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Abstract The tectonic evolution and crustal accretion pro-
cess of the North Qilian Orogenic Belt (NQOB) are still 
under debate because of a lack of integrated constraints, 
especially the identification of the tectonic transition from 
arc to initial collision. Here we present results from zir-
con U–Pb geochronology, whole-rock geochemistry, and 
Sr–Nd–Pb isotope geochemistry of the Beidaban granites 
to provide crucial information for geodynamic evolution of 
NQOB. Zircon U–Pb dating yields an age of 468 ± 10 Ma 
for the Beidaban granites and most of the Beidaban samples 
contain amphibole, are potassium-rich, and have A/CNK 
values ranging from 0.7 to 0.9, illustrating that the Middle 
Ordovician Beidaban granites are K-rich, metaluminous, 
calc-alkaline granitoid. The geochemical characteristics 
indicate that the Beidaban granites are transitional I/S-type 
granitoids that formed in an arc setting. The isotopic com-
positions of initial (87Sr/86Sr)i values ranging from 0.70545 
to 0.71082 (0.70842 on average) and εNd(t) values ranging 
from − 10.9 to − 6.7 (− 8.8 on average) with two-stage Nd 
model ages  (TDM2) of 1.74–2.08 Ga suggest that the Bei-
daban granites originated from Paleoproterozoic crustal 
materials. In addition, the initial Pb isotopic compositions 
(206Pb/204Pb = 19.14–20.26; 207Pb/204Pb = 15.71–15.77; 
208Pb/204Pb = 37.70–38.26) and geochemical features, such 
as high Th/Ta (17.43–30.12) and Rb/Nb (6.01–15.49) 

values, suggest that the Beidaban granite magma source 
involved recycled crustal components with igneous rocks. 
Based on these results in combination with previously pub-
lished geochronological and geochemical data from other 
early Paleozoic igneous rocks, we suggest that the timing of 
the tectonic transition from arc to the initial collision to the 
final closure of the North Qilian Ocean can be constrained 
to the Middle-Late Ordovician (ca. 468–450 Ma).

Keywords Granitoids · Zircon U–Pb dating · Sr–Nd–
Pb-isotopes · Petrogenesis · North Qilian Orogenic Belt

1 Introduction

The Qilian Orogenic Belt (QOB), located along the north-
eastern margin of the Tibetan Plateau, is a suture zone 
that has recorded an evolutionary history from continental 
breakup, oceanic subduction, and continental collision from 
the Proterozoic to the Paleozoic (Yin and Harrison 2000; 
Song et al. 2013; Liu et al. 2018; Wang et al. 2020). The 
North Qilian Orogenic Belt (NQOB) is a typical Early Pale-
ozoic orogenic belt in the QOB, and studies have demon-
strated that long-lived magmatism occurred during multiple 
episodes of orogenic processes in the Paleozoic (Xiao et al. 
2009; Song et al. 2013, 2014; Zuza et al. 2017). The Paleo-
zoic ophiolite sequences, island arc and collision-related 
granitoids, high-pressure metamorphic rocks, Silurian fly-
sch formations, and Devonian molasses record the evolu-
tion from the subduction and closure of the North Qilian 
Ocean to the collision between the Qilian-Qaidam block and 
Alxa block (Song et al. 2013). Although intensive scientific 
research (Song et al. 2006, 2013; Wu et al. 2010; Yu et al. 
2015; Yuan and Yang 2015; Zeng et al. 2016; Zhang et al. 
2017; Wang et al. 2019) regarding the geodynamic events 
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of the NQOB has focused on interpreting Paleozoic oro-
genic processes, several important issues, such as subduction 
polarity, timing of transition from subduction to collision, 
and closure of the North Qilian Ocean, are still debated.

As an important part of the continental crust, granites 
have been intensively studied because they contain valuable 
information about crustal evolution, crust–mantle interac-
tions, and mountain building (Lundstrom and Glazner 2016; 
Wu et al. 2007; Hopkinson et al. 2017; Wang et al. 2018). 
The petrogenesis, source, evolution, and tectonic setting 
of granites have long been important topics in research on 
the evolutionary history and tectonic attributes of orogenic 
belts (Chappell and White 1974; Pearce et al. 1984; Clem-
ens 2003; Zhu et al. 2009; Xu et al. 2010; Chen et al. 2018; 
Li et al. 2022). Lithologically, Early Paleozoic granites are 
widespread in the NQOB and are of utmost importance in 
understanding the tectonic evolution (Tseng et al. 2009; Yu 
et al. 2015). In addition, the identification of different types 
of granites can be used to reconstruct key geodynamic pro-
cesses, such as the initial timing of the transition from arc 
to collision during subduction (Wang et al. 2018; Zhao et al. 
2022) and the transition from compression to extension dur-
ing collision (Yu et al. 2015; Zeng et al. 2016; Zhang et al. 
2017). In this contribution, we conducted integrated research 
on the zircon geochronology and whole-rock geochemistry 

of the Early Paleozoic Beidaban granites in the NQOB. 
Based on this work, combined with previously published 
geochronological and geochemical data on Early Paleozoic 
igneous rocks (ca. 468–414 Ma), the purpose of this study is 
to better constrain their sources and petrogenesis, to improve 
our understanding of their tectonic evolution history, and to 
provide new constraints on the Early Paleozoic transitional 
tectonic events of the NQOB.

