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Abstract As a part of a giant trending fault system in the

Asian continent and one where a strong zone of left strike-

slip fault is present, the Altyn Orogenic belt (AOB) has

become an important focus for research. Magmatic rocks

are widely distributed across the AOB. However, many

investigations have focused primarily on Paleozoic igneous

rocks; discussion of Mesozoic related igneous activity is

often ignored. Here we present the result of studies of

representative diorite and granite rocks outcropping in the

AOB, within the Xinjiang Uygur Autonomous Region,

South Altyn, China. We present new zircon LA-ICP-MS

U–Pb age, geochemical, and Sr–Nd–Pb–Hf isotopic data

for these sample suites, identifying them as typical igneous

rocks formed between 238 ± 1.5 and 238.8 ± 1.1 Ma.

The rocks that we studied fall into the alkaline series, also

enriched in light rare earth elements (LREE), some large

ion lithophile elements (LILE; e.g., Rb, Ba, Sr, and K), Pb,

Th and U, and depleted in heavy rare earth elements

(HREE), Nb, Ta, Hf, and Ti. The granite and diorite have

high initial 87Sr/86Sr ratios (0.7062–0.7114), negative eNd

(t) values (- 8.8 to - 11.3), eHf (t) values (- 8.7 to

- 18.7), and relatively constant Pb isotopic ratios ((206-

Pb/204Pb)i = 6.74–17.884, (207Pb/204Pb)i = 15.51–15.58,

and (208Pb/204Pb)i = 35.36–38.04), respectively. This

suggests that the magmas parental to these rocks were

generated from the partial melting of the ancient crust. The

parental magmas to these rocks experienced a degree of

fractionation of plagioclase, K-feldspar, and hornblende,

possibly during rapid magma ascent. Based on these

studies, we propose a reasonable model for the origin of the

investigated rocks from the Xinjiang Uygur Autonomous

Region of South Altyn, which involves crustal thickening,

lithospheric extension, and asthenosphere upwelling, that

induced crustal melting.

Keywords Altyn orogenic belt � Zircon U–Pb dating �
Geochemistry, Sr–Nd–Pb–Hf isotope � Origin

1 Introduction

The Altyn orogenic belt (hereafter AOB) is located at the

southwest margin of the Central Asian orogenic belt. It is a

complex orogenic belt composed of a series of continental

blocks, island arcs, and accretionary units, that extends for

* 1000 km across China, Russia, Kazakhstan and Mon-

golia (Li et al. 2020). Moreover, this composite orogenic

belt comprises geological units of different geological

periods, a variety of structural levels and that formed in

distinct tectonic environments. The dominant structures

within the AOB are those located in the northern margin of

the Qinghai-Tibet Plateau, the southeast margin of the

Tarim Basin, the western margin of the Qaidam Basin and

the Qilian Kunlun orogenic belt (Luo et al. 2009), whereas

the southern part of the belt is limited by the giant Altyn

sinistral fault (Wu et al. 2016). From north to south, the

AOB can be subdivided into five tectonic units: the North

Altyn Block, the North Altyn ophiolitic melange belt, the

middle Altyn massif, the South Altyn high pressure and
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ultra-high- pressure (HP–UHP) metamorphic belt, and the

Apa-Mangya ophiolite tectonic melange belt (Che and Sun

1996; Wang 1997; Xu et al. 1999; Cui et al. 2002; Liu et al.

2009a, b, 2015; Yang et al. 2012; Wang et al. 2011; Kang

et al. 2013; Chen 2018).

The AOB experienced Archean to Paleoproterozoic

continental core and crystalline basement formation (Lu

and Yuan 2003), plate convergence and collision in the

early Neoproterozoic (Qin et al. 2006), plate expansion in

the late Neoproterozoic to Early Paleozoic (Liu et al. 1998,

1999), followed by Caledonian plate subduction and col-

lision (Liu et al. 2015; Kang et al. 2016a, b; Wu et al. 2018)

and lastly, late Yanshanian large-scale, sinistral faulting

(Guo et al. 2008; Wu et al. 2013). As an important part of

the northern margin of the Qinghai-Tibet Plateau, the main

fault of the southern Altyn Tagh (hereafter South Altyn)

forms a principal zone of sinistral faulting in Central Asia.

As such, a comprehensive understanding of the formation

and evolution history of the South Altyn is of great sci-

entific significance to the division of geological structures

in both Northwest China and the Central Asian continent

(Wang et al. 2019). For example, this complex tectonic belt

owes its formation to the subduction and collision of paleo-

plates (or blocks) in the Early Paleozoic and experienced a

convoluted tectonic evolution process in the Mesozoic

(Chen et al. 1995, 1998; Liu et al. 1996; Zhang et al. 1999a,

b, 2001a, b, c; Xu et al. 1999; Cui et al. 1999; Ni et al.

2008; Kang et al. 2013; Li et al. 2015). The Early Mesozoic

(Triassic) outcrops in this area experience uplift and

denudation, while the Middle and Late Mesozoic (Jurassic

to Cretaceous) resulted in rifting and a stage of sedimen-

tation (Huang et al. 2004). In recent years, the South Altyn

area has become a hot spot for geologists (Zhao et al.

2018). However, the related research has mainly focused

on the high-pressure and ultra-high-pressure metamor-

phism (Liu et al. 1997, 1998, 2002, 2003,

2004, 2005, 2007a, b, c, 2009a, b, c, 2012; Zhang et al.

1999a, 2001a, b, 2002a, b, 2004, 2005; Zhang and Meng

2005; Cao et al. 2009; Wang et al. 2011), ophiolites (Li

et al. 2009; Ma et al. 2009), and intermediate felsic intru-

sive rock (Zhang et al. 1999a, b, 2001a, b, 2002a, b, 2007;

Cao et al. 2010; Tian 2009; Sun et al. 2012; Yang et al.

