. 
2020; Bharani Baanu and Jinesh Babu 2022; Goodarzi 
et al. 2022). Moreover, EWQI allowed us to consider a 
wide range of water quality parameters specific to Chott 
Djerid, including salinity, specific ions (i.e., anions and 
cations), and relevant physical-chemical parameters. This 
adaptability is crucial for capturing the complex nature 
of this ecosystem (Najah Ahmed et al. 2019; Islam and 
Mostafa 2022). While relatively new, EWQI has shown 
promising results in various water quality assessments. Its 
data-driven approach and adaptability make it a potential 
leader in future water quality monitoring, particularly for 
unique environments like Chott Djerid. EWQI’s unique 
advantages make it a compelling choice for comprehensive 
and data-driven evaluation of this unique and sensitive 
ecosystem (Aouiti et al. 2021b; Oğuz and Ertuğrul 2023).

(4)Pij
=

1 + yij
∑m

i=1
(1 + yij )

(5)ej =
1

lnm

∑m

i=1
Pij × lnPij

(6)qj =
Cj

Sj
× 100

(7)Wj =
1 − ej

∑m

i=1
(1 − ej)

(8)EWQI =
∑

Wi × qi

3.2.2  Multivariate statistical analysis

A set of statistical methods including principal component 
analysis (PCA) and cluster analysis were applied as mul-
tivariate statistical tools to analyse the collected datasets 
with more than one independent variable and one depend-
ent variable. PCA and cluster analysis are the most com-
mon multivariate statistical analyses (Sahu et al. 2021). 
PCA is often used to identify the most important vari-
ables. Hierarchical cluster analysis was used for grouping 
water samples together based on their similar water quality 
parameters (Aouiti et al. 2021; Schreiber et al. 2022; Liu 
et al. 2023; Meegahakumbura and Nanayakkara 2023).

3.3  Machine learning models

Artificial intelligence tools were used to accurately pre-
dict and monitor the studied water quality. Various artifi-
cial intelligence techniques have been used for the accurate 
classification of groundwater quality (Khullar and Singh 
2021). In this work, special attention has been directed to 
support vector machine (SVM), linear discriminant analysis 
(LDA), artificial neural networks (ANN), Naïve Bayes (NB), 
and k-nearest neighbors (kNN).

3.3.1  Support Vector Machine (SVM)

SVM is a supervised learning algorithm that can be used for 
both classification and regression tasks (Behzad et al. 2009). 
However, it is most used for classification. SVMs work by 
finding a hyperplane in the feature space that separates the 
data points into two classes with the largest possible margin. 
The margin is the distance between the hyperplane and the 
closest data points from each class. SVMs are very power-
ful algorithms that can be used to solve a wide variety of 
problems (Khalil et al. 2005). They can be used to solve both 
linear and non-linear problems with an easy interpretation 
(Che Nordin et al. 2021). SVM is used in this study as a 
powerful machine learning tool to assess the quality of the 
Kebili PQ waters.

SVM has been used for groundwater quality evaluation 
by Khalil et al. (2005) who outlined interesting algorithms 
for predicting groundwater quality (i.e., artificial neural 
network, support vector machines, locally weighted pro-
jection regression, and relevance vector machines). The 
obtained results indicated rigorous application of those 
machine learning tools to build models with strong predic-
tive capabilities.

SVM was found to have higher prediction efficiency than 
other relevant AI-based models (ANN and ANN-GA mod-
els). It is an effective ML classifier that may significantly 
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contribute to a better groundwater quality assessment (Che 
Nordin et al. 2021).

3.3.2  Linear discriminant analysis

Linear discriminant analysis (LDA) is a supervised machine 
learning algorithm used for classification and dimensional-
ity reduction. It finds a linear combination of features that 
best discriminates between two or more classes (Zhu et al. 
2022a, b). LDA works by first computing the mean vec-
tor and covariance matrix for each class. Then, it calculates 
the between-class scatter matrix and the within-class scatter 
matrix. The between-class scatter matrix measures how dif-
ferent the classes are from each other, while the within-class 
scatter matrix measures how similar the data points within 
each class are to each other. LDA has been used for decades 
due to its successful supervised feature extraction. A brief 
recap of the LDA was provided by Zhu et al. (2022a, b). 
They stated that LDA samples from the same class should 
be independently and identically distributed, as the case in 
the present dataset. LDA is a powerful classification algo-
rithm that finds its successful application in face recogni-
tion (Benkhaira and Layeb 2020; Wan et al. 2023), medical 
imagery diagnosis (e.g., X-rays and MRIs), and text clas-
sification (Lin et al. 2010). It is relatively easy to implement 
and can be used in both small and large datasets. Thus, it has 
been applied to the present water samples.