2  Geological background

The QOB is located at the intersection of the Alxa block, 
Tarim block, North China block, and Qaidam block 
(Fig. 1). It has experienced multiple episodes of tectonic 
evolution, including continental breakup, ocean basin 
formation, oceanic subduction, arc, back-arc systems, 
and continental collision (Xiao et al. 2009; Zuza et al. 
2017; Zhu et al. 2022). The QOB consists of three nearly 
parallel tectonic subunits trending NW‒SE from south to 
north: the South Qilian Orogenic Belt (SQOB), the Cen-
tral Qilian Block, and the NQOB (Fig. 1) (Xia et al. 2016; 
Li et al. 2018; Gao et al. 2021). The SQOB is bounded by 
the Zongwulong Orogenic Belt, the Quanji Massif, and 
the North Qaidam ultrahigh-pressure metamorphic belt of 

Fig. 1  Schematic map showing major tectonic units of the Qilian Orogenic Belt. The simplified geological map of the Qilian Orogenic Belt was 
modified from Zhu et al. (2022) by showing main boundaries of tectonic units and distribution of Paleozoic and Mesozoic granitoids rather than 
other tectonic units such as volcanics, sedimentary strata, and mafic–ultramafic rocks



Acta Geochim 

1 3

the Qaidam Block. This belt was thought to constitute the 
final suture zone in the Qilian-Qaidam region (Song et al. 
2009; Yang et al. 2018). The Central Qilian Block mainly 
consists of Precambrian high-grade granitic gneisses and 
low-grade metamorphic assemblages, overlain by Paleo-
zoic sedimentary rocks and intruded by granitoids (Smith 
2006; Huang et al. 2015; Fu et al. 2018).

The NQOB is situated in the northern part of the QOB 
and bounded by the Alxa block to the north (Fig. 1). The 
NQOB consists of two Early Paleozoic ophiolite belts 
(southern ophiolite belt (550–497 Ma, representing the 
spreading of the Oceanic basin) and a northern ophiolite 
belt (490–448 Ma, representing the back-arc basin exten-
sion), arc-related volcanic and intrusive rocks, high pres-
sure metamorphic rocks, and accretionary complexes (Pan 
et al. 2004; Smith and Yang 2006; Song et al. 2007, 2013; 
Zhang et al. 2007; Xiao et al. 2009; Lin et al. 2010; Xia 
et al. 2012; Cheng et al. 2016; Li et al. 2017), which 
represent a typical western Pacific-type trench-arc-basin 
system. This zone is regarded as a suture zone resulting 
from the subduction of the North Qilian Ocean between 
the Alxa terrane and the Central Qilian Block in the Early 
Paleozoic (Xia et al. 2003, 2012; Song et al. 2007, 2013; 
Zhang et al. 2007; Li et al. 2016; Peng et al. 2017; Zhu 
et al. 2022).

Early Paleozoic intrusions are widespread through-
out the NQOB. The Beidaban granite mass in the study 
area is located in the central part of the NQOB (Fig. 1). 
Cambrian metamorphic basement rocks, Early Paleozoic 
intrusive rocks, and Paleozoic to Mesozoic sedimentary 
sequences developed in the study area (Fig. 2). The old-
est Cambrian Dahuangshan Group consists of metamor-
phosed feldspathic quartz sandstone and meta-arkose 
interbedded with low-grade metamorphosed slate. Ordo-
vician and Silurian strata are absent in the study area. 
Carboniferous sedimentary rocks consist of clastic depos-
its of shallow marine and marine terrigenous facies with 
carbon-rich shale, sandstone, and coal. The conformable 
overlying these sedimentary rocks are Permian strata, 
which are mainly distributed in the southwestern part 
of the study area. The Permian rocks probably represent 
coarse clastic sediments (quartz sandstone and feldspathic 
sandstone) deposited in braided rivers. Jurassic strata con-
sist of clastic rocks interbedded with sandstone and coal 
layers. The faults in the study area trend toward the SN 
and EW. Intermediate-acidic intrusive rocks are widely 
exposed on the northern side of the study area and include 
diorite, granodiorite, granite, monzogranite, and sye-
nogranite (Chen et al. 2019). The Beidaban granite, with 
an exposed area of approximately 285  km2, is located in 
Jinshan town, Wuwei City, Gansu Province (Fig. 2).

3  Occurrence and petrography of granite samples

The Beidaban granite samples collected in the field are pen-
etratively deformed by the development of spaced cleavage 
(Fig. 3a). The granite samples are pale red or pink in color 
and feature fine- to medium-grained granitic textures. They 
are mainly composed of euhedral K-feldspar (35%–40%), 
euhedral plagioclase (15%–20%), subhedral to anhedral 
quartz (25%–30%), and minor amphibole (3%–5%) and bio-
tite (2%–3%) (Fig. 3b). Accessory minerals include small 
amounts of Ti–Fe oxides, allanite, apatite, and zircon.

