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released into aquatic bodies, it is important to pay greater 
attention to their toxicity and how it affects the aquatic 
ecosystem. The nanomaterials are bioavailable to plants, 
resulting in trophic transfer, and they impact other organ-
isms through biomagnification, as discussed in this review. 
To close the enormous information gap, extensive research 
on the interactions and impacts of NPs on different species 
belonging to different trophic levels of the aquatic environ-
ment and the destiny of NPs along the food chain of the 
ecosystem is urgently needed.

Highlights
 ● The use of nanomaterial is in industrial applica-

tions, medical products, and consumers has increased 
repeatedly.

 ● The accidental release of NPs in the environment ulti-
mately reaches the aquatic environment.

 ● A high concentration of these NPs negatively affects the 
organism at every trophic level.

 ● The NPs induced toxicity is mainly due to the genera-
tion of reactive oxygen species.

1 Introduction

Nanotechnology is a field expanding very fast and has devel-
oped many products in every human-oriented area, whether 
it is electronics, cosmetics, or food industry. Nanoparticles 
(NPs) are a wide class of materials that include particulate 
substances, which have one dimension less than 100 nm at 
least (Laurent et al. 2010). The properties of nanoparticles 
such as reactivity and toughness are dependent on their dis-
tinct size, shape, and structure (Khan et al. 2019). Because 
of their large surface area and nano-scale size, NPs also have 
specific physical (low melting point) and chemical (high 
reactivity) properties. Due to their unique size-physiochem-
ical property, nanoparticles are widely used in a variety of 
products (Maurer-Jones et al. 2013). Furthermore, many 
other parameters, such as morphology and coating agents, 

Abstract
Nanotechnology is a ground-breaking multidisciplinary 
field across a broad spectrum of basic and applied sci-
ences for producing and applying nano-sized materials for 
innovative solutions. The use of nanomaterials in indus-
trial applications, medical products, and consumers has 
increased repeatedly over the last few years, and these 
applications will likely continue to grow. In an aquatic 
ecosystem, nanoparticles take entry through a direct route 
that includes industrial discharge, disposal of wastewater 
treatment effluents, and indirect runoff from the soil. After 
reaching the aquatic environment, the nanomaterials are 
highly affected by their backdrops and subsequently go 
through various conversions like agglomeration, aggrega-
tion, dissolution, sulfidation, etc. The fate and the behavior 
of nanomaterials in the aquatic system not only depend 
on their physical-chemical properties but also on the pH, 
temperature, salinity, water hardness, and concentration 
of natural organic matter present in receiving water. In 
this review, emphasis has been given to the toxicological 
properties and potential risks of nanomaterials in terms 
of factors contributing to their toxicology, bioavailabil-
ity, and accumulation in aquatic organisms as well as the 
environment. Furthermore, we summarize the published 
data on engineered nanoparticles’ effect on aquatic organ-
isms. The issues related to the accumulation and penetra-
tion of nanoparticles in the aquatic organism, their toxic 
effect, and biotransformation along with the food web are 
also discussed. Since nanomaterials are being increasingly 

  Sheo Mohan Prasad
profsmprasad@gmail.com

  Gausiya Bashri
gausiya.bashri@gmail.com

1 Ranjan Plant Physiology and Biochemistry Laboratory, 
Department of Botany, University of Allahabad,  
211002 Allahabad, India

2 Department of Botany, Aligarh Muslim University,  
202001 Aligarh, India

Received: 7 April 2022 / Revised: 12 September 2022 / Accepted: 16 September 2022 / Published online: 4 November 2022
© The Author(s), under exclusive licence to Science Press and Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer 
Nature 2022

Fate and toxicity of nanoparticles in aquatic systems

Shikha Singh1 · Sheo Mohan Prasad1 · Gausiya Bashri2

1 3

http://orcid.org/0000-0002-1721-0181
http://crossmark.crossref.org/dialog/?doi=10.1007/s11631-022-00572-9&domain=pdf&date_stamp=2022-11-3


Acta Geochim (2023) 42(1):63–76

affect the properties of NPs (Jurasin et al. 2016; Khan et al. 
2019).

“The Nanotechnology Consumer Products Inventory” 
has described the list of most used nano-materials (NMs) 
among the products, which includes carbon (29 products), 
i.e., fullerenes and nanotubes (Maynard 2006). Silver was 
the second most referenced (25 products), followed by silica 
(14), titanium dioxide (8), zinc oxide (8), and cerium oxide 
(Kahru and Dubourguier 2010). Nearly 60% of nano-based 
products (30% medical or pharmaceuticals; 29% chemicals 
and advanced materials) are directly intertwined in our day-
to-day life (Kurwadkar et al. 2015). The widespread use of 
nanomaterials has inevitably resulted in their release into 
the environment, either as the original (as-manufactured) 
nanomaterial or, more likely, as degradants of societal 
nano-enabled goods. Our particular interest is the aquatic 
environment, including sediments, which tend to be the ulti-
mate sink for particulate contaminants like NMs (Selck et 
al. 2016). Nanoparticles can be added to the aquatic system 
directly through industrial discharges or from the clearance 
of wastewater treatment effluents and indirectly through 
surface runoff. The occurrence of NPs in the aquatic sys-
tem associated with excessive usage has led researchers to 
investigate their different properties, sources, behaviors, and 
toxicological impact (Bundschuh et al. 2018). The release of 
nanoparticles into aquatic environments may result in vari-
ous transformational processes which subsequently control 
their impact on the ecological system (Petosa et al. 2010). 
Currently, many kinds of research are ongoing on the effect 
of NPs on the environmental and ecotoxicological issues of 
nanomaterials (Handy and Shaw 2007). However, the toxi-
cological impact of nanoparticles depends on various factors 
related to the nanoparticle themselves, their surrounding 
environment, and the tested model organism (Gatoo et al. 
2014; Turan et al. 2019).