3.3.3  Artificial neural network (ANN)

ANN works by adjusting the weights of the connections 
between the nodes in the network. The weights are adjusted 
so that the network learns to produce the desired output for 
a given input (Hameed et al. 2017). The backpropagation 
algorithm is an iterative process that starts by randomly 
assigning weights to the connections. Then, the network is 
presented with a training example. The output of the net-
work is compared to the desired output, and the weights are 
adjusted accordingly. This process is repeated for several 
training examples until the network learns to produce the 
desired output for all of the training examples. The network 
converges when the error is minimized. The learning rate is 
a parameter that controls how much the weights are updated 
in each iteration of the backpropagation algorithm. A high 
learning rate can make the network converge faster, but it 
can also make the network more prone to overfitting (Zhu 
et al. 2022a, 2022b; Tao et al. 2022; Bashar et al. 2023). 
The more training examples, the better the network will per-
form. Here a large enough dataset was collected to run ANN 
efficiently.

ANN is, thus, a powerful tool for learning complex rela-
tionships between input and output data. Data points were 
split into training (80%) and test (20%) datasets for model 

training and evaluation. The back propagation algorithm was 
used for ANN training as it performs smoothly to provide 
faster convergence with a lower iteration number (Keskin 
et al. 2015; Zaqoot et al. 2018; Al-Mukhtar 2021; Islam 
Khan et al. 2022; Zhu et al. 2022a, 2022b).

3.3.4  k nearest neighbour (kNN)

K-nearest neighbors (kNN) is another simple, supervised 
machine learning algorithm that can be used for both classi-
fication and regression tasks. It works by finding the K most 
similar data points in the training set to a new data point, and 
then using the labels or values of those K neighbors to pre-
dict the desired property of the new data point. To classify a 
new data point using kNN, the algorithm first calculates the 
distance between the new data point and each data point in 
the training set (Wan et al. 2023).

The algorithm predicts the label of the new data point by 
taking a majority vote of the K nearest neighbors. If most of 
the K nearest neighbors have a certain label, then that label 
is predicted for the new data point.

To perform regression using kNN, the algorithm works 
similarly, but instead of predicting a label, it predicts a value. 
The algorithm predicts the value of the new data point by 
taking the average of the values of the K nearest neighbors.

kNN is a simple, effective, and popular algorithm for 
machine learning tasks; it is often used as a baseline algo-
rithm to compare machine-learning algorithms.

According to Çakir et al. (2023), kNN is a controlled 
machine learning algorithm that can be applied for clas-
sification and regression. They have successfully applied 
numerous algorithms to detect the main physical–chemical 
parameters of water in aquaculture.

They concluded that kNN achieved high accuracy (i.e., 
91.3%), but somewhat lower than the SVM model. k-nearest 
neighbors measure the closest distance between data points 
using distance functions (e.g., Euclidean, Manhattan, and 
Minkowski distance).

3.3.5  Naïve Bayes

Naive Bayes is a simple but surprisingly powerful probabil-
istic machine learning algorithm used for predictive mod-
eling and classification tasks (Taheri and Mammadov 2013). 
Based on Bayes’ theorem, Naive Bayes classifiers assume 
that data points are independent, which is often not the case 
in real-world data. However, despite this assumption, Naive 
Bayes classifiers can often achieve high accuracy on clas-
sification tasks (Zhang et al. 2016).

To train a Naive Bayes classifier, the algorithm first cal-
culates the probability of each class in the training set. The 
algorithm then calculates the probability of each feature 
given each class. Once the algorithm has been trained, it can 



 Acta Geochim

1 3

be used to classify new data points by calculating the prob-
ability of each class given the features of the new data point 
(Zhang et al. 2016). The class with the highest probability 
is then predicted for the new data point. Naive Bayes is a 
powerful and versatile machine learning algorithm that was 
used, in the current study, to classify Kebili water samples 
according to several indices.

4  Results and discussions

4.1  Statistical analyses

Statistical analyses were used to evaluate the main relevant 
ratios that can estimate the real properties of a given water 
sample. Pairs plots of the main ratios were plotted based on 
Pearson correlation (Fig. 2).

The calculated water quality parameters included total 
hardness (TH), permeability index (IP), residual sodium 
carbonate (RSC), Kelly ratio (KR), magnesium ratio (MG), 
sodium absorption ratio (SAR), sodium percentage (NR), 
total dissolved solids (TDS), potential salinity (PS), soluble 
sodium percentage (SSP) and residual sodium bicarbonate 
(RSBC).

