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Abstract The Xiaokele Cu (–Mo) deposit is a recently

discovered porphyry deposit in the northern Great Xing’an

Range (GXR) of northeast China. The ore bodies in this

deposit are mainly hosted within granodiorite porphyry

intrusions. Potassic, phyllic, and propylitic alteration zones

develop from center to edge. In this paper, we present

zircon LA–ICP–MS U–Pb ages, zircon Hf isotopic com-

positions, and whole-rock geochemistry of the ore-bearing

granodiorite porphyries from the Xiaokele Cu (–Mo)

deposit. Zircon U–Pb dating suggests that the Xiaokele

granodiorite porphyries were emplaced at 148.8 ± 1.1 Ma

(weighted-mean age; n = 14). The Xiaokele granodiorite

porphyries display high SiO2, Al2O3, Sr, and Sr/Y, low

K2O/Na2O, MgO, Yb, and Y, belonging to high-SiO2

adakites produced by partial melting of the subducted

oceanic slab. Marine sediments were involved in the

magma source of the Xiaokele granodiorite porphyries, as

indicated by enriched Sr–Nd isotopic compositions (eNd(-

t) = - 1.17– - 0.27), low positive zircon eHf(t) values

(0.4–2.2), and high Th contents (4.06–5.20). The adakitic

magma subsequently interacted with the mantle peridotites

during ascent through the mantle wedge. The Xiaokele

granodiorite porphyries were derived from slab melting

during the southward subduction of the Mongol–Okhotsk

Ocean.

Keywords Xiaokele porphyry Cu (–Mo) deposit �
Adakite � Slab melting � Mongol–Okhotsk Ocean �
Northern Great Xing’an Range

1 Introduction

Porphyry deposits are the main source of Cu, accounting

for about 80% of the world’s Cu reserves (Sillitoe 2010;

Sun et al. 2015). Generally, most porphyry deposits occur

in island arc and continental margin arc settings (Sillitoe

2010; Richards 2011a). Recently, discoveries of some

world-class porphyry Cu (Mo–Au) deposits in some con-

tinental collision orogens (e.g., Qinling–Dabie Orogen)
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indicate they may also form in post-subduction collisional

settings (Chen and Santosh 2014; Richards 2015; Chen

et al. 2017a). Porphyry Cu deposits are generally closely

correlated with intermediate-felsic porphyritic intrusions

with high oxygen fugacity (Mungall 2002; Shen et al.

2015; Zhang et al. 2017) and high water contents

(C 4 wt.%; Richards 2011b). Interestingly, most of these

porphyries display the geochemical characteristics of ada-

kites (e.g., SiO2 C 56 wt.%; Al2O3 C 15 wt.%; Y B 18

ppm; Yb B 1.9 ppm; and Sr C 400 ppm; Defant and

Drummond 1990; Sajona and Maury 1998; Oyarzu�n et al.

2001; Mungall 2002; Reich et al. 2003; Hollings et al.

2011; Sun et al. 2015).

Northeast (NE) China is located in the eastern part of the

Central Asian Orogenic Belt (CAOB), adjacent to the

Siberia Craton in the north and the Tarim-North China

Craton in the south (Fig. 1A; Şengör et al. 1993; Jahn et al.

2004). The Great Xing’an Range (GXR) lies in the western

part of NE China (Fig. 1B), is a vitally important poly-

metallic metallogenic belt in China (Song et al. 2015; Chen

et al. 2017b). During previous decades, several epithermal

and orogenic Au deposits, porphyry deposits, hydrother-

mal-vein Ag–Pb–Zn deposits, and skarn Pb–Zn deposits

have already been discovered in the northern GXR

(Fig. 1C). The Xiaokele porphyry Cu (–Mo) deposit,

located in the northern GXR, was discovered by the

Qiqihaer Institute of Geological Exploration in 2013. This

deposit contains estimated reserves of [ 500,000 tons Cu

with grades of 0.2%–4.41%, [ 100,000 tons Mo with

grades of 0.03%–0.70%, and [ 53 tons Ag, with ongoing

exploration (Sun et al. 2020a). The discovery of this

deposit is an important breakthrough for porphyry Cu

prospecting in the northern GXR. The published whole-

rock geochemical data for Late Jurassic ore-bearing gran-

odiorite porphyries in the Xiaokele deposit exhibit adakitic

affinity (Deng et al. 2019a; Feng et al. 2020a). However,

two quite different genetic models for the adakitic ore-

bearing granodiorite porphyries lead to difficulties in

understanding their petrogenesis and Late Mesozoic tec-

tonic evolution. Deng et al. (2019a) suggested that the

Xiaokele granodiorite porphyries were formed by the par-

tial melting of an altered oceanic slab associated with the

southward subduction of the Mongol–Okhotsk oceanic

slab, whereas Feng et al. (2020a) considered the Xiaokele

granodiorite porphyries were derived from partial melting

of an enriched mantle metasomatized by subduction-re-

lated melts in a post-collision setting.