With the increasing use of NMs since early 2000, the 
question of whether they pose a risk to the environment has 
loomed large. Because the toxicity level for every organ-
ism is different, some organisms can survive at the same 
level while others may be negatively affected. This study is 
motivated by these questions of environmental risk because 
of the predicted rapid increases in environmental concentra-
tions, the known bioavailability and deleterious biological 
effects, and the consequent complexities of risk assess-
ment (Taylor et al. 2016; Laux et al. 2018). However, the 
absence of information, the lack of defined guidelines for 
storage, transport, and disposal, and an evolving regulatory 
perspective have made it difficult to comprehend, manage, 
and mitigate the environmental risks due to the occurrence 
of nanoparticles in the environment. When we talk about 
the whole ecosystem, the problem is more complicated and 
needs more concern. Understanding the sources, routes, and 

exposure pathways and the inherent toxicity of nanoparti-
cles can help safeguard the environment against the release 
of nanoparticles in the environment. Thus, we attempted to 
highlight the enormous increase of NMs in the global mar-
ket with accompanying risks to the aquatic environment. 
Furthermore, this review summarizes the major sources of 
NPs including their fate and transport. Moreover, we intend 
to present a systematic overview of NPs in aquatic systems 
on different species belonging to different trophic levels 
of the aquatic ecosystem, including phytoplankton, micro-
organisms, invertebrates, and fish, and their toxicological 
responses. Additionally, the mechanism of nano-toxicity in 
aquatic organisms is also discussed.

2 Sources,  fate, and uptake of nanoparticles

2.1 Sources of nanoparticles in aquatic ecosystem

The sources of nanoparticles have a history and are not new, 
with the understanding that the life of Earth itself. Nanopar-
ticles can be generated from natural (biogenic, geogenic, 
atmospheric, pyrogenic) and anthropogenic sources as 
engineered or byproducts. The nanoparticles could be cat-
egorized into two categories based on their production: (i) 
naturally formed nanoparticles which include humic & ful-
vic acid, organic acids, carbon nanotubes, nanospheres, and 
metals like silver, gold & Fe-oxides, and (ii) manufactured 
nanoparticles comprises carbon black, functionalized fuller-
enes, polyethylene glycol, platinum, metal phosphates, zeo-
lites, and ceramics, etc. (Luther and Rickard 2005; Nowack 
and Bucheli 2007; Renzi and Guerranti 2015).

The intentional release of nanoparticles is mostly related 
to the use of engineered nanoparticles for drug production, 
groundwater remediation, biomedical imaging, and other 
applications whereas the unintentional one is related to 
activities such as burning fossil fuels, vehicle exhaust, min-
ing, and demolition (Turan et al. 2019). The accumulation 
of nanoparticles in the water matrices begins once they are 
discharged into the environment (Iavicoli et al. 2014). Fur-
thermore, in the aquatic environment, NPs can enter either 
through nonpoint sources such as atmospheric release and 
water infiltration or the deliberate discharge of NPs (Wein-
berg et al. 2011). The presence of NPs in sewage or effluents 
from treatment plants has an environmental risk once mixed 
with the marine ecosystems. Furthermore, the NPs that are 
present on land contaminate soil, solid wastes, and wastewa-
ter effluent discharges directly or indirectly into the marine 
system by wind or rainwater runoff (Stephen et al. 2008). 
Numerous nanoparticles are present in industrial waste 
and products dumped into landfills, are regularly washed 
off into water bodies, and thus are another entry point into 
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the aquatic environment (Moore et al. 2006). Subsequently, 
nano-based industries begin to come online with mass pro-
duction, making the entry of nano-products and byproducts 
into the aquatic environment unavoidable (Howard 2004; 
Moore et al. 2006; Royal Society and Royal Academy of 
Engineering 2004). Approximately 60% of nanomaterials 
are used in medical/pharmaceutical and industrial applica-
tions; thus, they are likely released into wastewater (Kur-
wadkar et al. 2015). The variety of sources through which 
nanoparticles can enter wastewater include commercially 
available consumer products containing metallic silver and 
titanium dioxide, industrial processes, and waste streams 
resulting from the cleaning of production chambers viz. 
textile, photography, and electronics industries  (Turan et 
al. 2019; Azimzada et al. 2021). In addition to this, a large 
fraction of sewage sludge is being used as fertilizers in the 
agricultural field in countries like the United Kingdom and 
the United States of America (Nicholson et al. 2003), while 
in other nations, such sewage wastes are burned (Gottschalk 
et al. 2009). A detailed description of the main sources of 
nanoparticles in the environment is summarized in Table 1. 
The worldwide production of silver nanoparticles (Ag NP) 
is estimated at 500 tons per annum (Mueller and Nowack 
2008). However, the environmental conventions will ulti-
mately limit the entered amount of NPs waste in the aquatic 
system via accidental release. The release of such NPs into 
the main water stream creates a new ecological problem that 
needs to be studied on a large scale shortly.