4.1.1  Descriptive statistics

Descriptive statistics indices are given in Table  1. It 
appeared  that total hardness varied between 18.8 and 
461; the IP index varied from 20.2 to 59.3 with a mean of 
43.6. TDS values exceeded 360 mg/L to reach more than 
11,000 mg/L, in some water points. This is an indication 
of high salinity. Thus, one should expect low-quality water. 
However, this statement needs to be confirmed by the calcu-
lated ratios and indices. Among 11 water parameters, special 
attention was devoted to SAR, NR, and MR due to their 
direct contribution to soil degradation (Hassen et al. 2016; 
Dhaouadi et al. 2020; Besser et al. 2021).

4.1.2  Pairwise correlations

Pairwise correlations of the calculated ratios, relevant to 
the shallow groundwater samples from Kebili, indicated 
that highly correlated ratios included TDS ~ PS (r = 0.98), 
KR ~ NR (r = 0.97), KR ~ SAR (r = 0.91), SAR ~ NR 
(r = 0.9), TH ~ RSBC (r = 0.90), TDS ~ RSBC (r = 0.89), 
PS ~ RSBC (r = 0.85), TH ~ TDS (0.84), IP ~ NR (r = 0.78), 
IP ~ KR (r = 0.78), NR ~ SSP(r = 0.78), SAR ~ PS(r = 0.74) 
and PS ~ SSP (r = 0.73). Negatively correlated ratios 
are RSC ~ TH (r = − 0.99), RSC ~ RSBC(r = − 0.88), 
RSC ~ TDS(r = − 0.84), RSC ~ PS(r = − 0.79) and 
RSC ~ SAR(r = − 0.76). High relationships between the 

studied ratios and parameters may suggest a strong interde-
pendence (Fig. 2). This is a further confirmation of the state-
ment given by Aouiti et al. (2021). Islam and Mostafa (2022) 
proposed six hazard classes to develop a custom water qual-
ity index for irrigation. The proposed WQI included the 
maximum number and type of water parameters to evaluate 
water quality for irrigation purposes. This will corroborate 
with the findings of Parween et al. (2022). In the same con-
text, Satish Kumar et al. (2016) performed a comprehensive 
study about groundwater quality for drinking and irrigation 
use. They determined the chemical composition of the stud-
ied water samples for possible evaluation of the suitability 
for irrigation. They stated that the use of shallow water for 
irrigation depended on several indices like TDS, EC, SAR, 
KR, RSC, SSP, IP, and WQI. They have, then, addressed 
each water parameter or ratio separately from the other 
without considering the possible interaction between those 
ratios. Based on the pairwise correlation of those param-
eters, one can draw further clarifying information about the 
studied samples’ geochemical properties and subsequently 
the overall water quality index. Similarly, Dhaouadi et al. 
(2020) evaluated the ability of groundwater samples to sup-
ply drinking and irrigation needs. They targeted the com-
plex terminal aquifer, which is a deep confined aquifer, lying 
below the current shallow PQ aquifer. They applied an in-
depth assessment of water quality based on several ratios, as 
in the present study. A quick look at the correlation matrix 
may highlight the high correlation between TDS and PS, 
TDS, and TH due to the dissolution of Ca and Mg. SAR 
versus KR, NR, PS, and RSBC confirmed the interrelation 
between those indices and Ca, Mg, and the existing dis-
solved anions. In contrast, RSC exhibited too high negative 
correlation with TH, RSBC, TDS, PS, and SAR perhaps due 
to the low carbonates  (HCO3 and  CO3) when compared to 
Ca and Mg. Similar results were found by Dhaouadi et al. 
(2020) when they correlated RSC to SAR and NR, but to a 
much lower extent.

4.2  Saturation index

Saturation index (SI) is a measure of a solution’s ability 
to dissolve or deposit a particular mineral. It is often used 
as an indicator of water quality. Water chemical composi-
tion should be evaluated for its saturation versus minerals. 
Dissolution and precipitation mechanisms may take place 
depending on the desired mineral concentration. If a mineral 
is below the threshold limit of a given concentration, it will 
be dissolved. An oversaturated water with respect to an ele-
ment may stimulate its precipitation.

Calcite and aragonite are both calcium carbonate miner-
als, but aragonite is less stable than calcite. This means that 
aragonite will tend to convert to calcite over time, especially 
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Fig. 2  Pairwise correlations of water quality ratios