The K-feldspars are characterized by large euhedral laths 
or subhedral crystals that are 500–2000 μm in diameter 
(Fig. 3c, d). Most of them are microcline with typical tartan 
twinning. The plagioclase grains commonly exhibit euhedral 
to subhedral shapes and polysynthetic twinning and Carlsbad 
twinning, and they are generally 200–2000 μm in diameter 
(Figs. 3c, d). The plagioclase grains with hydromicazation 
on the surface are likely andesines (An = 32–40) based on 
the maximum extinction angle of the plagioclase crystals. 
Myrmekitic intergrowth of oligoclase and wormy quartz is 
common (Fig. 3c). The monocrystalline quartz crystals are 
typically subhedral to euhedral crystals ranging from 200 to 
1000 μm in diameter (Fig. 3e). Amphiboles exist as perfect 
euhedral crystals in the Beidaban granite (Fig. 3e, f). They 
are mainly hexagonal and rhomboid in shape, and some are 
replaced by chlorite and carbonate minerals. The biotites 
are predominantly associated with amphiboles and display 
subhedral to euhedral crystals (Fig. 3e). Most of the biotites 
are replaced by chlorite. Minor Ti–Fe oxides with grain sizes 
ranging from 100 to 300 μm are occasionally observed in the 
Beidaban granite (Fig. 3f).

4  Analytical methods

Zircon grains for the laser ablation inductively coupled 
plasma mass spectrometry (LA-ICP-MS) analyses were 
separated using conventional magnetic and density tech-
niques and then selected under a binocular microscope. 
The hand-picked zircon grains from the granite samples 
were mounted in epoxy and then polished to expose cross 
sections. Zircons under reflected and transmitted light, and 
cathodoluminescence (CL) were imaged to examine the 
internal microstructures. Before the experiment, zircons 
with clear oscillatory zoning structures were selected. 
LA-ICP-MS zircon U–Pb dating was conducted at the 
Tianjin Institute of Geology and Mineral Resources, Chi-
nese Geological Survey. The detailed analysis involved 
a 193 nm laser ablation system coupled with an Agilent 
7500 ICP-MS. Helium was taken as the carrier to enhance 
the transport efficiency of the ablated materials. A 32 μm 
spot size was used with an energy density of 5 J/cm2 and a 



 Acta Geochim

1 3

repetition rate of 5 Hz. The U, Th, and Pb concentrations 
were calibrated using 29Si as an internal standard, and 
NIST 610 as a reference standard. Zircon 91500 was used 
as the external standard for U–Pb dating. Time-dependent 
drifts of U-Th-Pb isotope ratios were corrected using lin-
ear interpolation for every ten analyses. Data reduction 
was performed using the ICPMSDataCal software (Liu 
et al. 2008). Only data with a concordance in the range of 
90%–110% were considered for interpretation of zircon 

ages. Concordia diagrams were produced using ISOPLOT 
3.0 software (Ludwig 2003).

The analyses of major and trace elements (including rare 
earth elements) of the granite samples were performed at the 
Tianjin Institute of Geology and Mineral Resources, Chinese 
Geological Survey. In the process of major element analysis, 
samples were first weighed into moderate amounts of boric 
acid and then melted into glass at high temperatures. Then, 
the oxide contents were measured via an XRF instrument 

Fig. 2  Geological map of Beidaban pluton in the NQOB with localities of representative samples (modified from 1:50 000 geological map of 
Beidaban and surrounding areas)
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and the analysis accuracy was better than 1%. The trace 
element analysis was completed via an inductively coupled 
plasma mass spectrometer (ICP-MS) with Finnigan MAT 
Element I equipment according to the procedure for DZ/
T0223-2001 ICP-MS. The relative error of the analysis ele-
ment was better than ± 5%, the temperature and humidity 
during the progression of the experiment were 20 °C and 
30%, respectively.

Whole-rock Sr–Nd isotopic compositions were analyzed 
at the Tianjin Institute of Geology and Mineral Resources, 
Chinese Geological Survey, using a multi-collector VG 
354 mass spectrometer in static mode. Approximately 

100–150 mg of powder was decomposed in a mixture of 
HF–HClO4 in screw-top Teflon beakers, and Rb, Sr, Sm, 
and Nd were separated using cation exchange columns. 
The Sr and Nd isotopic fractionations were corrected to 
6Sr/88Sr = 0.1194 and 146Nd/144Nd = 0.7219, respectively. 
During the analytical period, several measurements of the 
NIST NBS987 Sr reference standard and the JNdi-1 Nd 
reference standard yielded 87Sr/86Sr = 0.710232 ± 15 (2σ) 
and 143Nd/144Nd = 0.512117 ± 11 (2σ), respectively. Ana-
lytical precision is approximately 1% for 87Rb/86Sr and 
0.5% for 147Sm/144Nd. Detailed sample preparation and 

Fig. 3  Field (a–b) and thin-section (c–f) photographs of the Beidaban granites. a and b showing the establishing shot and close shot of granite; 
c–f showing the mineral assemblage of granite; Abbreviations: Pl–plagioclase; Kfs–K-feldspar; Qtz–quartz; Am–amphibole; Bt–biotite
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analytical procedures for Sr and Nd isotopic analysis fol-
lowed those of Tang et al. (2007) and He et al. (2007).