To solve the above problem, in this study, we present

zircon LA–ICP–MS U–Pb ages, zircon Hf isotopic com-

positions, and whole-rock geochemistry of the adakitic ore-

bearing granodiorite porphyries from the Xiaokele Cu (–

Mo) deposit. We discuss their petrogenesis and implica-

tions for tectonic settings.

2 Geological background

From east to west, NE China is divided into the Jiamusi–

Khanka, Songnen, Xing’an, and Erguna blocks (Fig. 1B;

Wu et al. 2011). During the Paleozoic, these blocks col-

lided and amalgamated, triggered by the subduction and

closure of the Paleo-Asian Ocean (Şengör et al. 1993; Wu

et al. 2011; Zhou et al. 2018). During the Mesozoic, NE

China was not only influenced by the Paleo-Pacific tectonic

regime but also superimposed and modified by the Mon-

gol–Okhotsk tectonic regime (Wu et al. 2011; Xu et al.

2013; Liu et al. 2017).

The Xiaokele Cu (–Mo) deposit is situated in the eastern

part of the Erguna Block (Fig. 1C). The Erguna Block lies

between the Mongol–Okhotsk, and Tayuan–Xiguitu

sutures (Fig. 1C). Studies on early Paleozoic blueschist

facies metamorphic rocks and post-orogenic granites sug-

gest that Xing’an and Erguna blocks collided along the

Tayuan-Xiguitu suture at ca. 500 Ma (Fig. 1C; Ge et al.

2005; Zhou et al. 2015). The basement of the Erguna Block

is mainly composed of Precambrian metamorphic supra-

crustal rocks and sporadic Paleoproterozoic and Neopro-

terozoic granitoids (Inner Mongolian Bureau of Geology

and Mineral Resources (IMBGMR) 1991; Miao et al. 2004;

Zhou et al. 2011). Outcropping strata are mainly Paleozoic

shallow marine sediments (IMBGMR 1996), widespread

Mesozoic volcanic rocks, and minor Cenozoic terrigenous

clastic rocks (Zhang et al. 2008). Late Mesozoic NE-

trending Derbugan and Erguna River faults develop in the

Erguna Block (Fig. 1C; IMBGMR 1991). Intrusive rocks

(granitic rocks are predominant) in the Erguna Block were

mainly emplaced during Paleozoic and Mesozoic (Fig. 1C;

Wu et al. 2011; Gou et al. 2017).

3 Deposit geology

3.1 Ore district geology

The Xiaokele porphyry Cu (–Mo) deposit is located

* 20 km north of Tayuan Town in Heilongjiang Province

(Fig. 1C). From old to young, the outcropping strata in this

area are mainly the Neoproterozoic–Lower Cambrian

cFig. 1 A Location of the Central Asian Orogenic Belt (Jahn et al.

2000). B Geological map of NE China (Chen et al. 2012). Fault

abbreviations: F1, Mongol–Okhotsk; F2, Tayuan–Xiguitu; F3,

Hegenshan–Heihe; F4, Mudanjiang–Yilan; F5, Solonker–Xar

Moron–Changchun–Yanji; F6, Jiamusi–Yilan; F7, Dunhua–Mishan.

C Geological map of the northern Great Xing’an Range ( modified

from Deng et al. 2019b), showing the distribution of major deposits
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Jixianggou and Dawangzi Formations, Upper Jurassic