Table 1  Descriptive statistics for the studied water parameters

Vars n Mean SD Median Trimmed MAD Min Max Range Skew Kurtosis SE

TH 52 256.65 118.50 291.15 264.73 87.32 18.80 461 442.20 − 0.68 − 0.51 16.43
IP 52 43.60 7.97 43.55 43.74 5.34 20.21 59.32 39.11 − 0.24 0.43 1.11
RSC 52 − 46.68 22.31 − 51.60 − 48.12 16.31 − 86.42 − 2.00 84.42 0.65 − 0.41 3.09
KR 52 0.67 0.26 0.61 0.65 0.22 0.22 1.41 1.21 0.69 0.42 0.04
MR 52 38.23 8.68 38.90 38.51 8.60 20.61 54.52 33.91 − 0.28 − 0.64 1.20
SAR 52 6.95 3.66 6.95 6.83 3.63 0.73 15.93 15.20 0.23 − 0.48 0.51
NR 52 40.00 9.35 40.15 40.09 7.71 15.90 58.81 42.91 − 0.22 0.13 1.30
TDS 52 5833.01 2895.43 6405.02 5971.76 2461.12 360.03 11,010 10,650.03 − 0.50 − 0.72 401.52
PS 52 64.06 36.12 67.55 64.01 29.95 1.72 149.42 147.70 − 0.11 − 0.57 5.01
SSP 52 38.58 9.21 39.02 38.77 7.19 14.31 57.62 43.31 − 0.29 0.20 1.28
RSBC 52 35.39 14.66 40.70 36.91 9.12 3.82 59.63 55.81 − 0.96 − 0.24 2.03
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in warm water. A positive relationship between aragonite 
and calcite; dolomite and calcite and, dolomite and aragonite 
may further confirm their common origin (Fig. 3). Signifi-
cant correlations (p ≤ 0.001) were observed for dolomite-
aragonite-calcium and gypsum-anhydrite-halite, which 
mean their interdependence. Gypsum and anhydrite are both 
calcium sulfate minerals, but anhydrite is more stable than 
gypsum. This means that gypsum will tend to convert to 
anhydrite over time, especially in dry environments.

A positive SI indicates that the solution is oversaturated 
with respect to the mineral and precipitation is likely to 
occur. A negative SI indicates that the solution is under-
saturated with respect to the mineral and dissolution is likely 
to occur.

Calculated values of saturation indices for calcite, arago-
nite, anhydrite, gypsum, and halite are shown in Fig. 4. SI 
values >0 are indicative of precipitation. In other words, one 
can expect an oversaturated water with those minerals, lead-
ing to a precipitation process.

Xiao et  al. (2015) addressed water quality via the 
assessment of dissolution and precipitation in natural 
water from an extremely arid area in China. They calcu-
lated high SI values for dolomite, calcite, and aragonite, 
as the case in the present study. Figure 4 shows supersatu-
rated water samples with dolomite, calcite, and aragonite. 
Our results indicated that SI ranges were as follows: anhy-
drite (− 2.09 to − 0.11; range = 1.98); aragonite (− 0.52 to 
1.05, range = 1.57); calcite (− 0.38 to 1.19; range = 1.57) 
and dolomite (− 0.77 to 2.5; range = 3.27). These val-
ues are used for precipitation process. In contrast, halite 
showed a negative saturation index (SI.Hal. from − 7.8 
to − 3.8; range = 4), indicative of favorable dissolution of 
NaCl. The only equilibrium state was observed for gypsum 
(SI.Gyp. value from − 1.87 to 0.10; range = 1.97) and with 
its boxplot at the zero line (SI = 0 means equilibrium). A 
similar interpretation was adopted by Hassen et al. (2016) 
who applied multivariate statistical analysis to evaluate 
water quality from the Jelma shallow watershed.

4.3  Multivariate analysis of water quality

A PC (noted Dim here) is defined based on eigenvalue >1. 
Eigenvalue and variance (in %) may give a clear idea 
about each component’s contribution. Dim1 contributed 
an eigenvalue of 6.85 with a variance of 62.3% highly 
explained by two main groups of indexes that reflect two 
real-time processes. The first cluster is associated with 
RSBC (8.46%, r = 0.76, r2 = 0.58), TDS (11.74%, r = 0.9, 
 r2 = 0.8), PS (11.62%, r = 0.89,  r2 = 0.8) and TH (10.49%, 
r = 0.85,  r2 = 0.72). This can be primarily explained by the 

bicarbonate dissolution and its effects on salinity increase. 
The second cluster is associated with SAR (12.84%, 
r = 0.94,  r2 = 0.88), NR (10.08%, r = 0.83,  r2 = 0.69), KR 
(9.16%, r = 0.79,  r2 = 0.63), SSP (8.71%, r = 0.77,  r2 = 0.6) 
because of dissolution, evaporation and the intrusion of 
drainage water (Kraiem et al. 2012). Surprisingly, the 
RSC ratio was negatively correlated to Dim1 (10.54%, 
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r = − 0.85,  r2 = 0.72), reflecting its weak contribution to 
mineralization probably because of the unstable carbon-
ates states that were tightly related to pH value. Dim2 
was controlled by IP (30.48%, r = 0.86,  r2 = 0.74) perhaps 
related to the structure of the underlying soil. It is well 
known that sandy soil has high enough permeability to 
allow the percolation of infiltration water (Khalfi et al. 
2021b; Kraiem et al. 2024). Thus, only Dim1 and Dim2 
were shown in the PCA presentation (Fig. 5). Isaac and 
Siddiqui (2022) adopted a similar interpretation when 
they applied multivariate statistical techniques to evalu-
ate water quality around Yamuna River, India.