2.2 Fate of nanoparticles in aquatic ecosystem

The NPs present in the aquatic system are aquatic colloids; 
hence they are never in thermodynamics equilibrium like 
chemicals (Elimelech et al. 1995) and are subject to sev-
eral transformational processes (Lowry et al. 2012; Nowack 
et al. 2012; Stone et al. 2010). In an aquatic ecosystem, 

the crucial processes which influence the fate and behav-
ior of nanomaterials are categorised into three categories 
(i) Physical processes which cover homo/hetero aggrega-
tion, agglomeration, sedimentation, and deposition, (ii) the 
chemical processes encompass photochemical reaction, dis-
solution and oxidation and sulfidation (Lowry et al. 2012; 
Nowack et al. 2012; Stone et al. 2010), and (iii) Microbial 
mediated biodegradation and bio-modification processes are 
the main examples of the biological processes (Lead et al. 
2018). These properties are important for the understanding 
of the transformation behaviors as well as the risk assess-
ment and management plans (Lead et al. 2018). Details 
related to these critical and universally agreed properties 
that characterized NPs are discussed in the section below 
and presented in Fig. 1 (Klaine et al. 2008; Bhatt and Tripa-
thi 2011; Lowry et al. 2012).

Agglomeration: It is how nanoparticles get aggregated 
into large particles that could be removed from the water 
bodies and then transported to the sediments. The term 
“aggregate” is used for particles containing multiple strong 
bonding with smaller surface areas than individual ones, 
while “agglomerate” is defined as the collection of loosely 
bound aggregate. Surface charge controls the stability of 
nanoparticles, which in turn controls the agglomeration and 
toxicity of nanoparticles (Gatoo et al. 2014). Moreover, the 
agglomerate formation or aggregation is affected by the sur-
face charge as a response to the exposure of organisms to 
nanoparticles (Hoshino et al. 2004). Particle aggregation is 
influenced not only by the surface charge but also by the 
particle size and composition. Due to aggregation, the toxic-
ity of nanoparticles decreases with the increase in the con-
centration of nanoparticles at higher concentrations (Gatoo 
et al. 2014; Pietroiusti et al. 2011). Various factors like the 
composition of medium, ion strength, pH, and concentra-
tion of naturally present organic matter are known to affect 
the agglomeration process.

Table 1 Types, sources, and concentration of nanoparticles (NPs) in the aquatic system
Types of NPs Sources Concentration Reference
Silver NPs Clothing, cosmetics, medical 

devices, paints, humidifiers 
and refrigerators

< 1 ng L− 1 Azimzada et al. (2021)
0.088 to 2.16 ng L− 1 (PEC)* Gottschalk et al. (2009)

Titanium dioxide NPs Skincare products < 10 µg L− 1 Azimzada et al. (2021)
0.03 L− 1 to 1.6 µg L− 1 (PEC) Gottschalk et al. (2013)
8.8 µg L− 1 (Thames region seaside, U.K.) Johnson et al. (2011)

Zinc oxide NPs Skincare products 0.008 to 0.055 µg L− 1 in Europe
and 0.001 to 0.003 µg L− 1 in US (PEC)

Gottschalk et al. (2009, 2013)

CeO2 NPs Skincare products < 100 ng L− 1 Azimzada et al. 2021
5.1 to 54.2 µg m− 3 (PEC) O’Brien and Cummins (2010)

n-C60 Pharmaceutical industry 5 to 20 ng L− 1 (Waste water of Spain) Farre et al. (2010)
4 to 20 ng L− 1 (PEC) Gottschalk et al. (2009, 2013)

CNT Electronics products 0.0005 to 0.0008 µg L− 1 (PEC) Mueller and Nowack 2008
*Predicted environmental concentrations (PEC)
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equal to zero, and if the collision efficiency is one, there will 
be attachments by all the collisions.