2012; Kang et al. 2013, 2016a, b; Wu et al. 2014, 2016; Liu

et al. 2015; Pan et al. 2016; Wang et al. 2019; Li et al.

2020). These studies have provided systematic scientific

evidence for the tectonic evolution of the south margin of

Altyn Tagh during the Nanhua Early Paleozoic Ocean and

transition. Nevertheless, research relating to magmatism

and igneous rocks are limited primarily to the Paleozoic

period (262–504 Ma); discussion of Mesozoic igneous

activity has largely been ignored. Because of this, our

paper aims to study and discuss the nature and significance

of Mesozoic granite and diorite at Qiemo County, southern

margin of the Altyn sinistral Fault Zone. These investiga-

tions include zircon U–Pb dating, whole-rock major and

trace element compositions, coupled to Sr–Nd–Pb isotope

and zircon Hf isotope studies. Based on the above research,

a credible genetic age and origin are reasonably

determined.

2 Regional geological background and sample
petrological characteristics

The protracted evolution of the AOB includes this having

experienced ancient Archean crust formation and multi-

stage magmatic activities, strong transformation, and

intermediate-mafic magmatism during the Paleoprotero-

zoic (2.5–1.8 Ga), Neoproterozoic (1.0–0.8 Ga) collisional

orogeny and large-scale magmatism (Wang et al.

2006, 2011; Liu et al. 2009a, b, c), as well as, complex,

structural belt formation by subduction and collision of

ancient plates (or blocks) in the Early Paleozoic, that were

later transformed by a Mesozoic–Cenozoic sinistral fault

system. The South Altyn is located between the southern

Altyn sinistral Fault and the southern margin fault of Altyn

(Liu et al. 1998; Wang et al. 1999), it differs from the Sulu-

Dabie ultra-high pressure metamorphic belt which repre-

sents an area of deep subduction collision within the

Yangtze Craton (Suo et al. 2004).

The present study area is located in the complex rock of

the Ananmanya tectonic belt (Fig. 1), mainly comprising

old metamorphic rocks (500–1000 Ma; granite and granite

gneiss; Liu et al. 2007a, 2015; Lu et al. 2008; Wang et al.

2008; Song et al. 2012; Fan et al. 2019), such as the Paleo-

Proterozoic Altyn Group, middle Proterozoic Bashkorgan

Group, and the Neoproterozoic Solcuri Group, as well as,

Mesozoic-Jurassic, Cenozoic-Paleogene, Neogene and

Quaternary systems. Mafic–ultramafic rocks and interme-

diate-felsic rocks of the Jinning, Caledonian, Hercynian,

and Yanshanian periods are very well developed in the

study area, and they are distributed in a beaded pattern

along the southern edge of the South Altyn, forming rela-

tively large rock units. In addition, intermediate-felsic

rocks are mainly distributed in the southern part of the

main fault zone.

Samples for this study were collected at outcrop from

Chimo County, South Altyn in the Xinjiang Uygur

Autonomous Region, China (Fig. 1). The diorite (sample

17A-44-1-10) has a semi-autochthonous medium-fine-

grained equigranular structure. Its mineral composition

includes plagioclase, K-feldspar, hornblende, biotite, and

minor quartz (\ 5 %) (Fig. 2). Locally, diorite is com-

monly observed interlayered with marble (* 4.0 m). The

sample 17A-44-1 is selected for zircon separation. In

contrast, the granite (e.g., porphyritic granite, K-feldspar

Acta Geochim (2020) 39(5):698–716 699

123



granite, and gneissose granite) (sample 17A-45-1-12) has a

coarse-grained equigranular structure, and its mineral

composition includes semi-autochthonous quartz

(45–50 %, 0.2–1.0 cm), autochthonous- semi-au-

tochthonous K-feldspar (35–40 %) and plagioclase

(5–10 %) (Fig. 2). Some outcrops of the porphyritic granite

have obvious mylonitization and are cut by mafic intru-

sions (dykes), whereas the gneissose granites have xeno-

liths within of dark gabbro. Both the dark inclusions and

granites have suffered deformation, and each contains

tourmaline. And the sample 17A-45-3 is selected for zircon

separation.

Fig. 1 a Tectonic divisions of west China (Liu et al. 2012), b geological and tectonic map of the Altyn Tagh Orogen (Liu et al. 2012), and

c geological map of the southeastern Altyn
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3 Analytical procedures

3.1 U–Pb dating by laser-ablation-inductively

coupled plasma-mass spectrometry (LA-ICP-

MS) methods

Zircon from five of the investigated Xinjiang Uygur

Autonomous Region samples was separated using con-

ventional heavy liquid and magnetic techniques. Repre-

sentative zircon grains were then hand-picked under a

binocular microscope before being mounted in an epoxy

resin disc, polished, and then coated with gold, before the

analysis. Individual crystals were studied using optical

microscopy techniques and under cathodoluminescence

(CL) to aid in characterization and to reveal any internal

features. CL imaging (Fig. 2) and the U–Pb analyses were

undertaken by LA-ICP-MS methods at the State Key

Laboratory of Continental Dynamics, Xi’an, China. The

analytical procedures used were those as described in detail

in Harris et al. (2004); a spot diameter of 29 lm was used.

U–Th–Pb ratios and absolute abundances were determined

by reference to replicate measurements of a standard

TEMORA zircon and the NIST 610 glass standard (Figs. 3,

4).

3.2 Major elemental and trace elemental analyses

Whole-rock major element compositions were determined

using analytical Axioms-advanced X-ray fluorescence

(XRF) spectrometer at the State Key Laboratory of Ore

Deposit Geochemistry (SKLODG), Guiyang, China with

an analytical precision of better than 5 %. Trace element

compositions were determined by Inductively-coupled

plasma mass-spectrometry (ICP-MS) utilizing a Perkin-

Elmer ELAN DRC-e instrument at the SKLODG. Prior to

analysis, powdered samples (50 mg) were dissolved in

high-pressure Teflon bombs, using an HF ? HNO3 acid

attack for 48 h, at a temperature of * 190 �C (Qi et al.