Whole-rock Pb was separated and purified using anion 
exchange in HCl–Br columns. The Pb isotopic ratios 
of granite samples were measured via MC-ICP-MS on 
a Nu Instruments system in the same laboratory as the 
Sr and Nd isotopic analysis. Pb isotopic fractionation 
was corrected to 205Tl/203Tl = 2.3875. During the ana-
lytical period, repeated analyses of international standard 
NBS981 yielded ratios of 206Pb/204Pb = 16.939 ± 0.013 
(2σ) ,  207Pb / 204Pb  = 15 .497  ± 0 .011  (2σ) ,  and 
208Pb/204Pb = 36.712 ± 0.033 (2σ), respectively. Detailed 
sample preparation and analytical procedures for the Pb 
isotope measurements followed those of He et al. (2005).

5  Results

5.1  Zircon U–Pb geochronology

Zircon grains from the Beidaban granite samples are euhe-
dral and display similar crystal forms with long axes varying 
from 80 to 150 μm and length/width ratios ranging from 1 
to 2 (Fig. 4). Cathodoluminescence (CL) images reveal that 
all zircon grains exhibit homogeneous oscillatory growth 
zoning, which is interpreted as typical magmatic features. 
Ten zircons from the granite samples were analyzed, and the 
individual zircon U–Pb dating results, U and Th contents, 
and isotopic ratios are listed in Table 1. The zircons have 
U contents ranging from 198 to 1180 ppm (632 ppm on 
average) and Th/U ratios ranging from 0.5 to 0.9, indicating 

Fig. 4  Representative cathodoluminescence (CL) images of meas-
ured zircons from the Beidaban granites
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magmatic zircons (Belousova et al. 2002). The ages shown 
in Fig. 5 represent the weighted averages of the concord-
ant and clustered 206Pb/238U ages of individual zircons. The 
results show that the data for the granite (K2-ZW8) plot on 
or near the Concordia line (Fig. 5a) and that the 206Pb/238U 
ages are distributed in the range from 447 to 501  Ma; 

the concordant U–Pb age is 468 ± 10 Ma (Fig. 5a) with a 
weighted mean age of 467 ± 13 Ma (n = 10, MSWD = 2.7) 
(Fig. 5b). The rare earth element (REE) results of zircons 
are shown in Table 2. The REE patterns show that zircons 
have typical igneous zircon features that are characterized 
by high HREE contents, conspicuous positive Ce anomalies, 
and negative Eu anomalies (Fig. 6).

5.2  Whole‑rock geochemistry

The major and trace element compositions of the granite 
samples in this study are listed in Table 3. Notably, one 
granite sample has a high  K2O content, which is probably 
caused by alteration because of its high loss on ignition 
(LOI). The contents of  SiO2,  Al2O3,  P2O5, and total alkalis 
 (K2O +  Na2O) range from 63.0wt% to 78.0wt%, 13.0wt% to 
16.6wt%, 0.1wt% to 0.4wt%, and 7.1wt% to 9.2wt%, respec-
tively, which indicate that the Beidaban granite is calc-alka-
line, shoshonitic, and metaluminous (A/CNK = 0.7–0.9) 
(Fig. 7). The Lumanshan S/I-type granites (450 Ma, Zhao 
et al. 2022) exhibit geochemical characteristics similar to 
those of the Beidaban granites (Fig. 7). However, the whole-
rock geochemical compositions of the postcollisional intru-
sions (alkali-feldspar granite, Zhang et al. 2017; quartz 
diorite, Fu et al. 2018; monzogranite, Wang et al. 2018) in 
the NQOB demonstrate that they are mostly subalkalic and 
medium- to high-K alkaline rocks with variable A/CNK 
ratios (Fig. 7). 

The total REE (ΣREE) content in the Beidaban granite 
ranges from 215 to 530.0 μg/g, with an average of 325.1 
μg/g. The light REE (LREE) contents are relatively high, 
ranging from 202.2 to 495.1 μg/g (302.3 on average), 
whereas the heavy REE (HREE) contents are relatively 
low, ranging from 12.4 to 34.5 μg/g (22.8 on average). 
The Beidaban granite shows negative europium anoma-
lies (δEu = 0.5–0.8) in the chondrite-normalized pattern 
(Fig. 8a), with (La/Yb)N values ranging from 13.0 to 25.7. 
Except for 414 Ma A-type granites, most of the Paleozoic 
intrusions in the NQOB are characterized by small negative 

Fig. 5  Zircon U–Pb concordia age and mean age diagrams for the 
Beidaban granites