Natural organic matter and colloids: In a natural aquatic 
system, there is abundant organic matter (ranging from 
small molecules to larger macromolecules), inorganic 
clay minerals, and natural colloids of varying sizes (Gal-
lego Urrea et al. 2010). It is well recognized that in natural 
water bodies, the sorption of such nanomaterials is gener-
ally mentioned as natural organic matter (Arvidsson et al. 
2011). Being a universal component of aquatic ecosystems, 
natural organic matter may affect the aggregation and/or 
deposition properties of NPs by influencing the surface spe-
ciation and charges of those particles. Buffle et al. (1998) 
distinguished the natural organic matter into three groups 
based on their biophysical properties: (1) rigid biopoly-
mers, which include the polysaccharide and peptidoglycan 
produced by phytoplankton or bacteria (Myklestad 1995), 
(2) fulvic compounds that contain breakdown products of 
plants, and (3) flexible biopolymers which covers the deg-
radation product of microbial community. The interaction 
of released nanoparticles with natural organic matter will 
change their surface properties by forming a different natu-
ral coating that will affect their fate and behavior in water 
(Biswas and Sarkar 2019).

Nanoparticle coating and aging: The surface modifica-
tion and functioning play a controlled role in the electro-
static stabilization of nanomaterials. The surface coating 
may eliminate or induce toxicity according to the nature of 
the coating used (Gatoo et al. 2014). For instance, nanopar-
ticles having a surface coating of silica induce toxicity asso-
ciated with the generation of reactive oxygen species (ROS) 
which in turn has cytotoxic effects (Risom et al. 2005; Sayes 
et al. 2004). Further, the product containing TiO2 nanopar-
ticles should have a coating of silicon and aluminum oxide 
and be emitted to the environment by coating the nanoparti-
cles (Arvidsson et al. 2012). In addition, Label et al. (2010) 
investigated the age of nanoparticles and concluded that 
TiO2-containing nano-composites (often used in sunscreen) 
altered the dispersive capacity of particles in water and con-
sequently the fate of the environment.

Collision capacity: Aggregation of particles is depen-
dent on attachment efficiency and collision frequency. The 
attachment efficiency depicts the chance that upon colli-
sion of two particles they will stick together and form an 
aggregate, while the collision frequency depicts the number 
of collisions between particles that could potentially result 
in the formation of an aggregate (Phenrat et al. 2010). The 
cluster of particles is affected by the collision efficiency. No 
collisions will cause attachment if the collision efficiency is 

Fig. 1 Diagrammatic representa-
tion of fate of NPs in aquatic 
ecosystem
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been shown to influence bioaccumulation. In addition to 
this, particle size and composition, the shape of the NPs, 
and their synthesis method can affect bioaccumulation (Dai 
et al. 2015; Ramskov et al. 2015). Many studies have shown 
that bulk or micron-size particles are less bioavailable to 
invertebrates than their nano-sized counterparts (Pang et al. 
2013; Cozzari et al. 2015). The prokaryotes are protected 
against nanoparticle uptake since they don’t have any mech-
anism for the bulk transport of colloidal particles. However, 
in eukaryotes (i.e. protists and metazoans), well-developed 
cellular processes like endocytosis and phagocytosis are 
present for the internalization of nanoscale particles; hence 
the situation is very different (Na et al. 2003; Panyam and 
Labhasetwar 2003). The possible routes for nanoparticle 
regeneration include epithelial boundaries such as direct 
penetration or penetration through body walls, gills, or 
olfactory organs (Brigger et al. 2002; Farkas et al. 2011). In 
fish, the liver is likely to be targeted by endocytotic transport 
to the intestinal epithelium in the liver portal blood system 
(Smedsrud et al. 1984). In addition, nanoparticles are poten-
tial targets in the case of invertebrates for internalization of 
the immune system, intestinal epithelium, and digestive or 
midgut gland (Moore 1990).

3 Impact of nanoparticles on aquatic 
ecosystems

On the grounds of the extensive use and clearance of engi-
neered nanomaterials in our everyday life, ecosystems, 
especially aquatic ecosystem, becomes a major victim of 
environmental pollution. The toxic impact of nanomateri-
als on aquatic organisms is important to study because most 
contaminants released in the environment are consumed 
by aquatic species. Griffitt et al. (2008) conducted a study 
to assess the toxicity of metallic nanoparticles in aquatic 
organisms. Additionally, irregularities in behavior patterns 
and the mortality rate of these organisms have also been 
observed (Lovern and Klaper 2006; Templeton et al. 2006; 
Roberts et al. 2007). The nano-toxicological studies, as well 
as various risk assessments, have been carried out on algae 
and bacteria (Wang et al. 2008; Jiang et al. 2009), nema-
todes and crustaceans (Wang et al. 2009; Heinlaan et al. 
2008), fish and rats (Griffitt et al. 2008; Elgrabli et al. 2007). 
Exploration of biological effects involved in (i) in-vitro and 
(ii) in-vivo studies. For the uptake of engineered nanopar-
ticles released from the environment, surface sediment and 
filter-feeding Molluscs are thought to be major candidates; 
meanwhile, Molluscs are already identified to accumulate 
the sediments and suspended particles.