Baiyingaolao Formation, and Quaternary sediments

(Fig. 2A). The Jixianggou Formation is mainly composed

of phyllite, schist, marble, slate, feldspar-bearing quartz

siltstone, and metamorphic sandstone. The Dawangzi

Formation is mainly composed of metamorphosed inter-

mediate–basic lava interbedded with metamorphosed

acidic lava and slate. The main rocks in the Baiyingaolao

Formation are rhyolitic tuff and rhyolite, which rests

unconformably on the Dawangzi and Jixianggou Forma-

tions. The Xiaokele Cu (–Mo) deposit is located near the

junction of the NNW–trending Dawusu River and NEE–

trending Xiaokele River faults (Fig. 2A). Multiphase

intrusive rocks are developed in the Xiaokele mining area,

including the early Permian syengranite (292.5 ± 0.9 Ma,

Sun et al. 2020b), Late Jurassic granodiorite porphyry

(150.0 ± 1.6 Ma), and diorite porphyrite

(147.9 ± 1.3 Ma), and Early Cretaceous granite porphyry

(123.2 ± 1.7 Ma) (Deng et al. 2019a). The granodiorite

porphyry, whose outcrop area is * 1.6 km2 (Fig. 2A), is

considered as the ore-bearing rocks and is closely related to

the associated hydrothermal alteration of this deposit. The

granodiorite porphyry is gray-white and exhibits por-

phyritic texture, it consists of 65%–70% phenocrysts and

30%–35% fine-grained groundmass (Fig. 3A, B).

Phenocrysts are dominantly composed of quartz (25%–

30%), plagioclase (25%–30%), alkali-feldspar (5%–10%;

including perthite and orthoclase), biotite (* 5%), and

hornblende (\ 5%), with minor accessory sphene (1%–2%)

(Fig. 3C), the groundmass has the same composition as the

phenocrysts.

3.2 Alteration and mineralization

Based on drilling, mineralization is mainly located at the

top and center part of the granodiorite porphyry in the

Xiaokele porphyry Cu (–Mo) deposit (Fig. 2B). The ore-

bodies are generally 100–1050 m long and 4–112 m thick

(Fig. 2B). Three alteration zones can be divided, from

center to edge, into potassic, phyllic, and propylitic alter-

ation zones (Fig. 2B). The potassic alteration zone is

mainly distributed in the center of the granodiorite por-

phyry (Fig. 2B), and potassic alteration is characterized by

secondary biotite and K-feldspar (Fig. 3D). The potassic

alteration zone mainly contains magnetite, hematite, chal-

copyrite, and molybdenite (Fig. 3D–F). Phyllic alteration is

characterized by secondary quartz and sericite (Fig. 3G,

H). Phyllic alteration overprinted the preexisting potassic

alteration. Pyrite, chalcopyrite, and molybdenite are

developed in the phyllic alteration zone (Fig. 3G, H). The

Fig. 2 A Geological map of the Xiaokele Cu (–Mo) deposit (modified from Qiqihaer Institute of Geological Exploration (QIGE 2018).

B Geological sections along the A–B exploration lines of the Xiaokele Cu (–Mo) deposit with sample locations as indicated (modified from

QIGE, 2018). Abbreviations: Pot = potassic alteration zone; Phy = phyllic alteration zone; Pro = propylitic alteration zone.
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propylitic alteration zone forms at the periphery of the

deposit. It is characterized by chlorite, epidote, and calcite,

with minor disseminated pyrite (Fig. 3I). Most Cu–Mo

mineralization occurs in the middle-upper part of the

potassic alteration zone and the lower part of the phyllic

alteration zone (Fig. 2B).

4 Analytical methods

4.1 Zircon U–Pb dating

Zircon crystals were separated from the granodiorite por-

phyry samples using standard heavy liquid and magnetic

techniques, and then the zircon crystals were handpicked

under a binocular microscope at the Shangyi Geologic

Service, Langfang, China. All zircon crystals were exam-

ined by Cathode Luminescence (CL) imaging to reveal

their internal structures. Laser ablation inductively coupled

mass spectrometry (LA–ICP–MS) zircon U–Pb dating and

trace element analyses were undertaken at Yanduzhongshi

Geological Analysis Laboratories, Beijing. The laser

ablation system is New Wave UP213 and ICP-MS is

Aurora M90. Analyses were carried out with a beam

diameter of 30 lm, ablation rate of 10 Hz, and energy

density of 2.5 J/cm2. Detailed experimental testing proce-

dures were described by Yuan et al. (2004). Helium was

used as the carrier gas, and argon was used as compensa-

tion gas. Zircon 91,500 was used as the external standard

for U–Pb dating. Trace element compositions of zircon

Fig. 3 Photographs and photomicrographs of granodiorite porphyry and representative hydrothermal alteration features in the Xiaokele Cu (–

Mo) deposit. A Hand specimen of granodiorite porphyry. B–C) Photomicrographs of granodiorite porphyry. D Quartz ? magnetite ? chal-

copyrite assemblage in potassic-altered granodiorite porphyry. E Magnetite, hematite, and minor chalcopyrite in the potassic-altered wall rock.