Table 2  Rare earth element 
data of zircons from the 
Beidaban granites

Sample La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

K2ZW8-01 0.11 36.2 0.12 1.41 3.25 0.782 19.1 6.26 76.1 28.6 132.6 28.2 277 58.1
K2ZW8-02 0.98 23.5 0.209 1.41 1.99 0.76 12 3.98 47.5 17.9 81.7 17.6 173 35
K2ZW8-03 0.44 22.5 0.079 0.72 1.68 0.383 9.72 3.85 47.9 19.54 95.8 22.9 231.9 52.1
K2ZW8-04 0.032 27.6 0.063 0.99 2.38 0.564 13.5 4.64 57.4 22.2 106 24 252 51.7
K2ZW8-05 2.15 66.8 3.59 20.1 21.3 15.9 40.1 12.1 141 42.9 186 41.9 484 74.3
K2ZW8-06 5.39 79.5 5.39 30.6 19.3 5.4 48.9 15.6 167 53.7 235 48.6 487 90.7
K2ZW8-07 10.7 47.8 2.33 11.5 6.78 2.33 27.2 7.85 85.5 31 141 30 289 63.5
K2ZW8-08 0.239 35.3 0.286 2.89 3.59 0.93 17.8 6.02 69.9 26.32 120.4 25.43 243.4 49.7
K2ZW8-09 0.196 27.8 0.118 1.5 2.68 0.74 14 4.74 53.9 20.7 95.9 20.8 219 43
K2ZW8-10 0.83 19.7 0.149 1.34 2.07 0.53 8.8 3.08 34 13.4 61.7 13.7 154 29.6
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Eu anomalies in the REE distribution patterns (Fig. 8a–c). 
LREEs are generally enriched relative to HREEs, but the 
degree of enrichment varies among different Paleozoic intru-
sions. In the primitive mantle-normalized trace element dia-
gram (Fig. 8d–f), the Beidaban and Lumanshan granites are 
enriched in large ion lithophile elements (LILEs; e.g., Rb, 
Th, Ba, K, and Sm) and depleted in high field strength ele-
ments (HFSEs; e.g., Nb, Ta, Ti, and Sr). The contents of Rb, 
Ba, Th, Sr, and P in the post-collisional intrusions (alkali-
feldspar granite, quartz diorite, and monzogranite) are lower 
than those in the granites (Fig. 8f).

5.3  Sr–Nd and Pb isotopic compositions

The Sr–Nd isotopic compositions of the granite sam-
ples are given in Table 4. The Rb, Sr, Sm, and Nd val-
ues range from 195 to 302 μg/g, 165 to 473 μg/g, 5.4 to 
14.9 μg/g, and 36.7 to 91.3 μg/g, respectively. The meas-
ured 87Rb/86Sr, 87Sr/86Sr, 147Sm/144Nd, and 143Nd/144Nd 
values are 1.3280374–1.9620178, 0.717809–0.740767, 
0.07867069–0.10503226, and 0.511751–0.512016, respec-
tively. When the age of 468 Ma is used in the calculation, 
the initial (87Sr/86Sr)i, (143Nd/144Nd)i, and εNd(t) values vary 
from 0.70545 to 0.71082, 0.511478–0.511695, and − 10.9 
to − 6.7, respectively. The calculated Nd isotope model ages 
 (TDM) and two-stage model ages  (TDM2) range from 1.49 to 
1.80 Ga and from 1.74 to 2.08 Ga, respectively.

The Pb isotopic compositions are given in Table  5. 
The measured whole-rock 206Pb/204Pb, 207Pb/204Pb, and 
208Pb/204Pb ratios are 19.89–21.93 (21.10 on average), 
15.76–15.87 (15.82 on average), and 40.09–42.16 (40.83 
on average), respectively. When the age of 468 Ma is used 
in the calculation, the initial (206Pb/204Pb), (207Pb/204Pb), 

and (208Pb/204Pb) ratios are 19.14–20.26 (19.81 on average), 
15.71–15.77 (15.75 on average), and 37.70–38.26 (38.01 on 
average), respectively.

6  Discussion

6.1  Petrogenesis and sources

The Beidaban granites and other Middle–Late Ordovician 
samples (> 450 Ma) in the NQOB are characterized by high 
contents of  SiO2 and  K2O and show metaluminous features 
(Fig. 7). In addition, euhedral primary hornblende, biotite, 
and Ti–Fe oxides frequently occur in the Beidaban granite 
(Fig. 3). These characteristics are indicative of I-type granite 
affinity (Miller 1985). The geochemical features of low A/
CNK ratios (<1) (Fig. 7c), enrichment of LREEs and LILEs 
(Rb, Th, K), and depletion of HFSEs (Nb, Ta, Ti) (Fig. 8) 
also suggest that the Middle–Late Ordovician granites are 
likely arc I-type granitoids (Zhao et al. 2014). However, 
the Late Ordovician to Silurian granites (<440–438 Ma) 
are characterized by relatively low contents of  SiO2 and 
 K2O, high A/NK (Fig. 7), and low LREEs and Sr, P, and 
Ti (Fig. 8). In the FeOt/MgO vs. 10,000 * Ga/Al and Y vs. 
10,000 * Ga/Al diagrams (Fig. 9a, b), nearly all the Early 
Paleozoic samples plot in the I-, and S-type fields except 
for several Late Silurian samples (414 Ma). These 414 Ma 
granites are A-type granitoids (Zhang et al. 2017) based on 
their major and trace element geochemical features (Figs. 7 
and 8). The negative relationship between  SiO2 and  P2O5 
(Fig. 9c) suggests that the Beidaban granites and other 
Middle-Late Ordovician samples are I-type granites but 
that several Late Ordovician to Silurian granites are likely 
S-type granites. Nevertheless, some Beidaban granites also 
feature geochemical characteristics of S-type granites, such 
as relatively high contents of  Al2O3 and  K2O. These char-
acteristics are similar to those of the Lumanshan S/I-type 
granites (450 Ma, Zhao et al. 2022) in the NQOB. Accord-
ing to the ACF classification diagram (Fig. 9d), most of the 
samples from Beidaban granites and Middle-Late Ordovi-
cian granites plot in the S-type field, whereas most of the 
Silurian granite samples (<434 Ma) plot in the I-type field. 
Significantly, some of the Beidaban samples in this study 
straddle the boundary between S-type and I-type granitoids. 
Therefore, recent studies suggested that these types of gran-
ites do not belong to pure I-type granites because of their 
multiple melt sources (called transitional I/S-type granites) 
(Chappell et al. 2012; Gao et al. 2016; Wang et al. 2018; 
Zhao et al. 2022). Thus, based on the above discussions, 
we propose that the Beidaban granites probably represent 
transitional I/S-type granitoids.