2000). Signal drift was monitored during the analysis by

reference to an Rh internal standard. GBPG-1, OU-6, GSR-

1, and GSR-3 standards were additionally used for ana-

lytical quality control with a determined analytical preci-

sion of better than 5 %.

Fig. 2 Representative cathodoluminescence (CL) images for zircon

in the rocks from the Xinjiang Uygur Autonomous Region of South

Altyn

Fig. 3 The corresponding LA-ICP-MS U–Pb concordia diagrams for

the rocks studied from the Xinjiang Uygur Autonomous Region of

South Altyn
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3.3 Sr–Nd–Pb isotopic analyses

For Rb–Sr and Sm–Nd isotope analyses, sample powders

were spiked with mixed isotope tracers, following disso-

lution with HF ? HNO3 acids (in Teflon bombs). The

isotopes were separated by conventional cation-exchange

techniques. Isotopic measurements were performed using a

Finnigan Triton Ti thermal ionization mass spectrometer

(TIMS) at the SKLODG. Procedural blanks yielded con-

centrations of\ 200 pg for Sm and Nd, and\ 500 pg for

Rb and Sr, respectively. The mass fractionation corrections

for Sr and Nd isotopic ratios were based on
86Sr/88Sr = 0.1194 and 146Nd/144Nd = 0.7219. Analysis of

the NBS987 and La Jolla standards yielded the following

results: 87Sr/86Sr = 0.710246 ± 16 (2r), and
143Nd/144Nd = 0.511863 ± 8 (2r), respectively. Prior to

Pb isotopic analysis, Pb was separated and purified by

conventional cation-exchange techniques, using diluted

HBr as an eluent. Analysis of the NBS981 standard yielded

mean values for 204Pb/206Pb of 0.0896 ± 15, 207Pb/206Pb

of 0.9145 ± 8, and 208Pb/206Pb of 2.162 ± 2.

3.4 In-situ zircon Hf isotopic analysis

In-situ zircon Hf isotopic analyses were conducted using a

Neptune multi-collector system (MC-ICP-MS), equipped

with a 193 nm laser, at the Institute of Geology and Geo-

physics, Chinese Academy of Sciences in Beijing, China.

During the analysis, a laser repetition rate of 10 Hz at

100 mJ was used with spot sizes of 32 and 63 lm. Raw

count rates for 172Yb, 173Yb, 175Lu, 176(Hf ? Yb ? Lu),
177Hf, 178Hf, 179Hf, 180Hf, and 182W were collected and

isobaric interference corrections for 176Lu and 176Yb on
176Hf were determined precisely.176Lu was calibrated using

the 175Lu value and a correction was made to 176Hf. The
176Yb/172Yb value of 0.5887 and mean bYb value obtained

Fig. 4 Representative photomicrographs of the studied granitic rock from the Xinjiang Uygur Autonomous Region of South Altyn. Key: Q:

quartz, Pl: plagioclase, Bi: biotite, Hb: hornblende, Kfs: K-feldspar

702 Acta Geochim (2020) 39(5):698–716
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during Hf analysis on the same spot were applied for the

interference correction of 176Yb on 176Hf (Iizuka and Hir-

ata 2005). Details of the analytical techniques employed

are described in Xu et al. (2004) and Wu et al. (2006).

During the analysis, the determined 176Hf/177Hf and
176Lu/177Hf ratios of the standard zircon (91500) were

0.282300 ± 15 (2rn, n = 24) and 0.00030, respectively,

which are similar to the commonly accepted 176Hf/177Hf

ratio of 0.282302 ± 8 and 0.282306 ± 8 (2r) measured

using the solution method (Goolaerts et al. 2004; Wood-

head et al. 2004).

4 Results

4.1 Zircon U–Pb dating

Clean, prismatic grains of euhedral zircon in samples 17A-

44 and 17A-45 series display evident oscillatory zoning,

suggesting that these were the products of a crystallizing

magma. A total of 17 zircon grains provided a weighted

mean 206Pb/238U age of 238.8 ± 1.1 Ma (1r) (95 % con-

fidence interval, MSWD = 3.6) for 17A-44 (Table 1),

whereas 17 zircon grains from sample 17A-45 gave a

weighted mean 206Pb/238U age of 238.0 ± 1.5 Ma (1r)

(95 % confidence interval, MSWD = 5.2) (Table 1). These

determinations are the best estimates for the crystallization

ages of the investigated intermediate and felsic intrusive

rocks from the Xinjiang Uygur Autonomous Region. No

inherited zircon characteristics were observed in the

investigated sample populations.

4.2 Major and trace elements

Whole-rock geochemical data for the studied rocks are

presented in Tables 2 and 3. The diorite samples exhibit a

fairly narrow range of compositions (Table 2); each is

situated within the alkaline field in terms of the total alkali-

silica diagram (Fig. 5). By contrast, the granite samples

exhibit a relatively wide range of compositions (Table 2).

While all of the granite samples also fall into the alkaline

field in terms of the total alkali-silica diagram (Fig. 5a),

they additionally reside within the shoshonitic series field

in terms of a plot of Na2O versus K2O (Fig. 5b) and are

metaluminous (A/CNK = 0.7–1.0; Fig. 5c) in terms of

aluminum saturation (Maniar and Piccoli 1989; Ji et al.