F Quartz ? molybdenite vein with K-feldspar alteration halos. G Disseminated molybdenite, chalcopyrite, and pyrite associated with intensive

phyllic alteration. H Phyllic alteration, with the alteration assemblage of quartz and sericite. I Propylitic alteration with minor disseminated

pyrite in granodiorite porphyry. Abbreviations: Qz = quartz; Kfs = K-feldspar; Bt = biotite; Pl = plagioclase; Spn = sphene; Ep = epidote;

Ser = sericite; Hem = hematite; Mt = magnetite; Py = pyrite; Ccp = chalcopyrite; Mo = molybdenite
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crystals were quantified using SRM610 as an external

standard, and Si was used as an internal standard (Liu et al.

2010a). Correction of common Pb was evaluated using the

method described by Andersen (2002). The ICP–MS

DATECAL program was used to calculate isotopic data

and elemental contents (Liu et al. 2008). Isoplot/Ex_ver3

was used to perform age calculations and generate Con-

cordia diagrams (Ludwig 2003). The uncertainties for

individual analyses are quoted at the 1r confidence level.

Zircon U–Pb dating and zircon trace element composition

data are presented in Table S1 and Table S2, respectively.

4.2 Whole-rock major and trace element analyses

Eight granodiorite porphyry samples were sampled distal

to the location of mineralization and alteration. The

freshest parts of the samples without alteration were

selected for whole-rock geochemistry analysis before being

crushed to 200 mesh. All whole-rock geochemistry analy-

ses were conducted at the Key Laboratory of Mineral

Resources Evaluation in Northeast Asia, Ministry of Land

and Resources, Jilin University, Changchun, China. Major

element compositions were determined by X-ray fluores-

cence (XRF) spectroscopy and fused glass disks. Trace

element compositions were determined by an Agilent

7500a ICP–MS after the sample powders were dissolved in

HF in Teflon bombs. The analytical precision was better

than 5% for major elements, and was better than 10% for

trace elements, as estimated by using the international

standards BHVO-2 and BCR-2, and national standards

GBW07103 and GBW07104. The analytical results of

major and trace elements are listed in Table S3.

4.3 Zircon Hf isotopic analyses

Zircon Lu–Hf isotope analysis was carried out in-situ by

using an NWR193 laser-ablation microprobe (Elemental

Scientific Lasers LLC), attached to a Neptune multicol-

lector ICP-MS at Yanduzhongshi Geological Analysis

Laboratories, Beijing, China. The ablation spots for the Hf

isotope analyses were located over the positions on the

zircon crystals previously analyzed for zircon U–Pb dating.

We adopted a beam diameter of 40 lm, ablation time of

31 s, ablation rate of 8 Hz, and energy density of 16 J/cm2.

Detailed instrumental conditions, analytical procedures,

and data acquisition techniques were comprehensively

described by Wu et al. (2006). Zircon 91,500 and Plesovice

were used as the reference standards during our routine

analyses. Hf isotopic composition data are listed in

Table S4.

5 Analytical results

5.1 Zircon U–Pb ages and geochemistry

Zircons from the granodiorite porphyry samples are gen-

erally columnar (Fig. 4A). All analyzed zircons were

euhedral to subhedral. Their oscillatory growth zoning, the

Th/U ratios (0.80–1.30), and pronounced positive Ce

anomalies (Fig. 4B) indicate a magmatic origin (Hoskin

2005). Fourteen zircons yielded 206Pb/238U ages of

152–145 Ma and a weighted-mean age of 148.8 ± 1.1 Ma

(MSWD = 1.12; n = 14) (Fig. 4C, D). These results indi-

cate that the granodiorite porphyry formed during Late

Jurassic.

5.2 Whole-rock major and trace element

compositions

The eight analyzed granodiorite porphyry samples display

relatively high SiO2 (63.01–65.70 wt.%), Al2O3

(15.83–16.43 wt.%), K2O (2.79–3.32 wt.%), and Na2O

(4.90–5.54 wt.%), and low TiO2 (0.54–0.73 wt.%), and

MgO (1.18–1.36 wt.%). The granodiorite porphyry sam-

ples belong to the high-K calc-alkaline series (Fig. 5A).

A/CNK ratios of 0.82–0.94 display metaluminous charac-

teristics (Fig. 5B), with geochemical compositions similar

to the published Late Jurassic-Early Cretaceous subducting

oceanic crust-derived adakitic rocks in the northern GXR

(Fig. 5; Deng et al. 2019a, b; Xu et al. 2020).