The nearly equal Sr and Nd isotopic values (Table 4) 
of the Beidaban granites suggest that they were cogenetic. 

Fig. 6  Chondrite-normalized REE patterns for zircons from the Bei-
daban granites (normalizing data from Sun and McDonough 1989)
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Generally, crustal melts have negative εNd(t) values and high 
initial (87Sr/86Sr)i values, whereas mantle magmas have pos-
itive εNd(t) values along the mantle array (Kinny and Maas 
2003). The high initial (87Sr/86Sr)i values (0.70545–0.71082) 
and negative εNd(t) values (-10.9 to -6.7) strongly indicate 
that continental crust was involved in the genesis of the Bei-
daban granite. In the εNd(t) vs. t(Ga) diagram (Fig. 10a), 
the Beidaban granites plot in Paleo-Mesoproterozoic crustal 
field, indicating that they were generated by melting of the 
Paleo-Mesoproterozoic crustal basement and were probably 
caused by magma underplating (Huang et al. 2015; Zhu et al. 
2022). As illustrated in Fig. 10b, although the Beidaban 
granites overlap the field of Paleozoic granitoids in Qilian, 
they plot in the lower left field of I-type granitoids. This 
means that the magma sources for the Beidaban granites 
were different from those for the I-type granitoids in Qilian 
and were more likely derived from Paleo-Mesoproterozoic 
continental crustal material (Chu et al. 2006; Zhou et al. 
2017; Yang et al. 2018). This explanation is supported by 
the two-stage Nd model ages  (TDM2) of 1.74–2.08 Ga. Simi-
lar cases are observed for the Lumanshan granites (450 Ma, 
Zhao et al. 2022) in the NQOB (Fig. 10b). However, the high 
εNd(t) values and low initial (87Sr/86Sr) values (Fig. 10a, b) 
suggest that the 446 Ma granites were generated by partial 
melting of thickened crust (Yu et al. 2015). Compared to 
those of the Beidaban granites, the 440–438 Ma, 434 Ma, 
and 433–431 Ma granitoids in the NQOB have higher εNd(t) 
values and lower initial (87Sr/86Sr)i values (Fig. 10b), which 
are indicative of mantle isotopic signatures or material evi-
dence of melting ocean crust (Zhang et al. 2006; Chen et al. 
2018; Wang et al. 2018). The 414 Ma granites are possi-
bly derived from partial melting of felsic crustal material, 
which was caused by lithospheric delamination after the 
collision (Zhang et al. 2017). The Pb isotope values, which 
plot in the field of continental crust and above the Northern 
Hemisphere Reference Line (NHRL) in the (206Pb/204Pb) vs. 
(207Pb/204Pb) diagram (Fig. 10c), suggest continental crust 
source for the Beidaban granite. In addition, geochemi-
cal features such as high Th/Ta (17.43–30.12) and Rb/Nb 
(6.01–15.49), which are obviously greater than those of the 
continental crust (Rudnick and Gao 2003), are also consist-
ent with a recycled crustal component (Taylor and Mclennan 
1985).

Studies reveal that dehydration melting of metapelites and 
metagreywackes yields higher  Al2O3/(TFeO + MgO +  TiO2) 
and lower CaO + TFeO + MgO +  TiO2 values compared to 
that of metabasaltic rocks (Kaygusuz et al. 2008). Melt-
ing experiments also reveal that melting products of 
mafic lower crust yield lower  K2O/Na2O, Rb/Ba, and Rb/
Sr ratios and  Al2O3/(MgO + TFeO) contents or higher 
 Al2O3 + TFeO + MgO +  TiO2 contents compared to 
those of metasedimentary rocks (Rushmer 1991; Patiño 
Douce and Beard 1996; Kaygusuz et al. 2008). Thus, the 

Fig. 7  K2O +  Na2O vs.  SiO2 (a, modified from Middlemost 1994), 
 K2O vs.  SiO2 (b, modified from Peccerillo and Taylor 1976), and A/
NK vs. A/CNK (c, modified from Maniar and Piccoli 1989) classifi-
cation diagrams of the Beidaban granites. Legends of cited data from 
the NQOB in Figs. 9, 10, 11 and 12 are the same as in this figure
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Beidaban granites and the 450  Ma granites with rela-
tively high  K2O/Na2O, Rb/Ba, and Rb/Sr ratios and low 
 Al2O3 + TFeO + MgO +  TiO2 contents are thought to be 
mainly derived from metasedimentary rocks, which is 

consistent with the plot of the Rb/Sr vs. Rb/Ba diagram 
(Fig. 11a). However, scholars have proposed that the CaO/
Na2O ratios of felsic rocks derived from partial melt-
ing of metagraywackes and igneous sources range from 

Fig. 8  Chondrite-normalized rare-earth element patterns (a, b, c) and primitive mantle-normalized trace element patterns (d, e, f) for the Beida-
ban granites and other cited data in the NQOB. Chondrite values and primitive mantle values are from Sun and McDonough (1989)