2016). Moreover, all samples studied are characterized by

light rare earth element (LREE) enrichment and heavy rare

earth element (HREE) depletion, with a narrow range of

Eu/Eu* (0.73–1.05) and high (La/Yb)N ratios (61–169)

(Table 3 and Fig. 6a, b). On primitive mantle-normalized

trace element diagrams, the studied rocks show enrichment

in LILEs (i.e., Rb, Ba, Sr, K), Th, U and Pb, and depletion

for HFSEs (i.e., Nb, Ta, Hf, and Ti) (Fig. 6b).

4.3 Sr–Nd–Pb isotopes

Sr, Nd, and Pb isotopic data for 14 representative rocks

from this study are presented in Tables 4, 5 and Figs. 7, 8a,

b. The diorite samples exhibit a wide range in (87Sr/86Sr)i

values of between 0.7062 to 0.7090 and wide variation in

eNd (t) values, from - 9.1 to - 11.3. The granite samples

similarly exhibit a wide range in (87Sr/86Sr)i values of

between 0.705 to 0.7114 and wide variation in eNd (t) val-

ues, from - 8.8 to - 10.5. These data are suggestive of

source areas with slight enrichment. The investigated

diorite rocks display relatively constant Pb isotopic ratios

of: (206Pb/204Pb)i = 16.61–17.88, (207Pb/204Pb)i-

= 15.56–15.58 and (208Pb/204Pb)i = 37.47–38.04. The

investigated granite units also display relatively constant

Pb isotopic ratios of: (206Pb/204Pb)i = 17.03–17.76, (207-

Pb/204Pb)i = 15.45–15.55 and

(208Pb/204Pb)i = 37.10–37.69.

4.4 Zircon Hf isotope analysis

The results for zircon Hf isotope analyses in the studied

samples are listed in Table 6. Twenty-five spot analyses

were obtained for sample 17A-44, yielding very uniform

eHf (t) values of between -8.7 and -11.2, which corre-

spond to TDM2 model ages of between 1814 and 1976 Ma

(Figs. 9, 10). Twenty-five spot analyses were obtained for

sample 17A-45; they show a lower range of eHf (t) values

of between -14.5 and -18.7, corresponding to TDM2

model ages of between 2182 and 2440 Ma (Figs. 9, 10).

5 Discussion

As one of the most widely distributed rock types and an

important sign of continental crustal growth, intermediate-

felsic igneous rock, especially granite, is an excellent

window and research object in studies of the growth and

tectonism of continental crust (Xiao et al. 2005). For

example, based upon the study of granites in the Lachlan

fold belt of Australia, the classification of the S-type,

I-type, A-type, and M-type granites were proposed

(Chappell and White 1974; White and Chappell 1983).

A-type is used to describe felsic rocks, which in addition to

appearing in anorogenic tectonic settings, are more alka-

line. A-type granites appear to be polygenetic, with no

single process accounting for them all. Such magmas can

form through melting of the lower crust under conditions

that are usually extremely dry, or in the fractionation of

basaltic magma. M-type covers those granites that derive
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from mafic or intermediate magmas, generally sourced

from the mantle. These are rare, usually occurring only in

oceanic crust within an ophiolite suite, and mostly asso-

ciated with basalt and meta aluminous plagioclase granite.

In general, the aluminous saturation index (A/CNK; Man-

iar and Piccoli 1989) is used to delineate the boundary

between I-type (igneous protolith) granite and S-type

(sedimentary protolith) granite. Rocks with an A/CNK of

[ 1.1 are strongly peraluminous, and typically belong to

the S-type granite; a value for A/CNK of\ 1.1 is weakly

aluminous and representative of I-type granite.

5.1 The source of the Xinjiang Uygur Autonomous

Region magmas

The rocks investigated from Xinjiang Uygur Autonomous

Region are characterized by the following isotopic com-

positions: high (87Sr/86Sr)i = (0.7062–0.7114), (206Pb/204-

Pb)i = (16.74–17.88), (207Pb/204Pb)i = (15.51–15.58), and

(208Pb/204Pb)i = (35.36–38.04), negative eNd (t) and eHf

(t) values of (- 8.8 to - 11.3, and -8.7 to -11.2), and

high (La/Yb)N ratios of 61–169 (see Table 3, 4, 5, 6;

Figs. 6a, b, 7, 8a, b, 9, 10), implying that they were derived

from a relatively enriched magma source area. In addition,

the diorite and granite samples have negative eHf (t) (- 8.7

to - 11.2, and - 14.5 to - 18.7) relating to an older two-

stage model age (1.8–2.0 Ga, 2.2–2.4 Ga), which indicates

that the rocks likely derived from an ancient crustal source

(Taylor and McClennan 1985; Wu et al. 2007). This is

further supported by their higher SiO2 contents

(50.27–72.96, Table 2). Although the rocks studied have

similar REE, trace element and isotopic characteristics,

there are also some important differences. Such charac-

teristics indicate that the granite and diorite investigated

from Xinjiang Uygur Autonomous Region may have two

different sources or origins.

To decipher if and how mantle materials may have

participated in the genetic process of these rocks requires

some explanation. In general, there are two ways for

mantle material to influence a source area: 1. The mantle-

derived components can provide heat input to induce par-

tial melting of crustal materials and thereby produce a

spectrum of magma compositions, depending upon the

heterogeneity of source materials. As such, felsic magma

may directly be linked at its source to the formation of

diorite (Griffin et al. 2002; Kemp et al. 2007; Zhao et al.