4.4  Water quality classification

SAR values varied between 0.7 and 15.9 (range = 15.2) with 
a mean of 6.95 (SD = 3.66). The density plot of the stud-
ied water samples showed a positively skewed (right-tailed 
distribution) and platykurtic features (Table 1). SAR is an 
important parameter for assessing the suitability of water for 
irrigation, as high SAR water can lead to soil salinization 
and reduced crop yields. Fortunately, this is not the case 
with the present water samples. Almost all samples showed 
two main groups with 44 excellent samples and only 8 as 
good for irrigation (Fig. 6). The violin plot of the whole 
dataset (i.e., 52 water samples) showed a higher distribution 
of around 7.5 for the “excellent” group and around 13 for 
the “good” samples.

Sodium/alkali hazard is a deleterious threat to soil perme-
ability and structure (Satish Kumar et al. 2016). MR index 
varied between 0.2 and 1.4. Out of 51 samples, only 4 sam-
ples are not suitable for irrigation as per the MR ratio. It is 
well known that magnesium excess in irrigation water nega-
tively affects the soil alkalinity. This was observed in water 
samples K6, K21, K23, and K41 which represented less 
than 10% of the collected samples. Alkalinity hazard can be 
assessed by sodium percentage (NR) ranging between 15.9% 
and 58.8% with a mean of 40 and median of 40.15%. Clas-
sification of water samples based on the NR index showed 
50% "good" and 50% "permissible" water quality. This is an 
indication of the short residence time of water, low dissolu-
tion of minerals from the housing lithology, and the rationale 
use of chemical fertilizers. Kumari and Rai (2020) attributed 
higher concentrations of Na in groundwater to longer resi-
dence time, high dissolution, and abundant fertilizers input.

According to TDS values (Table 1), most of the sam-
ples are unsuitable for irrigation (41 samples), 2 samples 
are doubtful (K39 and K43), three samples are permissi-
ble (K38, K44, and K48) and 6 samples belonged to the 
"good" class (i.e., K34–37, K40, and K41). This indicated 
that, based on TDS values, more than 76% are not recom-
mended for irrigation. PS also indicated that 40 samples are 

unsuitable for irrigation. It exceeded the threshold limit of 
35% by 78.4%, ranging between 1.7 and 149.4. This was 
further confirmed by the SSP index which showed 34 sam-
ples as "unsuitable" and 18 samples were found suitable for 
irrigation purposes. Similarly, the RSBC index showed a 
minimum of 3.8 (> 2.5), indicating "unsuitable" irrigation 
water. This information corroborated well with the study of 
Dhaouadi et al. (2020) (Table 2).

4.4.1  EWQI

WQIs are valuable tools for simplifying complex water 
quality data into a single, easy-to-understand value. How-
ever, several issues can affect their accuracy and reli-
ability. Advantages of EWQI over other indices reside 
in the fact that EWQI addresses some of the limitations 
of traditional WQI methods by incorporating informa-
tion theory concepts. It uses entropy to assign weights 
to individual parameters based on their variability in the 
dataset. This reduces subjectivity in weight selection com-
pared to assigning arbitrary weights. It has the potential 
for mitigating eclipsing by assigning higher weights to 
parameters with greater variability. The choice of the most 
suitable WQI for a specific application depends on various 
factors like data availability, water quality concerns, and 
intended use of the results. In this context, EWQI offers 
potential advantages in addressing model uncertainty and 
potentially mitigating eclipsing. The evaluation of water 
quality has been conducted using EWQI as detailed by 
Kumar and Augustine (2022). They explained the meth-
odology of EWQI calculation based on relative WHO 
standards (WHO 2017). The calculated EWQI for Kebili 
water samples (i.e., 52 water samples) varied between 7.5 
and 152.62, indicating a range of 145.12 (Fig. 7). A mean 
of 79.12 was lower than the median (88.47); it showed 

Fig. 4  Variation of SI values for aragonite, calcite, dolomite, and hal-
ite minerals
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a negative skewness and platykurtic distribution. This is 
a confirmation of the previously discussed quality indi-
ces. From the calculation of EWQI, eight samples were 
of "excellent" class (K34–37, K40, K41, K44, and K48), 
3 "good" samples (K38, K39, and K43), and 27 medium-
quality samples. Thirteen poor quality (K1, K2, K4, K7, 