Sedimentation: The ultimate consequence of aggrega-
tion is the sedimentation of these nanoparticle aggregates 
to the sediment. In addition to aggregation, nanoparticles 
will deposit on other surfaces, like natural colloids (Petosa 
et al. 2010; Arvidsson et al. 2011). Sedimentation is well 
described for agglomerates with spherically dense morphol-
ogy, while non-agglomerated NPs have an almost negligible 
sedimentation rate due to their smaller size. All particles 
with a higher density than water must have a net downward 
force vector, which leads to a fixed sedimentation velocity 
for that particle (Elimelech et al. 1995).

Dissolution: Dissolution is an important chemical pro-
cess that controls the mobility and availability of trace 
metals in the soil. The amount of dissolution is expected to 
depend on various factors like pH, presence, and absence 
of oxygen, oxidants like hydrogen peroxide, and ligand 
properties (Galloway et al. 2010). As toxic metal ions may 
release from nanoparticles, the dissolution reaction of those 
nanoparticles might be expected to play a significant role in 
enhancing their toxicity (Campbell et al. 2002; Hiriart- Baer 
et al. 2006). In wastewater treatment plants, the dissolution 
/transformation of silver or nano-silver into silver sulfide 
nano form has also been shown (Kim et al. 2010).

Sulfidation and redox behavior: Sulfidation is a major 
chemical transformation for many metal NPs, particularly 
in the presence of enhanced sulfide concentrations such as 
those found in parts of wastewater treatment plants (Kim 
et al. 2010; Kaegi et al. 2011). The reactions can result in 
changes in particle size, surface charge, and solubility. Ulti-
mately these changes will influence the fate, bioavailability, 
and effects of the NPs. As consequence, the sulfidized form 
is more toxic to aquatic biota (Li et al. 2015). More gener-
ally, oxidation is not a major transformation pathway for 
most of the NPs, although it is an essential step in the dis-
solution of metals such as Ag, whereas redox transforma-
tions of metal oxides such as FeO and ceria are important 
in determining the behavior of NPs in the aquatic system 
(Lead et al. 2018).

2.3 Uptake and bioavailability of nanoparticles in 
aquatic systems

The uptake of nanoparticles is a major concern in aquatic 
biota. Studies on bioavailability and uptake are critically 
important to link the environmental chemistry of NPs 
to biological effects. The hypothesis is that the presence 
of nanoparticles in an organism will lead to a biological 
response, and this can be understood by how the NPs ini-
tially interact with the external surfaces of the organism. 
Further, the properties and behaviors of NPs are important 
factors in bioaccumulation. For instance, particle size may 
not be revealing the exposure of aggregate, though it has 
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of ecosystems, serve as the basis for the food web and sup-
port environmental functions. Bacteria are generally less 
affected by the NPs toxicity in comparison with other liv-
ing organisms in the aquatic environment due to their abil-
ity to overcome stress conditions and develop their defense 
systems (Freixa et al. 2018). The interaction between nano-
materials and biomolecules, directly or indirectly, may give 
rise to strong antimicrobial activity, as it is proved by cur-
rent reports exposing the side effects of nanomaterials on 
microorganisms (Niazi and Gu 2009). The excess produc-
tion of ROS can cause bacterial cell membrane dislocation 
and/or damage, changes in membrane permeability, and 
subsequent cell death (Choi and Hu 2008; Nair et al. 2009) 
(Table 2).

3.3 Impact on plants

In all ecosystems, plants are vital components and play a 
crucial role in the fate and behavior of nanomaterials despite 
their sessile nature. Plants have been taken into consider-
ation by scientists due to their interface with soil, water, 
and air which may include manufactured nanoparticles, 
consequently generating nanotoxicity. However, the toxic 
effects on aquatic plants from NMs have not been well doc-
umented, and a very few number of reports are accessible 
in the literature. In the ecosystem, there is a broad range 
of plant species. Most of the nanotoxicity work so far has 
been focused on plants used for human consumption, such 
as maize (Birbaum et al. 2010), wheat (Ma et al. 2010), soy-
bean (Priester et al. 2012), tobacco (Sabo-Attwood et al. 
2012) and many fruits and/or vegetables such as pumpkin 
(Zhu et al. 2008), cucumber (Lin and Xing 2007; Ma et al. 
2010; Wang et al. 2012) and radish (Lin and Xing 2007; Ma 
et al. 2010; Atha et al. 2012). Further, some other studies 
concentrated on the effect of Ag-NPs on Lemna minor and 
demonstrated the inhibition in plant growth and chlorophyll 
synthesis after exposure to Ag-NPs (Pereira et al. 2018). 
In addition to this, many studies have been performed on 
hydroponic plants, where NPs are presented in an aqueous 
phase compared to more realistic nanoparticles through irri-
gated soil or sand. Sabo-Attwood et al. (2012), while exper-
imenting on tobacco seedlings treated with Au-NP under 
hydroponic conditions, reported that the smaller-sized NPs 
are capable of translocating into leaves while the NPs with 
larger sizes are restricted to the root periphery only.