2010, 2012). 2. The lower crust was formed through the

underplating of mantle-derived components, and then

partially melted to form diorite under the influence of later

thermal events (Jahn et al. 2000; Wu et al. 2006; Zheng

et al. 2007). Generally, the two-stage model ages of

igneous rocks are quite different from their metamorphic

Table 2 Major oxides (wt %) of the studied rocks from Xinjiang Uygur Autonomous Region of South Altyn

Sample Rock-type SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI Total Mg# T (�C)

17A-44-1 Diorite 50.27 0.98 18.36 9.76 0.09 3.68 5.81 4.43 3.78 1.02 0.95 99.15 45.4 754

17A-44-2 Diorite 52.35 0.86 20.94 6.32 0.08 2.10 5.15 5.27 2.93 0.59 2.54 99.13 42.2 759

17A-44-3 Diorite 51.83 0.95 18.40 8.56 0.13 3.01 5.61 4.30 3.16 1.04 2.22 99.20 43.6 845

17A-44-4 Diorite 52.14 1.02 19.62 6.73 1.02 2.13 5.23 5.32 3.15 0.61 2.33 99.30 41.1 899

17A-44-5 Diorite 52.16 0.95 19.58 6.81 0.82 2.36 5.25 5.41 3.22 0.55 2.14 99.25 43.3 771

17A-44-6 Diorite 51.85 0.93 18.64 8.42 0.12 2.95 5.36 4.34 3.19 1.02 2.35 99.17 43.5 754

17A-44-7 Diorite 51.93 0.85 18.72 8.24 0.11 2.84 5.43 4.36 3.24 0.96 2.45 99.13 43.1 849

17A-44-8 Diorite 52.15 0.98 19.61 6.65 0.91 2.24 5.32 5.34 3.16 0.57 2.41 99.34 42.6 899

17A-44-9 Diorite 52.42 0.83 21.05 6.28 0.06 1.93 5.04 5.32 2.95 0.56 2.83 99.27 40.3 863

17A-44-10 Diorite 50.33 0.95 18.42 9.62 0.07 3.45 5.78 4.45 3.82 0.94 1.35 99.18 44.1 889

17A-45-1 Granite 72.34 0.21 14.55 0.94 0.01 0.31 1.11 4.08 5.38 0.05 0.92 99.89 42.2 835

17A-45-2 Granite 72.70 0.12 14.55 0.56 0.01 0.19 0.99 4.29 5.27 0.03 1.00 99.71 42.8 787

17A-45-4 Granite 73.01 0.02 14.67 0.28 0.01 0.05 0.79 5.15 5.10 0.01 0.79 99.88 29.4 731

17A-45-5 Granite 65.67 0.36 15.58 2.45 0.07 0.75 2.38 4.33 7.44 0.11 0.62 99.73 40.1 905

17A-45-6 Granite 65.73 0.33 15.63 2.32 0.05 0.73 2.36 4.35 7.46 0.09 0.39 99.44 40.9 904

17A-45-8 Granite 66.14 0.28 15.65 2.23 0.05 0.74 2.35 4.34 7.45 0.08 0.35 99.66 42.2 909

17A-45-9 Granite 72.36 0.19 14.58 0.92 0.01 0.27 0.96 4.12 5.38 0.04 0.76 99.59 39.2 834

17A-45-11 Granite 72.65 0.13 14.53 0.58 0.03 0.22 1.02 4.24 5.25 0.05 0.92 99.62 45.5 797

17A-45-12 Granite 72.96 0.03 14.58 0.32 0.03 0.06 0.81 5.13 5.03 0.03 0.76 99.74 29.2 805
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ages; the possibility of the second mode of genesis thus is

plausibly ruled out in this study.

5.2 Fractional crystallization

On Harker plots (Fig. 11), with increasing SiO2 content,

MgO, TiO2, and Fe2O3 decrease, which shows a typical

Table 3 The trace elements analysis results (ppm) for the studied rocks from Xinjiang Uygur Autonomous Region of South Altyn