K13, K18, K21, K23, K24, K25, K31, K32 and K46) and 
1 extremely poor sample (K5). Therefore, out of fifty-
two water samples, only 14 samples are not suitable for 
irrigation because of their poor to extremely poor quality 
(26.92%). The lowest values indicated higher quality. The 
bivariate plot for the thirteen studied parameters can be 
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found in Fig. 8. A high positive correlation was observed 
for EWQI ~ TH (r = 0.93), and EWQI ~ SAR (r = 0.87). A 
somewhat lower correlation of EWQI with TDS (r = 0.84) 
and RSBC (r = 0.8) can be seen. Other ratios exhibited 
significant correlation with EWQI, but to a much lower 
extent. In contrast, an extremely high negative relation-
ship between EWQI and RSC ratio (r = − 0.94). The tight 
correlation of TH and SAR with EWQI indicated that the 
water quality depended on those parameters; they are very 
well distributed in the southern edge of the studied area. 
Most of the medium to excellent-quality waters lay within 
this sub-area of Kebili, except for a few wells (e.g., K5). 
The poor samples are mostly collected from the northern 
edge of Chott Djerid, near Tozeur (Figs. 7, 8). 

4.5  Contribution of ML algorithms to the prediction 
of water quality

Machine learning algorithms have made significant contri-
butions to water quality assessment in recent years. They 
offer several advantages over traditional methods due to 
their accuracy, efficiency, and flexibility. This allows them 
to make more accurate predictions than traditional meth-
ods. ML algorithms can be used to assess a wide range of 
water quality parameters, including physical, chemical, and 
biological indicators (Abuzir and Abuzir 2022; Hirvasniemi 

et al. 2023; Lu et al. 2023; Rashid and Kumari 2023; Zhen 
et al. 2023). They can also be used to assess water qual-
ity in different types of water bodies (Khullar and Singh 
2021). ML algorithms have been used to develop a variety 
of tools for water quality assessment (Zaqoot et al. 2018). 
As mentioned earlier, we have applied both prediction and 
classification models to deepen knowledge about the actual 
groundwater status in the arid region of southern Tunisia.

4.5.1  SVM algorithm

SVM model has been performed on 39 samples and 12 pre-
dictors with radial basis function Kernel. No pretreatment 
of the dataset has been undertaken that was cross validated 
tenfold while taking a constant tuning parameter "sigma" 
(0.704). The application of the confusion matrix to the 
predicted data indicated an overall high accuracy (92.31%; 
balanced accuracy = 98.48%) with the highest sensitivity 
(100%) and specificity (96.97%) to the "Excellent" class. 
Similarly, the SVM classifier showed 100% sensitivity and 
95% specificity to the "Medium" class water samples (bal-
anced accuracy was 97.50%). In the third position, "Poor" 
quality samples exhibited high balanced accuracy (93.28%) 
with 90% of poor-quality water samples predicted correctly. 
True negatives (i.e., “non-poor” quality samples) were cor-
rectly predicted to a rate of 96.55%.

Fig. 6  Groundwater samples classification according to SAR

Table 2  Classification of the studied water samples based on several 
ratios

Index Class Number of 
samples

Percentage (%)

SAR Excellent 44 84.62
Good 8 15.38

TH Suitable 52 100
IP Permissible 51 98

Good 1 2
RSC Safe 52 100
MR Suitable 47 90.38

Unsuitable 5 9.62
NR Good 26 50

Permissible 26 50
TDS Good 6 11.54

Permissible 3 5.77
Doubtful 2 3.85
Unsuitable 41 78.85

PS Permissible 11 21.15
Unsuitable 41 78.85

SSP Suitable 18 36.62
Unsuitable 34 65.38

RSBC Marginal 1 2
Unsuitable 51 98
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Table 4 summarizes the main testing criteria for SVM 
model performances. Balanced accuracy (i.e., the arithmetic 
means of sensitivity and specificity) exceeded 83.33% for 
all water classes, except the “Extremely poor” class which 

showed only 50%. The predicted water quality, given in 
Table 1, showed 6 true positive predicted samples for the 
Excellent class with one sample predicted as “Good” (called 
false negative predicted). This generates a lower sensitiv-
ity for the “Good” class, which showed 2 samples as true 
positive and one false predicted from the “Excellent” class. 
This means that only two-thirds were truly predicted as 
good-quality samples, corresponding to the sensitivity (i.e., 
66.67%). The overall prevalence was highest in “Medium” 
(48.72%), “Excellent” (15.38%) and “Good” (7.69%) classes. 
Nevertheless, “Poor” quality samples represented 25.64% 
with sensitivity of 90% and specificity of 96.55%. The kappa 
statistic test of 0.88 suggested an almost perfect agreement 
with the observed results (McHugh 2012; Table 3).