3.4 Impact on animals

In aquatic organisms, invertebrates are normally in the habit 
of measuring the potential hazard effects of chemicals in 
ecosystems, as they act as representatives of different food 
webs in aquatic systems (Ruppert et al. 2004). The largest 

3.1 Impact on phytoplankton / primary producer

The phytoplanktons are the dominant primary producer in 
the aquatic ecosystem, having a size of 40–80 µm (Arturo 
et al. 2012). Nanomaterials released in the aquatic environ-
ment can potentially interact with photoautotrophic organ-
isms, thus hampering key ecological processes, particularly 
photosynthesis, which decreases primary productivity. The 
small particles showed a concentration-dependent effect, 
while large particles showed less toxicity (Hund-Rinke and 
Simon 2006). Algal exposure to dissolved NPs results in 
reactive oxygen species (ROS) production leading in turn to 
an important reduction in the chlorophyll content, algal cell 
growth, and viability (Oukarroum et al. 2014; Sirelkhatim et 
al. 2015). It was also reported that the ionic form accumu-
lation of some NPs in algal cells underlies the mechanism 
of toxicity. The unfavorable impact of fabricated NiO-NPs 
on the microalgae Chlorella vulgaris has been reported 
by Gong et al. (2011), and according to them, cells of C. 
vulgaris inhibited the overall growth as a result of plas-
molysis, and membrane leakage at 72 h and showed EC50 
values of 32.28 mg NiO L− 1. In the same way, the effect 
of pH on Ag-NPs induced cellular toxicity in Chlamydo-
monas acidophila has been determined by Oukarroum et 
al. (2014). They stated that the size distribution of Ag-NPs 
was pH-dependent, and a higher solubility was observed at 
pH-4 compared to pH-7. In addition, the results indicated 
that 24-hour exposure to Ag-NPs causes decreased cell 
viability and reduction in chlorophyll content attributable 
to the pH-dependent dissolution and production of reactive 
oxygen species. Also, in another study on Spirodella polyr-
rhiza, Movafeghi et al. (2016) broadened the toxic effect of 
TiO2-NPs and observed a significant reduction in the activ-
ity of particular oxidative stress controlling enzymes and in 
growth parameters and photosynthetic pigment contents. 
The nanoparticles are bioavailable to plants, causing tro-
phic transfer, and have an impact on other organisms via 
biomagnification.

3.2 Impact on microorganisms

Apart from aquatic plankton, NPs also caused major toxic-
ity to aquatic microorganisms, which are very small organ-
isms with a size of 0.1 micron. Microbes are the root source 
of the ocean food web and play an important role in nutri-
ent cycling by decomposing organic matter (Fasham 1984). 
They are also known to regulate the metabolism of the 
aquatic ecosystem through disruptive activities, alkalinity, 
pH, and redox circumstances (Fasham 1984; Trombetta et 
al. 2020). The rapid use of nanotechnology has increased 
the potential risks for microorganisms. Among different 
microorganisms, bacteria which are the ubiquitous members 
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in nano-ecotoxicology using in-vitro and in-vivo analysis. 
With these tests, we can analyze the behavior and bioavail-
ability of NPs and also their bioaccumulation in the food 
chain of the aquatic ecosystem. Heinlaan et al. (2008) said 
that Daphnia magna could be a model organism to study 
the toxicity of nanoparticles in aquatic ecosystems. From 
the above study, we can say that NPs at high concentrations 
can negatively affect the crustacean i.e. Daphnia magna, 
in particular, is the representative fauna of the aquatic 
environment.

Molluscs, also known as bivalves, can filter plenty of 
water; due to this reason, any contaminant present in the 
water tends to accumulate in the different tissues of mol-
luscs. Laura et al. (2012) have reported the stimulation of 
lysozyme enzyme release and reactive oxygen and nitrogen 
species which can ultimately lead to oxidative in response 

invertebrate phylum, Arthropoda consists of the two larg-
est groups of insects and crustaceans. Crustaceans are the 
most important group of invertebrates; are mostly used as 
model organisms to assess ecotoxicological tests of hazard-
ous materials in water ecosystems (Ruppert et al. 2004). 
Crustaceans also can sequester toxic metals in their tissues, 
i.e., granules of the hepatopancreas and other tissues. Ober-
dorster et al. (2006) analyzed the impact of NM, i.e., fuller-
enes on Daphnia magna; which results in altered moulting 
and decreased reproductive output, and increased mortality 
rates (Oberdorster et al. 2006). NPs can enhance the toxicity 
of particular chemicals by interacting with them and also 
work as a carrier of co-existing contaminants toward Daph-
nia magna. Baun et al. (2008) suggested using crustaceans 
as representatives to study the impact of NPs or any other 
chemicals in the aquatic ecosystem for further knowledge 

Table 2 Effect of different types of nanoparticles (NPs) on microbial community and invertebrate species
Studied Organism Type of 

Nanoparticle
Concentration Impact on Organism References

Nitrifying bacterial 
community

Ag 0.10 mg L−1 No change in the membrane fouling rate but increased concentra-
tion of extracellular polymeric substances (EPS).