The chondrite-normalized REE patterns of all the gra-

nodiorite porphyry samples are slightly enriched in light

rare-earth elements (LREEs) with respect to heavy rare-

earth elements (HREEs) and show weak negative Eu

anomalies (Eu/Eu* = 0.80–0.91) (Fig. 6A). In the primitive

mantle-normalized spider diagram (Fig. 6B), the granodi-

orite porphyry samples are depleted in Nb, Ta, and Ti and

enriched in Rb, Ba, and K. These geochemical composi-

tions are also in accordance with the published Late

Jurassic-Early Cretaceous subducting oceanic crust-derived

adakitic rocks in the northern GXR (Fig. 6; Deng et al.

2019a, b; Xu et al. 2020).

5.3 Zircon Hf isotopic compositions

Fourteen magmatic zircons from the granodiorite porphyry

samples were analyzed for Lu–Hf isotopes, yielding initial
176Hf/177Hf ratios of 0.282692–0.282744 and positive

eHf(t) values of 0.4–2.2 (Fig. 7), with corresponding TDM1

and TDM2 ages of 786–708 Ma and 1045–942 Ma,

respectively (Table S4). The eHf(t) values plot in the field

between the depleted mantle line and the chondrite evo-

lution line (Fig. 7), similar to eHf(t) values of the

Acta Geochim (2021) 40(5):702–717 707
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Phanerozoic magmatic rocks in the east CAOB (Fig. 7A;

Yang et al. 2006).

6 Discussion

6.1 Age of magmatism and mineralization

Deng et al. (2019a) showed that the zircon U–Pb ages of

rhyolite, granodiorite porphyry, diorite porphyrite, and

granite porphyry associated with the Xiaokele Cu (–Mo)

deposit are 152.5 ± 1.7, 150.0 ± 1.6, 147.9 ± 1.3, and

123.2 ± 1.7 Ma, respectively. This evidence indicates that

the granodiorite porphyry was emplaced after the rhyolite

but before the granite porphyry and diorite porphyrite.

Observations of the intrusive relationships between mag-

matic rocks also support this conclusion. The granodiorite

porphyry intruded into the Baiyingaolao Formation rhyo-

lite/rhyolitic tuff and was subsequently intruded by the

granite porphyry and diorite porphyrite dykes (Fig. 2A, B).

In this study, the Xiaokele granodiorite porphyry yielded

a weighted-mean age of 148.8 ± 1.1 Ma (Fig. 4D), which

coincides well with molybdenite Re-Os isochron age

(148.5 ± 1.5 Ma; Feng et al. 2020a, b). In addition, Cu (–

Mo) mineralization is mainly hosted within granodiorite

porphyry (Fig. 2B). Based on the evidence, we conclude

that the Late Jurassic granodiorite porphyry most likely

caused porphyry Cu (–Mo) mineralization in the Xiaokele

Cu (–Mo) deposit.

Fig. 4 A Cathode luminescence microphotographs of zircons for the granodiorite porphyry from the Xiaokele deposit. B Chondrite-normalized

REE pattern of zircons for the granodiorite porphyry. The chondrite values are from Boynton (1984). C, D Zircon U–Pb Concordia diagram and

weighted mean 206Pb/238U ages for the granodiorite porphyry from the Xiaokele deposit
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6.2 Petrogenesis of the Xiaokele ore-bearing

granodiorite porphyry

The Xiaokele granodiorite porphyries have high SiO2

(63.01–65.70 wt.%, [ 56.0 wt.%), Al2O3

(15.83–16.43 wt.%,[ 15.0 wt.%), Sr (918–1196 ppm,

[ 400 ppm), Sr/Y ratios (141–160), and low Y

(5.76–7.76 ppm, \ 18 ppm) and Yb (0.45–0.64 ppm,

\ 1.9 ppm), as well as weakly negative Eu anomalies (Eu/

Eu* = 0.80–0.91), showing a geochemical affinity to ada-

kites (Defant and Drummond 1990; Kay and Kay 1993;

Kay et al. 1993). All the Xiaokele granodiorite porphyry

samples plot in the typical adakitic rocks field in the YbN

versus (La/Yb)N and Y versus Sr/Y geochemical classifi-

cation diagrams (Fig. 8A, B). Adakitic magmas can be

produced by partial melting of subducted oceanic slabs

(Defant and Drummond 1990; Martin et al. 2005), assim-

ilation–fractional crystallization (AFC) processes of

Fig. 5 A SiO2 vs. K2O plot and B A/CNK vs. A/NK plot for the granodiorite porphyry from the Xiaokele deposit. Data for the Late Jurassic

subducting oceanic crust-derived adakitic rocks in the northern GXR are from Deng et al. (2019a) and Deng et al. (2019b), whereas data for the

Early Cretaceous subducting oceanic crust-derived adakitic rocks in the northern GXR are from Xu et al. (2020)

Fig. 6 A Chondrite-normalized REE patterns and B primitive mantle-normalized spider diagrams for the granodiorite porphyry from the

Xiaokele deposit. The chondrite values are from Boynton (1984), the primitive mantle values are from Sun and McDonough (1989). Data for the

Late Jurassic-Early Cretaceous subducting oceanic crust-derived adakitic rocks in the northern GXR are from the same data sources as in Fig. 5
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basaltic magmas (Castillo et al. 1999; Macpherson et al.