4.5.2  ANN prediction

An artificial network algorithm is a powerful tool for learn-
ing complex relationships between input and output data. In 
this work, 10 input neurons (i.e., water quality ratios), 1 hid-
den layer with 4 neurons, and one output (EWQI) were used 
for ANN model construction (Fig. 9). Data points were split 
for training (70%) and test (30%) datasets for model training 
and evaluation. The back propagation algorithm was used 
for ANN training as it performs smoothly to provide faster 
convergence with a lower iteration number (Keskin et al. 
2015; Zaqoot et al. 2018; Al-Mukhtar 2021; Islam Khan 
et al. 2022; Zhu et al. 2022a, 2022b). For instance, Keskin 
et al. (2015) applied ANN for the prediction of water qual-
ity through 13 geochemical parameters. They successfully 
predicted the property of water samples by using one hidden 
layer with five nodes which is slightly different from the 
present ANN structure. The simple ANN structure has given 
high accuracy and sensitivity, as in the case of the present 
study. The present model has converged after 89 steps with 
a threshold of 0.009 s and very low error (0.037), indicating 
a high efficiency. Moreover, linear regression indicated a 
high correlation for both training  (R2 = 0.9727) and testing 
data  (R2 = 0.9890; Fig. 10). This is well correlated with cross 
validation tests that showed a high accuracy (92.31%), high 
sensitivity (89.47%), and high specificity (95%). A Kappa 
value of 0.8458 confirmed the validity of the prediction 
model. 

4.5.3  Linear discriminant analysis (LDA)

LDA is a supervised learning algorithm that can be used for 
both classification and dimensionality reduction. It works 
by finding a linear combination of features that best dis-
criminates between two or more classes. LDA is a simple 
algorithm, but it can be very effective in practice. Fitting 
the LDA algorithm to the studied sample water indicated an 
almost perfect agreement with experimental data. Overall 

Fig. 7  Groundwater samples classification according to EWQI

Fig. 8  Correlation plot of the studied groundwater parameters 
(EWQI correlation is highlighted)
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accuracy was 97.56% with a kappa test of 96.21%, con-
firming the validity of the LDA algorithm in predicting 
water quality. Prevalence of the water samples was 14.63%, 
7.32%, 51.22%, 21.95%, and 2.44% for "Excellent", "Good", 
"Medium", "Poor" and "Extremely poor" classes, respec-
tively. This is almost the same results obtained from the 
experiments (Fig. 11).

4.5.4  k nearest neighbour (kNN)

Variables used for the kNN regression model were first cen-
tred and scaled. The cured dataset included 44 groundwater 
samples. Tenfold cross validation test, RMSE, and  R2 were 
used to check the accuracy of the kNN model. It can be 
seen, from Fig. 12, that a high correlation between the meas-
ured and kNN-predicted data  (R2 = 0.9359, MAE = 6.49, 
MSE = 79.00). The best-predicting model was the 5-nearest 
neighbour regression model (k = 5; RMSE = 8.8887), further 

Table 3  Contingency table of the main testing criteria (in %)

Criterion Class

Excellent Good Medium Poor Extremely poor

Prediction 6 (1) 2 19 (1) 9 (1) 0
Sensitivity 100.00 66.67 100.00 90.00 0.00
Specificity 96.97 100.00 95.00 96.55 100.00
Positive 

Predictive 
Value

85.71 100.00 95.00 90.00 -

Negative 
Predictive 
Value

100.00 97.30 100.00 96.55 97.44

Prevalence 15.38 7.69 48.72 25.64 2.56
Balanced 

Accuracy
98.48 83.33 97.50 93.28 50.00

Fig. 9  ANN structure adopted 
to predict EWQI
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Fig. 10  Fitting the predicted 
and measured data based on the 
adopted ANN model (a. testing 
data; b. training data)
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confirming the satisfactory fitting of the kNN model. Tang 
et al. (2019) developed a soft method for groundwater level 
prediction using machine-learning models. They constructed 
a least square support vector machine (LS-SVM) to predict 
the variation of groundwater level variation; the model was 
compared with kNN. They confirmed that LS-SVM and 
classical SVM offered the best performances in all cases. 
In addition, the kNN approach performed well, though to a 
somewhat lower extent. This is a confirmation of the data 
presented in this work. kNN classifier has also performed 
well with regards to water classification based on the EWQI 
index.

4.5.5  Naïve Bayes (NB)

The naive bayes classifier was used to distinguish the pos-
sible groundwater classes due to its explicit and sound theo-
retical basis that allows an optimal and robust assumption 
(Taheri and Mammadov 2013). The obtained classifica-
tion fitted the experimental data to a high accuracy value, 
though somewhat lower than SVM and ANN. A glance at 
Table 4 may shed light on the high accuracy of the naïve 
Bayes algorithm in predicting the studied water classes. 
It appeared that, out of 40 water samples, 6 samples were 
“Excellent”, 3 samples as “Good”, 21 were “Medium” class 
samples, 9 were “Poor” quality, and one was “Extremely 
poor” (Fig. 13).