Table 4  Sr and Nd isotopic data and calculated values for the Beidaban granites

Sample Rb Sr Sm Nd 87Rb/86Sr 87Sr/86Sr 147Sm/144Nd 143Nd/144Nd (87Sr/86Sr)i εNd(t) TDM (Ma) TDM2 (Ma)

K2-ZW6 302 165 8.14 46.5 5.307879 0.740767 0.105032 0.512016 0.705451366 − 6.67 1590 1742
K2-ZW7 213 348 14.9 91.3 1.775015 0.720307 0.097919 0.511929 0.70849715 − 7.96 1607 1845
K2-ZW8 228 337 7.98 54.6 1.962018 0.721477 0.087692 0.511885 0.708422839 − 8.19 1530 1865
K2-ZW9 195 384 8.76 50.8 1.472656 0.720617 0.103465 0.511842 0.710818775 − 9.97 1807 2009
K2-ZW10 252 473 5.45 36.7 1.545032 0.718646 0.089101 0.511751 0.70836623 − 10.9 1710 2084
K2-ZW11 196 428 8.68 66.2 1.328037 0.717809 0.078671 0.511822 0.708972988 − 8.89 1499 1921

Table 5  Pb isotopic data and initial ratios for the Beidaban granites

Sample Pb Th U 208Pb/204Pb 207Pb/204Pb 206Pb/204Pb (206Pb/204Pb)t (207Pb/204Pb)t (208Pb/204Pb)t

K2-ZW6 37.9 52.1 10.7 40.356 15.816 20.968 19.5357 15.7352 38.114
K2-ZW7 49.5 63.4 7.37 40.095 15.761 19.89 19.1481 15.7192 38.0434
K2-ZW8 32.6 46 5.67 40.565 15.805 20.745 19.8629 15.7552 38.2644
K2-ZW9 21.4 43.9 4.59 41.092 15.823 21.244 20.1417 15.7608 37.7027
K2-ZW10 18.7 29.8 6 40.747 15.865 21.925 20.2681 15.7715 38.1015
K2-ZW11 19.3 49.1 6.93 42.164 15.867 21.841 19.9556 15.7607 37.8698
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0.3 to 1.5 (Jung and Pfänder 2007; Sylvester 1998). The 
high CaO/Na2O ratios (0.49–1.08) of the Beidaban gran-
ites and the 450 Ma granites are supposed to indicate the 
partial melting of metagraywackes and igneous sources. 
Furthermore, the CaO/Na2O vs. CaO/TFeO diagram sug-
gests metagraywacke and granitoid sources for the Beida-
ban granites (Fig. 11b). Robust persuasiveness cannot be 
founded upon a single discriminant diagram. In the discri-
minant diagrams of  Al2O3 + TFeO + MgO +  TiO2 vs.  Al2O3/
(TFeO + MgO +  TiO2) and molar CaO/(MgO + TFeO) vs. 
molar  Al2O3/(MgO + TFeO), the Beidaban granites and the 
450 Ma granites plot not only in the field of partial melting 
of metagraywacke sources but also in amphibolites or meta-
basaltic to metatonalitic sources (Fig. 11c, d). Therefore, it is 
reasonable to confirm that the transitional I/S-type Beidaban 
granites and the 450 Ma granites were derived from het-
erogeneous magma sources produced by partial melting of 
metagreywackes and igneous rocks (Sylvester 1998; Altherr 
and Siebel 2002; Kaygusuz et al. 2008).

6.2  Tectonic implications

Zircon geochronology studies of intermediate-acidic igne-
ous rocks in the NQOB imply that these igneous rocks 

span a long history of tectonic evolution between 853 and 
211 Ma (Zhu et al. 2022 and references therein). Paleozoic 
igneous rocks, especially Early Paleozoic granitoids, are 
distributed in the NQOB, and geochronological and geo-
chemical studies on these granitoids indicate that continen-
tal breakup (680–520 Ma) and development of the Paleo 
Qilian Ocean (520–495 Ma) occurred in the NQOB (Xia 
et al. 1999; Xiao et al. 2009; Zhang et al. 2012). Although 
controversies regarding the subduction polarity of the 
North Qilian Ocean exist (Zhang et al. 1997, 2012; Xia 
et al. 2003), north-dipping subduction along the northern 
margin of the QOB during the early Paleozoic has been 
accepted by most scholars (Song et al. 2013; Xia et al. 
2016; Zhu et al. 2022). However, despite previous stud-
ies on Paleozoic granites in the NQOB (Xia et al. 2012; 
Zhang et al. 2017; Yang et al. 2018; Wang et al. 2018; Fu 
et al. 2018; Zhao et al. 2022), the important first-order 
problems related to the transitional tectonic setting (from 
arc to initial collision) or the initial closure timing of the 
North Qilian Ocean have been poorly constrained, which 
limits the ability to reconstruct the tectonic mechanism of 
magma generation in the NQOB. Therefore, the Middle 
Ordovician to Silurian granitoids with ages ranging from 

Fig. 9  Whole-rock major 
and trace element discrimina-
tion diagrams for the Beida-
ban granites. a FeOt/MgO 
vs. 10 000× Ga/Al; b Y vs. 
10,000× Ga/Al; c  SiO2 vs.  P2O5; 
d A-C-F. a and b are modified 
from Whalen et al. (1987); d 
is modified from Lameyre and 
Bowden. (1982)
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468 to 414 Ma that occurred in the NQOB are summarized 
for comparison.