Zhang et 
al. (2014)

N-related
microbial community

Ag 50 to 200 µg L−1 Disturbed enzymatic activities were observed after Ag NPs 
application.

Huang et 
al. (2019)

River microbial 
community

Ag 200 µg L−1 Change in structure of bacterial community was observed after 
NPs exposure.

Londono et 
al. (2019)

Juvenile Epinephelus 
coioides

CuO 20 to 100 µg L−1 Significantly lower growth parameters were observed after CuO 
NPs exposure. No mortality was observed.

Wang et al. 
(2014)

Marine invertebrates 
Worms:
Hediste diversicolor 
and
Scrobicularia plana

CuO 10 µg L−1 No significant effects were shown for the markers of neurotoxicity 
or oxidative damage. Enzymatic biomarkers: GST, CAT and SOD 
are activated by CuO NPs in Scrobicularia plana

Buffet et 
al. (2011)

N-related
microbial community

CuO 1 mg L−1 Bacterial genera depleted by
CuO NPs were related to carbohydrate and glycan biosynthesis and 
metabolism, and biosynthesis of other secondary metabolites.

Miao et al. 
(2019)

N-related
microbial community

CuO 1 mg L−1 CuO NPs decreased the nitrogen removal efficiency, anammox 
rate, and relative abundance of anaerobic ammonia-oxidizing 
bacteria (AAOB).

Zhang et 
al. (2018)

Mesocosms 
(phytoplankton,
zooplankton,
macroinvertes,
macrophytes, and fish)

TiO2 25 and 250 µg 
L−1

The biomass of Rotifera was significantly reduced after exposure 
to TiO2 NPs while biomass of Cladocera,
Copepoda, phytoplankton, macrophytes, chironomids, and fish was 
unaffected.

Jovanovic 
et al. 
(2016)

Microbial communities TiO2 700 µg L−1 No significant effect on distribution and the structure of the micro-
bial communities was observed at this concentration of NPs.

Londono et 
al. (2017)

N-related
microbial community

TiO2 1 mg L−1 Decrease in nitrogen removal efficiency was observed, and the 
relative abundance of anaerobic ammonia-oxidizing bacteria was 
found to decrease under application of TiO2.

Zhang et 
al. (2018)

Periphyton TiO2 0.05 mg L−1 No detectable effects on algal cell density, chlorophyll-a, or 
periphyton mass was observed.

Wright et 
al. (2018)

Tegillarca granosa, 
mollusc

TiO2 0.1 to 10 mg L−1 TiO2 NPs were neurotoxic to the blood clam as indicted by 
increased neurotransmitter concentrations, as well as the down-
regulated expression of
Neurotransmitter related genes.

Guan et al. 
(2018)

Caenorhabditis elegans TiO2 1 µg L−1  A decrease in the locomotion behavior of wild nematodes was 
observed which could be due to the significant increase in intestinal 
ROS Production

Dong et al. 
(2018)
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the apical membrane of the gills, travel to the basolateral 
membrane of the gill, and block the Na+ K+ ATPase affect-
ing ion regulation of Na+Cl− ions across the gills (Bury et 
al. 1999). An adverse effect of nanoparticles on the fish has 
been presented in Table 3.

Amphibians are sensitive toward nanomaterials because 
of their biphasic life cycle and the high permeability of 
eggs, skin, and gills. Many works have been done to ana-
lyze the toxicity of ENMs on amphibians. Amphibian larvae 
may form micronuclei by genome mutations which can be 
used as biomarkers to analyze the impacts at the biochemi-
cal, physiological, and genetic/molecular levels in response 
to ENMs (Mouchet et al. 2007, 2008).

4 Mechanism of nano-toxicity

In general, toxicity in a living organism is produced by the 
excess generation of reactive oxygen species (ROS); in nor-
mal conditions, these ROS are effectively scavenged by the 
antioxidant defense system (Bashri et al. 2018). In a simi-
lar way to other toxicants, NPs also generate ROS at high 
concentrations and produce oxidative stress in the affected 
organism (Fig. 2). Many studies reported a large genera-
tion of ROS even under small amounts of CuO or ZnO 
NPs in the incorporated cells (Chang et al. 2012; Toduka 
et al. 2012). NPs can induce ROS directly when they come 
in contact with the organelles of exposed cells and the 
major sites of ROS production in mitochondria where any 

to the uptake of nanoparticle agglomerates. A nanoparticle 
enters the cell by the process of endocytosis in the diges-
tive gland cells of blue mussels and cockles. C60 fullerene 
induces cytotoxicity in Mytilus edulis hemocytes (Laura 
et al. 2012). Marine bivalves also take nanoparticles by 
endocytosis, such as Mytilus edulis (Moore 2006). Mussels 
and oysters more efficiently capture and ingest nanoparti-
cles incorporated into agglomerates than freely suspended 
(100 nm) nanoparticles (Ward and Kach 2009). Exposure 
of C60 fullerene in oysters (Crassostrea virginica) can alter 
the development of larvae and digestive gland lysosomal 
negatively (Laura et al. 2012). Similarly, the accumulation 
of CuO nanoparticles in marine bivalve Scrobicularia plana 
increased the activities of SOD, CAT, and GST (Buffet et al. 
2012). The impact of NPs on microorganisms and inverte-
brates has been summarized in Table 2.