Sample Sc V Cr Ni Rb Sr Y Zr Nb Ba La Ce Pr Nd Sm Eu

17A-44-1 6.67 159 11.8 6.55 83.4 4730 19.2 112 7.57 8050 223 473 55.1 209 27.9 6.42

17A-44-2 5.66 79.9 80.3 26.2 78.1 825 11.3 95.1 5.72 4850 70.3 139 16.8 65.8 15.1 4.23

17A-44-3 15.6 149 35.1 38.7 172 3620 52.1 282 8.23 9180 331 765 92.0 352 51.8 11.4

17A-44-4 17.8 155 38.9 41.5 233 4010 59.2 465 10.1 8960 694 1310 142 464 60.7 12.9

17A-44-5 6.72 176 12.2 7.81 85.3 3215 21.3 123 7.64 7864 235 482 55.3 212 28.3 6.44

17A-44-6 5.78 82.3 91.5 28.4 81.4 763 12.4 98.4 5.82 4936 71.4 146 17.3 66.2 14.3 4.25

17A-44-7 15.8 153 35.4 39.5 175 3851 52.4 285 8.14 8940 342 772 92.3 356 52.4 11.6

17A-44-8 17.6 158 39.3 41.8 242 3935 60.4 473 10.4 8855 708 1262 145 471 61.2 13.3

17A-44-9 16.4 162 35.6 40.6 183 3462 52.6 295 8.32 8815 352 786 93.4 368 52.6 12.2

17A-44-10 18.1 165 40.2 42.3 245 3528 60.6 482 10.3 8685 723 1355 153 484 62.3 13.5

17A-45-1 1.38 6.87 2.05 0.77 158 532 5.40 170 5.59 5266 243 481 56.3 213 32.30 6.45

17A-45-2 0.62 4.89 4.84 1.16 158 398 6.86 99.5 7.14 5358 72.4 144 17.3 66.4 15.40 4.25

17A-45-4 0.16 2.52 2.12 0.76 167 331 14.50 52.3 5.44 5359 344 768 94 361 53.50 12.30

17A-45-5 1.43 27.6 3.79 1.63 198 696 27.2 443 10.2 5391 703 1322 146 472 62.2 13.3

17A-45-6 1.36 27.2 3.66 1.58 194 682 26.5 437 9.65 5286 246 486 57.2 224 36.5 6.54

17A-45-8 1.45 27.8 3.82 1.65 205 703 27.4 452 10.4 5342 72.6 152 18.3 68.1 14.6 4.28

17A-45-9 1.43 6.85 2.03 0.75 156 535 5.43 166 5.62 5329 352 775 94.2 363 53.4 12.3

17A-45-11 0.65 4.93 4.86 1.15 162 406 6.73 112 7.16 5399 716 1272 154 474 62.3 14.2

17A-45-12 0.72 5.14 4.92 1.16 175 413 6.76 127 7.25 5376 358 794 94.5 375 54.5 13.4

Sample Gd Tb Dy Ho Er Tm Yb Lu Hf Ta Pb Th U Eu/Eu* (La/Yb)N

17A-44-1 13.2 1.27 4.55 0.62 1.34 0.16 0.99 0.14 2.70 0.30 45.3 46.6 12.8 0.90 152

17A-44-2 8.39 0.93 2.68 0.38 0.91 0.12 0.78 0.11 2.16 0.30 47.6 52.4 13.1 1.05 61

17A-44-3 28.3 3.01 11.7 1.73 3.78 0.47 2.78 0.39 6.62 0.28 67.2 64.5 13.6 0.83 80

17A-44-4 31.9 3.38 12.9 1.88 4.12 0.50 2.95 0.41 8.14 0.36 97.7 77.4 10.5 0.81 159

17A-44-5 13.5 1.28 4.57 0.63 1.36 0.15 0.98 0.15 2.72 0.31 45.5 48.5 11.8 0.89 162

17A-44-6 9.41 0.82 2.83 0.39 0.93 0.13 0.79 0.13 2.15 0.32 48.2 54.3 13.3 1.05 61

17A-44-7 28.5 3.04 11.8 1.75 3.82 0.48 2.83 0.42 6.64 0.32 67.4 65.3 13.5 0.83 81

17A-44-8 32.3 3.42 13.2 1.86 4.14 0.52 2.96 0.43 8.15 0.36 98.2 77.6 10.7 0.83 161

17A-44-9 29.1 3.06 12.3 1.83 3.85 0.51 2.85 0.43 6.65 0.34 68.2 67.2 14.1 0.87 83

17A-44-10 32.6 3.45 13.6 1.91 4.16 0.54 2.98 0.45 8.18 0.38 98.4 78.1 15.1 0.82 164

17A-45-1 13.5 1.32 4.63 0.63 1.36 0.15 0.99 0.14 0.83 0.39 37.7 83.2 15.1 0.81 165

17A-45-2 8.44 0.95 2.74 0.43 0.94 0.13 0.78 0.11 0.92 0.43 37.6 80.5 14.5 1.04 62

17A-45-4 29.40 3.06 12.40 1.81 3.81 0.48 2.78 0.39 1.61 0.52 32.9 65.6 13.2 0.86 83

17A-45-5 33.1 3.45 13.40 1.94 4.16 0.54 2.95 0.41 1.52 0.45 34.0 76.2 14.0 0.81 161

17A-45-6 14.3 1.35 4.64 0.65 1.38 0.16 0.98 0.15 1.54 0.43 33.7 75.8 13.8 0.73 169

17A-45-8 9.44 0.84 2.85 0.42 0.95 0.14 0.79 0.13 1.52 0.43 33.9 76.4 14.2 1.05 62

17A-45-9 29.2 3.06 12.40 1.82 3.91 0.52 2.83 0.42 1.51 0.38 37.5 82.3 14.60 0.87 84

17A-45-11 33.5 3.46 13.40 1.93 4.16 0.54 2.96 0.43 1.53 0.44 37.5 84.5 14.70 0.86 163

17A-45-12 31.2 3.13 13.10 1.91 3.42 0.53 2.85 0.43 1.52 0.43 37.6 83.6 14.50 0.91 85
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magmatic mixing or fractional crystallization (e.g.,

K-feldspar and hornblende) evolutionary trend. Moreover,

Na2O does not change greatly with an increase of SiO2, but

Al2O3 and CaO decrease as SiO2 increases. The negative

anomalies observed for Eu and Sr in the investigated rocks

(Table 3, Fig. 6a, b) indicate that plagioclase crystalliza-

tion was important during magma evolution. However, the

fractional crystallization of plagioclase in granite is rela-

tively weaker than for diorite, reflecting its lower Sr con-

tents (Table 3, Fig. 6a, b).

bFig. 5 Classification of the granitic rocks from the Xinjiang Uygur

Autonomous Region on the basis of: a the total-alkali versus SiO2

(TAS) diagram. All the major element data have been recalculated to

100 % on a LOI-free basis (Middlemost 1994; Le Maitre 2002);

b K2O versus Na2O diagram, showing the alkaline association to be

shoshonitic (Middlemost 1972); and (c) Al2O3/(Na2O ? K2O) molar

versus Al2O3/(CaO ? Na2O ? K2O) molar plot (Maniar and Piccoli

1989)

Fig. 6 a Chondrite-normalized REE diagrams: b primitive mantle-

normalized trace element distribution spiderdiagrams. The normal-

ization values are from Sun and McDonough (1989)
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5.3 Origins

There are clear negative correlations between MgO, TiO2,

Fe2O3 and SiO2 contents (Fig. 11a–c) for the Xinjiang

Uygur Autonomous Region diorite and granite samples as

studied, indicating that the separation and crystallization of

mafic minerals (mainly amphibole and to a lesser extent

biotite) accompanied their evolution (Wang 2010; Wang

et al. 2010). This observation is further supported by Th

enrichment and Nb–Ta depletion in the investigated

intermediate-felsic igneous rocks (Fig. 6b; Wu et al. 2001).

In addition, these rocks are characterized by high Rb, Ba,

Th, U, K, and LREE contents (Table 2; Fig. 6a, b), high to

very high Zr/Hf ratios (133–3477), low Mg# values (29–46,

Table 2), and depletion in Nb, Ta, Ti, and HREE (Fig. 6).