As mentioned above, the Beidaban granites yield a 
zircon U–Pb age of 468 ± 10 Ma and contain K-feldspar, 
amphibole, biotite, and Ti–Fe oxides with A/CNK values 
less than 1, which illustrates that they are K-rich porphy-
ritic calc-alkaline granitoids (KCGs). This type of grani-
toid is indicative of an initial collisional setting (Barba-
rin 1999). However, the transitional I/S-type Beidaban 
granites and the Middle Ordovician granites (> 446 Ma) 
also show geochemical characteristics similar to those of 
adakitic island-arc-type granitoids (Fig. 12a). Based on 
these findings, we suggest that the transition from subduc-
tion to collision environment in the NQOB probably did 
not occur earlier than 468 Ma. Previous studies proposed 
that the North Qilian Ocean closed before 450 Ma (Zhao 
et al. 2022). In the Yb + Ta vs. Rb and Y vs. Nb diagrams, 
nearly all the Beidaban granites and Middle-Late Ordovi-
cian granites (> 446 Ma) plot in the fields of VAG and 
Syn-COLG (Fig. 12b, c), indicating that they likely repre-
sent the products of final arc and incipient syncollisional 
magmatism (Sylvester 1998). These geochronological and 
geochemical features provide significant information about 
tectonic processes after the closure of the North Qilian 
Ocean (Yu et al. 2015). As the North Qilian Ocean closed, 
the island arc crust was considerably shortened and thick-
ened, and the syn-collisional magmatism in the NQOB 
contributed to continental crust growth (Zhang et al. 2006; 
Chen et al. 2018; Fu et al. 2018). Several recent stud-
ies proposed that the NQOB featured a collisional setting 
at ca. 442–422 Ma (Wu et al. 2010; Song et al. 2013; 
Zhang et al. 2017; Li et al. 2017; Wang et al. 2018; Zhao 
et al. 2022), as evidenced by the Qingshan monzogranite 
(440–438 Ma), Laohushan quartz diorites (426 Ma), and 
Shengrongsi granites (422 Ma). These granites are distrib-
uted mainly in the conjunction area between the NQOB 
and the Alxa block and have geological and geochemical 
features related to the compressional environment gener-
ated by the collision between the Qilian-Qaidam block 
and the Alxa block (Fu et al. 2018). Comparatively, the 
414 Ma A-type granites are different from the island-arc-
type and syn-collisional granites in the NQOB (Fig. 12). 
These A-type magmatic suites were post-collisional gran-
ites and were probably generated by lithospheric delami-
nation after the collision (Zhang et al. 2017). Therefore, 
based on our work and previous studies, we propose that 
the Beidaban granites record the tectonic transition set-
ting from subduction in the Qilian Ocean to initiation of 
collision and that the final closure of the Qilian Ocean 

Fig. 10  Sr, Nd, and Pb isotopic composition and ratios for the Bei-
daban granites and other cited data in the NQOB. a εNd(t) vs. t (Ga) 
diagram. b εNd(t) vs. (87Sr/86Sr)i diagram (modified from Zindler 
and Hart 1986). Fields for Paleozoic granitoids and I-type granitoids 
in Qilian are based on Zhu et  al. (2022) and Zhang et  al. (2017). c 
(206Pb/204Pb) vs. (207Pb/204Pb) diagram. Data of EM I, EM II, BSE, 
MORB, and NHRL are from Zindler and Hart (1986); continental 
crust data from Zartman and Doe (1981)
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can be constrained to the Middle–Late Ordovician (ca. 
468–450 Ma).

7  Conclusions

(1) Zircon U–Pb ages show that the Beidaban granite were 
emplaced at 468 ± 10 Ma, indicating Middle Ordovician 
magmatism in the central part of the North Qilian Oro-
genic Belt.

(2) The Beidaban granites contain amphibole, biotite, and 
Ti–Fe oxides and are K-rich porphyritic calc-alkaline 
granitoids. The geochemical characteristics indicate 
that the Beidaban granites represent transitional I/S-
type granitoids.

(3) The high initial (87Sr/86Sr)i values (0.70545–
0.71082), clearly negative εNd(t) values (− 10.9 to 
− 6.7), and high initial Pb isotopic compositions 
(206Pb/204Pb = 19.14–20.26; 207Pb/204Pb = 15.71–15.77) 
suggest that the Beidaban granites originated from 
recycled crustal components and were probably derived 
from partial melting of a metasedimentary source with 
the involvement of igneous rocks.

(4) The timing of the tectonic transition in the NQOB from 
an arc to a collisional setting and the final closure of 
the Qilian Ocean can be constrained to the Middle-Late 
Ordovician (ca. 468–450 Ma).

Fig. 11  Major and trace element discrimination diagrams for the Beidaban granites. a Rb/Sr vs. Rb/Ba (modified from Sylvester 1998). b CaO/
Na2O vs. CaO/TFeO (modified from Yang et al. 2016). c  Al2O3 + TFeO + MgO +  TiO2 vs.  Al2O3/(TFeO + MgO +  TiO2) (modified from Kaygu-
suz et al. 2008). d molar CaO/(MgO + TFeO) vs. molar  Al2O3/(MgO + TFeO) (modified from Altherr et al. 2000)
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