2006), mixing between crustal and mantle magma (Guo

et al. 2007; Richards and Kerrich 2007; Streck et al. 2007),

partial melting thickened mafic lower continental crust

(LCC) (Atherton and Petford 1993; Condie 2005; Deng

et al. 2018), partial melting of subducted continental crust

(Wang et al. 2008, 2010), or partial melting of the

delaminated LCC (Kay and Kay 1993; Xu et al. 2002; Hou

et al. 2007; Kadioglu and Dilek 2010).

The negligible Eu anomalies indicate little or no pla-

gioclase fractionation (Macpherson et al. 2006). The high-

pressure fractional crystallization (HPFC) of a garnet-

bearing assemblage from parental basaltic melts will

commonly exhibit a positive relationship of SiO2 with

either Dy/Yb or Sr/Y ratios (Macpherson et al. 2006), but

the adakitic rocks show no such correlations (Fig. 8C, D).

Hornblende fractionation would result in high Sr/Y ratios,

but there are no correlations between SiO2 and Sr/Y

(Fig. 8D). We propose that partial melting played a dom-

inant role in magma formation based on a similar compo-

sitional trend to the partial melting process (Fig. 8E, F). In

addition, there is no large volume of coeval mafic rocks in

the Xiaokele area, excluding the possibility for the gener-

ation of adakitic magma through AFC processes (Deng

et al. 2019a; Feng et al. 2020a). Mixing between crustal

and mantle magma would result in magmatic rocks with a

wide range of geochemical characteristics, but the gran-

odiorite porphyries have relatively homogenous whole-

rock geochemical and zircon Hf isotopic compositions.

Moreover, mafic microgranular enclaves (MMEs) are

absent in the granodiorite porphyries, further indicating

that they were not derived from mixed magma.

Partial melting of delaminated mafic LCC would pro-

duce adakites with high MgO, Cr, and Ni contents and Mg#

values as a result of reaction with surrounding mantle

peridotites (Xu et al. 2002; Huang et al. 2008). However,

this is inconsistent with the low Cr (13.87–43.73 ppm) and

Ni (9.02–16.10 ppm) contents of the Xiaokele granodiorite

porphyries. In addition, the delamination of LCC is usually

confined to the regions which are undergoing crustal

extension (Wang et al. 2007). Delamination of LCC is

unlikely to occur because of simultaneous thrust-nappe

structure in the Mohe Basin (Chang et al. 2007) and strong

deformation of Late Mesozoic igneous rocks in the Erguna

Block (Tang et al. 2015). All the evidence suggests that the

GXR was controlled by a compressive regime during the

Late Jurassic–early Early Cretaceous. Accordingly, it

seems unlikely that the Xiaokele granodiorite porphyries

were derived from the partial melting of the delaminated

LCC.

The Xiaokele granodiorite porphyry samples are sodic

with Na2O = 4.90–5.54 wt.% and K2O = 2.79–3.32 wt.%.

Their K2O/Na2O ratios vary from 0.53 to 0.65 (aver-

age = 0.60). In the Al2O3 vs. K2O/Na2O diagram, they plot

in the area of oceanic slab-derived adakites for their low

K2O/Na2O ratios and high Al2O3 contents (Fig. 9A), which

are different from typical lower-crust-derived adakites with

high K2O/Na2O ratios (Xiao and Clemens 2007). The

Xiaokele granodiorite porphyry samples display low (La/

Yb)N (average = 43.2) but high variable Sr/Y (141–160;

average = 152), which are also comparable to adakites

related to slab melting in subduction zones (Fig. 9B). In

addition, adakites derived from subduction zones can be

classified into two significantly different groups based on

SiO2 contents (Martin et al. 2005). The high-SiO2 (HSA;

Fig. 7 A Plots of zircon U–Pb ages vs. eHf(t) values for the granodiorite porphyry from the Xiaokele deposit. YFTB = Yanshan Fold-and-Thrust

Belt (Yang et al. 2006). B Close-up view of the distribution of samples in Fig. 7A
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Fig. 8 A YbN vs. (La/Yb)N (after Martin 1986), B Y vs. Sr/Y (after Defant and Drummond 1990), C SiO2 vs. Dy/Yb, D SiO2 vs. Sr/Y, E La vs.