Generally, the experimental petrology theory shows that

the CaO/Na2O ratio can be used to distinguish the char-

acteristics of intermediate to felsic magmatic rocks (Kang

et al. 2016a, b). The CaO/Na2O ratio for the investigated

diorite samples falls between 0.95 and 1.31, indicating that

the original rock (as melted) should be clastic rock with a

small proportion of mudstone. By contrast, except for

samples, 17A-45-6 and 17A-45-8, the relatively high CaO/

Na2O (0.55, 0.54), the high CaO/Na2O ratio (0.15–0.27) of

the granite indicates that the original rock should be a

feldspar poor and clay-rich mudstone. Moreover, the

investigated Xinjiang Uygur Autonomous Region rocks

have high zircon contents and determined saturation tem-

peratures of (T = 731–909 �C), which suggests that the

zircon in the parent magmas reached saturation. Such a

temperature range likely represents the initial magma

temperature of their parental magmas (Miller et al. 2003;

Zhao 2010). Further, in the SiO2 versus TiO2 temperature

diagrams (Fig. 12), the determined temperature of both

magmas is lower than 900 �C.

The Xinjiang Uygur Autonomous Region granite sam-

ples have relatively high SiO2 (65.67–72.96 wt %), Al2O3

([ 14.53 wt %), K2O ([ 5.03 wt %), and K2O ? Na2O

(9.46–11.81 wt %) values (Table 2). By contrast, the

studied diorite from this area is characterized by relatively

low SiO2, K2O, and K2O ? Na2O values (Table 2). The

high CaO/Na2O ratio (0.95–1.31) indicates that the crust

involved in magma generation should be at less than 30 km

depth or crustal thickness (Zhang et al. 2006). The con-

tinued thickening of the Earth’s crust in this region of Asia

resulted in lithospheric extension and collapse, leading to

large-scale upwelling of hot asthenosphere materials. This

rise of the asthenosphere can induce crustal melting. The

resulting parent melts, after a certain degree of fractional

crystallization, may buoyantly rise to be emplaced along

with extensional fractures, to coalesce forming a large

number of intermediate-felsic intrusions of Mesozoic age

in the Xinjiang Uygur Autonomous Region. Thus, we

Fig. 7 Initial 87Sr/86Sr versus eNd (t) diagram for the rocks studied

from the Xinjiang Uygur Autonomous Region of South Altyn, China

Fig. 8 208Pb/204Pb (a) and 207Pb/204Pb (b) versus 206Pb/204Pb

diagrams for the rocks studied from the Xinjiang Uygur Autonomous

Region, China. Fields for I-MORB (Indian MORB) and P&N-MORB

(Pacific and North Atlantic MORB), OIB, NHRL and 4.55 Ga

geochron are after Barry and Kent (1998), and Hart (1984),

respectively
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Table 6 Zircon Hf isotopic compositions of the rocks in this study

17A-44 176Yb/177Hf 2r 176Lu/177Hf 2r 176Hf/177Hf 2r eHf(t) TDM1 (Ma) TDM2 (Ma) fLu/Hf

1 0.018363 0.000118 0.000643 0.000001 0.282335 0.000016 - 10.3 1283 1917 - 0.98

2 0.018107 0.000084 0.000615 0.000001 0.282331 0.000015 - 10.5 1289 1927 - 0.98

3 0.038718 0.000675 0.001338 0.000027 0.282336 0.000017 - 10.4 1307 1923 - 0.96

4 0.050188 0.000104 0.001708 0.000010 0.282386 0.000018 - 8.7 1248 1814 - 0.95

5 0.003592 0.000091 0.000149 0.000002 0.282338 0.000015 - 10.1 1263 1906 - 1.00

6 0.015757 0.000174 0.000546 0.000007 0.282325 0.000015 - 10.7 1295 1939 - 0.98

7 0.037172 0.000056 0.001285 0.000006 0.282334 0.000017 - 10.5 1308 1927 - 0.96

8 0.018353 0.000162 0.000647 0.000008 0.282342 0.000016 - 10.1 1275 1903 - 0.98

9 0.030394 0.000431 0.001091 0.000020 0.282347 0.000017 - 10.0 1282 1895 - 0.97

10 0.014035 0.000238 0.000526 0.000010 0.282334 0.000022 - 10.4 1282 1920 - 0.98

11 0.018916 0.000070 0.000647 0.000001 0.282334 0.000014 - 10.4 1285 1920 - 0.98

12 0.015036 0.000073 0.000533 0.000001 0.282328 0.000016 - 10.6 1290 1932 - 0.98

13 0.021726 0.000083 0.000763 0.000001 0.282331 0.000016 - 10.5 1293 1928 - 0.98

14 0.009523 0.000114 0.000353 0.000004 0.282333 0.000014 - 10.3 1277 1919 - 0.99

15 0.021109 0.000572 0.000707 0.000015 0.282309 0.000017 - 11.2 1322 1976 - 0.98

16 0.039045 0.000520 0.001317 0.000022 0.282316 0.000015 - 11.1 1334 1966 - 0.96

17 0.018535 0.000768 0.000635 0.000019 0.282332 0.000020 - 10.4 1287 1923 - 0.98

18 0.020696 0.000292 0.000771 0.000015 0.282328 0.000022 - 10.6 1297 1934 - 0.98

19 0.009956 0.000182 0.000360 0.000004 0.282310 0.000018 - 11.2 1309 1972 - 0.99

20 0.013742 0.000061 0.000445 0.000002 0.282322 0.000016 - 10.8 1296 1946 - 0.99

21 0.012525 0.000066 0.000439 0.000001 0.282322 0.000016 - 10.7 1294 1944 - 0.99

22 0.021640 0.000088 0.000699 0.000008 0.282326 0.000015 - 10.6 1298 1938 - 0.98

23 0.014802 0.000038 0.000506 0.000001 0.282340 0.000013 - 10.1 1273 1906 - 0.98

24 0.025840 0.000232 0.000958 0.000011 0.282325 0.000016 - 10.7 1309 1944 - 0.97

25 0.016360 0.000253 0.000546 0.000005 0.282311 0.000013 - 11.1 1314 1970 - 0.98

17A-45 176Yb/177Hf 2r 176Lu/177Hf 2r 176Hf/177Hf 2r eH f(t) TDM1 (Ma) TDM2 (Ma) fLu/Hf