5  Machine learning models limitations

While machine learning holds great promise for EWQI 
determination, it shows variable shortcomings and limi-
tations (Mashaly and Alazba 2019; Uddin et  al. 2021; 
Thirumalai Raja et al. 2022; Adnan et al. 2023). One can 
recognize ML algorithms by their weak generalizability, 
overfitting, and interpretability (Parkavi et al. 2023). A brief 
description of the main controversial points is given below:

• Dependence on data quality since ML models are 
reflected by the quality of the data they were trained on. 
Poor quality or incomplete data can lead to inaccurate 
and unreliable EWQI predictions;

• Large amounts of high-quality data are often required to 
train an ML model effectively. This can be a challenge, 
especially for hardly accessible water bodies where data 
collection is limited;

• Model limitations included generalizability (models are 
generally trained on specific water body, but not general-
ized well to other locations with different environmental 
conditions);

• Overfitting the training data results in poor performance 
on new data;

• Implementing and maintaining complex ML models is 
an expensive approach; it requires specialized expertise.

Other limitations related to EWQI may include simplicity, 
subjectivity, and specificity (Islam Khan et al. 2022).

Despite these limitations, ML tools are valuable for WQI 
determination when used cautiously and in conjunction with 
other approaches. Continuous research and development are 
addressing these limitations, making ML increasingly valu-
able for water quality monitoring and management (Abuzir 
and Abuzir 2022; Islam and Mostafa 2022; Georgescu et al. 
2023; Verma and Chaurasia 2023; Kraiem et al. 2024).

6  Conclusions

This study was performed for a comprehensive assessment 
of water quality through the application of several machine 
learning algorithms. Physico-chemical properties as well as 
several water quality indices have been measured accord-
ingly. Traditional characterization of those water samples 
has been carried out to assess the main potential application 
of those natural resources. Machine learning methodology 
has been applied in this study as a handy tool to predict/
evaluate the useability of the available water resources of the 
shallow aquifer extending below the Kebili area. Artificial 
intelligence has the potential to revolutionize groundwater 
quality assessment. This paves the way for developing new 
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Fig. 11  Boxplots of the studied groundwater parameters after cura-
tion (i.e., elimination of outliers)
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Fig. 12  Fitting the predicted 
and measured data based on the 
adopted kNN model
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tools and techniques for assessing the risk of groundwater 
contamination and for more effective management. Machine 
learning models (i.e., SVM, KNN, Naïve Bayes, and LDA) 
were used to predict groundwater quality for a comprehen-
sive evaluation of the likelihood of contamination in the 
southwestern Tunisian Djerid and Kebili shallow aquifers. 
The main findings of this study can be summarized in the 
following points:

• ML algorithms were used as handy tools to identify low-
quality water points and to develop mitigation strategies;

• Classical multivariate analyses (descriptive statistics, 
PCA, and HCA) were first used for a systematic classifi-
cation of the available dataset (i.e., chemical composition 
of 52 groundwater samples);

• Saturation indices were addressed accordingly to high-
light the geochemical properties of the studied samples;

• An in-depth assessment of groundwater quality was car-
ried out by the development of machine learning models. 
These models were trained on 52 groundwater samples 
to identify patterns and relationships;

• ML model results indicated high accuracy of all trained 
algorithms tested (high fittings/classification efficiencies 
of the proposed models) as confirmed by cross validation 
tests.

These models are fundamentally important for the predic-
tion of groundwater quality in the well-known PQ shallow 
aquifer of the Kebili district, Tunisia. The study highlights 
the importance of these models for predicting water quality 
in the Kebili PQ aquifer. This is necessary for the groundwa-
ter quality monitoring approach. However, a more detailed 
assessment is still required for sustainable water quality 
management.
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Table 4  Classification of water status versus EWQI range (Kumar and Augustine 2022)

(3) False negative samples

N EWQI Status Water samples Naïve Bayes LDA SVM kNN

Number % n % Pred % Pred % Pred %

1 <25 Excellent 8 15.39 6 15 6 15.38 6 (1) 15.38 7 19.44
2 25–50 Good 3 5.77 3 7.5 3 7.69 2 (1) 5.13 3 8.33
3 50–100 Medium 27 51.92 21 52.5 21 53.85 19 (1) 48.72 18 50
4 76–100 Poor 13 25.00 9 22.5 8 20.51 9 23.07 8 22.22
5 >150 Extremely Poor 1 1.92 1 2.5 1 2.56 0 0 – –
Total 52 100 40 100 39 100 39 (3) 92.3 (+7.7) 36 99.99

Fig. 13  Classification plot of the studied groundwater parameters 
based on EWQI predicted by Naïve Bayes algorithm
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