Fishes are also very sensitive to nanoparticles due to 
gills. An early study suggested that C60 fullerenes (tetra-
hydrofuran as C60 solution) at very low aquatic exposure 
levels could induce fish brain changes (Oberdorster 2004). 
This significantly enhances lipid peroxidation in the brain 
of largemouth bass after 48 h of exposure to 0.5 mg / l of 
uncoated C60 fullerene. Fishes exposed to fullerenes have 
shown lipid peroxidation in the brain (Stephen et al. 2008). 
The toxicity of Ag ion has been studied in some freshwater 
fish species at a concentration of 0.8 µg L− 1 (LC10) (Birge 
and Zuiderveen 1995; Janes and Playle 1995; Wood et al. 
1996). Ag ions in solution can reach the bronchial epithelial 
cells via the Na+ channel coupled to the proton ATPase in 

Table 3 Effect of different types of nanoparticles (NPs) on fish species
Fish species Type of 

Nano 
Particles

Concentration Main effects Reference

Oreochromis niloticus 
and Tilapia zillii

Ag-NPs 2 and 4 mg L−1 Ag-NPs at higher concentration i.e. 4 mg/L have deleterious effects 
on brain antioxidant system.

Afifi et al. 
(2016)

Oreochromis 
mossambicus

Al2O3−NPs 120 to 180 mg 
L−1

NPs were accumulated in the fish liver and caused major histological
anomalies such as structural alterations in the portal vein, 
necrotic hepatocytes, vacuolation, aggregation of blood cells and 
melanomacrophages

Murali et al. 
(2017)

Apistogramma agas-
sizii and Parachei-
rodon axelrodi

Cu-NPs - An increase in reactive oxygen species (ROS) levels. Braz-Mota et 
al. (2018)

Oncorhynchus mykiss, 
Pimephales promelas, 
and Danio rerio

Cu-NPs - Caused damage to gill filaments and gill pavement cells, with differ-
ences in sensitivity for these effects between the fish species studied

Song et al. 
(2015)

Rutilusrutilus 
caspicus

Cu-NPs 0.1 to 0.5 mg 
L−1

Histological changes occur in liver and kidney. The result of the 
study showed that copper nanoparticles could cause severe damages 
in the vital tissues of Caspian roach; Rutillus rutillus caspicus
and have lethal effects for fish.

Aghamirkarimi 
et al. (2017)

Prochilodus lineatus TiO-NP 1 to 50 mg L−1 Ti accumulated in the liver, muscle, and brain and decreased muscu-
lar AChE activity

Carmo et al. 
(2019)

Cyprinus carpio L. ZnO-NPs - ZnO NPs might affect kidney and liver function. Chupani et al. 
(2018)

Oreochromis niloticus ZnO-NPs 1 and 2 mg L−1 mRNA expression of antioxidant enzymes were significantly decreasedAbdelazim et al. 
(2018)
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oxide (O2
•−) induces ROS accumulation and causes oxi-

dative stress (de Berardis et al. 2010). Superoxide radical 
(O2

•−) is converted into hydrogen peroxide by the action 
of the enzyme superoxide dismutase. In the middle of this, 
chemical reactions occur, known as Fenton’s reaction. This 
hydrogen peroxide can convert into the most toxic hydroxyl 
radicals in the presence of transition metals by the reaction 
of Heiber Veis and Fenton’s (Yamakoshi et al. 2003). These 
generated ROS can react with biomolecules and cause the 
oxidation of lipids and proteins, causing an imbalance in 
biological systems (Xia et al. 2008; Yang et al. 2009; Xiong 
et al. 2011) studied the oxidative stress induced by metal 
oxide in zebrafish, which causes damage to biomolecules in 
the absence of light. It has also been proved that oxidative 

disturbance in the electron transport chain leads to the gen-
eration of superoxide radical (Nohl and Gille 2005; Zhang 
and Gutterman 2007). NPs have a specific property, i.e., 
large surface area; due to this reason, they can easily coop-
erate with the biomolecules that enrich CuO or ZnO NPs 
with high electronic density (Pisanic et al. 2009). According 
to published data on metallic and metal oxide NPs, oxygen 
is frequently required for the generation of reactive oxygen 
species (ROS) in AgNPs and nano-zero valent iron, whereas 
illumination is required for ROS generation in TiO2 and 
ZnO NPs (Yang et al. 2013). Ag-NPs are probably toxic to 
microbes due to both the release of silver ions (ion-free) 
and the production of reactive oxygen species (Zhang et al. 
2016). Consequently, the formation of excess superoxide 

Fig. 2 Schematic representation of NPs induces generation of reactive oxygen species (ROS) that lead to oxidative stress in cells that may cause 
cell death
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