La/Sm, and F La versus La/Yb diagrams for the granodiorite porphyry from the Xiaokele deposit. Data for the Late Jurassic-Early Cretaceous

subducting oceanic crust-derived adakitic rocks in the northern GXR are from the same data sources as in Fig. 5
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SiO2[ 60%, MgO = 0.5–4 wt.%) adakites formed

through subducted basaltic slab-melts that reacted with

peridotites during ascent through the mantle wedge. The

low-SiO2 (LSA; SiO2\ 60%, MgO = 4–9 wt.%) adakites

formed through melts of peridotitic mantle wedge that was

modified by reaction with felsic slab-melts (Martin et al.

2005). In the discrimination diagrams for HSA and LSA

(Fig. 9C-F), the Xiaokele granodiorite porphyry samples

are mainly distributed in the HSA field, indicating an

interaction between slab-derived melts and mantle peri-

dotites. Regionally, the Late Jurassic-Early Cretaceous

adakitic rocks in the northern GXR (Fig. 8A, B) show

geochemical characteristics similar to the Xiaokele gran-

odiorite porphyry (Figs. 5, 6), they were suggested to be

produced by partial melting of an oceanic slab (Fig. 9;

Deng et al. 2019a, b; Xu et al. 2020).

However, the lower zircon eHf(t) values of the Xiaokele

granodiorite porphyries relative to the depleted mantle

(Fig. 7) suggest that ancient crustal materials were

involved in the genesis of the Xiaokele granodiorite por-

phyries besides the subducted MORB. These crustal

materials may be continental crust materials added through

crustal contamination or magma mixing, or the subducted

marine sediments added in the source during slab melting

(Deng et al. 2019c; Qi et al. 2020). The model of magma

mixing is not favored as mentioned above. No xenocrystic

zircons were found in the Xiaokele granodiorite porphyry

samples, suggesting that negligible crustal contamination

occurred during magma ascent. Thus the ancient crustal

materials added in the source of the Xiaokele granodiorite

porphyries are most likely the subducted marine sediments.

The marine sediments generally display high Sr and Nd

contents, and highly enriched radiogenic isotopic compo-

sitions, thus the Sr–Nd isotopic compositions of adakites

derived from oceanic crust can be enriched through the

addition of a small number of marine sediments in the

source (Elliott et al. 1997; Wang et al. 2013). The Xiaokele

granodiorite porphyries have slightly enriched Sr–Nd iso-

topic compositions [(87Sr/86Sr)i = 0.7055–0.7057, eNd(-

t) = - 1.17–- 0.27] (Deng et al. 2019a), suggesting the

involvement of marine sediments in the source. Sr–Nd

isotopic data of the Xiaokele granodiorite porphyries and

Jurassic granitoids in the GXR appear the trend towards the

EMII end member, and similar to the typical trend of

marine sediments (Hofmann 2003), also reflecting the

significant role of marine sediments in their source

(Fig. 10). Moreover, marine sediments generally display

high Th contents (Hawkesworth et al. 1997), thus Th

contents could be increased by the involvement of marine

sediments in the magma source (Woodhead et al. 2001). In

the Ba/La versus Th/Yb diagram (Fig. 11), the Xiaokele

granodiorite porphyries display trends characteristic of

sediments or sediment melts, further indicating the

involvement of marine sediments.

Therefore, based on the above discussion, we suggest

that the Xiaokele granodiorite porphyries were produced

by partial melting of a subducted oceanic slab, with the

involvement of marine sediments in the source, followed

by interaction with the mantle peridotites during ascent

through the mantle wedge.

6.3 Implications for regional tectonic setting

The generation of Late Mesozoic magmatism in the GXR

has been debated to be related to the Paleo-Pacific (Zhang

et al. 2010; Hu et al. 2014; Liu et al. 2014; Shu et al. 2016)

or the Mongol–Okhotsk tectonic regime (Ying et al. 2010;

Xu et al. 2013; Tang et al. 2016; Chen et al. 2017b; Deng

et al. 2019b). However, the Late Jurassic–early Early

Cretaceous (150–130 Ma) porphyry Cu–Mo deposits in NE

China are spatially confined to the western part of the

Songliao Basin, and concentrated in the GXR and western

part of North China Craton, but not distributed in the

eastern part (Chen et al. 2017b; Zhang and Li 2017). This

scenario suggests a genetic relation to the evolution of the

Mongol–Okhotsk Ocean rather than the Paleo-Pacific

Ocean (Chen et al. 2017b). However, the subduction his-

tory of the Mongol–Okhotsk Ocean has not been well

constrained, some researchers propose that the Erguna

Block was in a post-orogenic extensional setting related to

the closure of the Mongol-Okhotsk Ocean during Late

Jurassic–Early Cretaceous (Mao et al. 2013; Li et al. 2014;

Han et al. 2020), while other researchers conclude that the

southwards subduction of the Mongol–Okhotsk Ocean

continues to occur during Late Jurassic–Early Cretaceous

(Zhang 2014; Deng et al. 2019a, 2019b; Zhang et al. 2019).

This is because the final closing time of the Mongol–

Okhotsk Ocean is still controversial, the Mongol–Okhotsk

Ocean might have finally closed during the Middle Jurassic

(Sun et al. 2013; Li et al. 2018) or the Late Jurassic–Early

Cretaceous (Zonenshain and Kuzmin 1997; Metelkin et al.

2010; Pei et al. 2011; Yang et al. 2015).

Extensive paleomagnetic studies have shown that the

Mongol–Okhotsk Ocean was still thousands of kilometers

wide in the Late Jurassic and finally closed in the Early

Cretaceous (Cogné et al. 2005; Pei et al. 2011). Zhang et al.

(2019) proposed that the middle sector of the Mongol–

Okhotsk Ocean did not close until 110 Ma based on a

compilation of updated paleomagnetic data in support of

the latest Early Cretaceous final ocean closure. Therefore,

these multiple lines of evidence strongly suggest that the

Mongol–Okhotsk oceanic slab may have maintained

southward subduction in the Late Jurassic. This conclusion

can also be supported by studies of petrogeochemistry on

Late Jurassic porphyry deposits in the northern GXR. The
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Fig. 9 A Al2O3 vs. K2O/Na2O, B (La/Yb)N vs. Sr/Y, C SiO2 vs. MgO, D TiO2 vs. Cr/Ni, E (CaO ? Na2O) vs. Sr, and F Y vs. Sr/Y diagrams for

the granodiorite porphyry from the Xiaokele deposit. Figure 9C, F is after Martin et al. (2005). The field of adakites derived from the thickened

lower continental crust (LCC) in the Dabie orogeny is from Wang et al. (2007), He et al. (2010), and Liu et al. (2010b); the field of adakites

derived from oceanic slab melting is from Kamei et al. (2009). Data for the Late Jurassic-Early Cretaceous subducting oceanic crust-derived

adakitic rocks in the northern GXR are from the same data sources as in Fig. 5. Abbreviations: HSA = high-SiO2 adakitic rocks; LSA = low-

SiO2 adakitic rocks
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published whole rocks geochemical data for Late Jurassic

quartz diorite porphyries associated with Cu (Mo) miner-

alization in the Fukeshan deposit indicate that they possibly

derived from the melting of an oceanic slab, forming in the

subduction tectonic setting related to Mongol–Okhotsk

oceanic slab tectonic activities (Deng et al. 2019b).

Moreover, in this study, Late Jurassic adakitic ore-bearing

granodiorite porphyries in the Xiaokele porphyry Cu (–Mo)

deposit belong to adakitic rocks, also derived from the

partial melting of subducted oceanic crust, such that the

Xiaokele deposit is most likely the product of southward

subduction of the Mongol–Okhotsk Ocean. Therefore, Late

Jurassic porphyry deposits are extremely likely to be

related to intermediate-felsic porphyritic intrusions with

subduction-related geochemical features and are inter-

preted to be the product of the southward subduction of the

Mongol–Okhotsk oceanic plate (Zhang and Li 2017; Deng

et al. 2019a; Guo et al. 2020).

7 Conclusions

(1) LA–ICP–MS zircon U–Pb dating shows that the

Xiaokele granodiorite porphyries were emplaced at

148.8 ± 1.1 Ma.

(2) The Xiaokele ore-bearing granodiorite porphyries

are adakites produced by partial melting of the

subducted oceanic slab, with involvement of marine

sediments in the magma source, followed by inter-

action with the mantle peridotites during ascent

through the mantle wedge.

(3) The Xiaokele granodiorite porphyries were the

product of the southward subduction of the Mon-

gol–Okhotsk Ocean.
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