1 0.009902 0.000032 0.000354 0.000003 0.282153 0.000018 - 16.7 1524 2321 - 0.99

2 0.013225 0.000287 0.000473 0.000009 0.282099 0.000015 - 18.7 1603 2440 - 0.99

3 0.010382 0.000058 0.000380 0.000002 0.282215 0.000018 - 14.5 1440 2182 - 0.99

4 0.014859 0.000260 0.000528 0.000005 0.282100 0.000017 - 18.6 1603 2438 - 0.98

5 0.011174 0.000226 0.000385 0.000006 0.282115 0.000015 - 18.1 1577 2404 - 0.99

6 0.011300 0.000269 0.000396 0.000008 0.282154 0.000016 - 16.7 1524 2318 - 0.99

7 0.015242 0.000193 0.000551 0.000009 0.282202 0.000016 - 15.0 1464 2212 - 0.98

8 0.011865 0.000045 0.000439 0.000003 0.282139 0.000020 - 17.2 1547 2352 - 0.99

9 0.008250 0.000182 0.000310 0.000008 0.282107 0.000020 - 18.4 1585 2422 - 0.99

10 0.007654 0.000149 0.000271 0.000004 0.282183 0.000017 - 15.7 1480 2253 - 0.99

11 0.008237 0.000046 0.000294 0.000002 0.282109 0.000016 - 18.3 1583 2418 - 0.99

12 0.006041 0.000285 0.000238 0.000008 0.282182 0.000015 - 15.7 1480 2254 - 0.99

13 0.011006 0.000314 0.000387 0.000008 0.282174 0.000016 - 16.0 1497 2274 - 0.99

14 0.013366 0.000414 0.000476 0.000016 0.282141 0.000017 - 17.2 1546 2348 - 0.99

15 0.013197 0.000641 0.000473 0.000021 0.282105 0.000019 - 18.5 1595 2428 - 0.99

16 0.007373 0.000150 0.000300 0.000005 0.282193 0.000017 - 15.3 1467 2230 - 0.99

17 0.009617 0.000040 0.000356 0.000002 0.282143 0.000017 - 17.1 1538 2342 - 0.99

18 0.014770 0.000298 0.000552 0.000008 0.282195 0.000021 - 15.3 1475 2229 - 0.98

19 0.010008 0.000069 0.000347 0.000001 0.282121 0.000015 - 17.9 1568 2392 - 0.99

20 0.008145 0.000407 0.000319 0.000012 0.282153 0.000018 - 16.7 1523 2321 - 0.99

21 0.011266 0.000268 0.000392 0.000009 0.282108 0.000017 - 18.3 1587 2420 - 0.99

22 0.010240 0.000380 0.000383 0.000010 0.282164 0.000013 - 16.4 1510 2296 - 0.99
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envisage complex tectonism resulted in the conditions

necessary for the partial melting of crustal materials, pro-

viding the source magmas to the diorite and granite

investigated herein.

6 Conclusions

Integrated zircon U–Pb geochronology, whole-rock geo-

chemistry and Sr–Nd–Pb–Hf isotopic studies of a suite of

intermediate-felsic igneous rocks from within the Xinjiang

Uygur Autonomous Region of South Altyn, China allow us

to draw the following conclusions.

1. The diorite and granite rocks from the Xinjiang Uygur

Autonomous Region study area were intruded during

the Triassic as evidenced in the newly determined

zircon U–Pb ages, of 238.8 ± 1.1 and 238 ± 1.5 Ma.

2. All of the investigated rocks have an alkaline affinity.

They are enriched in LREE, and select LILE (e.g., Rb,

Ba, Sr, K), Th, U, and Pb, and depleted in HFSEs (i.e.,

Nb, Ta, Hf, and Ti) relative to a primitive mantle. The

Xinjiang Uygur Autonomous Region granite and

diorite have high initial 87Sr/86Sr ratios

(0.7062–0.7114), negative eNd (t) values (- 8.8 to

- 11.3), eHf (t) values (-8.7 to -18.7), and relatively

constant Pb isotopic ratios [(206Pb/204Pb)i-

= 16.74–17.884, (207Pb/204Pb)i = 15.51–15.58, and

(208Pb/204Pb)i = 35.36–38.04]. These data suggest that

the magmas parental to these rock suites were gener-

ated by partial melting of the crust.

3. Based upon our findings, we suggest that the investi-

gated Mesozoic granite and diorite rocks from the

Xinjiang Uygur Autonomous Region owe their origins

to crustal thickening and extensional relaxation, which

promoted upwelling of asthenosphere mantle. The

uplifted hot mantle caused a rise in the geothermal

gradient of the overlying crust and corresponding

partial melting of heterogeneous lithologies. The

resulting parental magmas of intermediate and felsic

composition ascended through the crust to be emplaced

as granite and diorite igneous rocks in the Xinjiang

Uygur Autonomous Region of South Altyn, China.

Such extensional tectonics also promoted crustal

thinning and possible rifting, providing important

pathways for magma ascent and emplacement.

Table 6 continued

17A-45 176Yb/177Hf 2r 176Lu/177Hf 2r 176Hf/177Hf 2r eH f(t) TDM1 (Ma) TDM2 (Ma) fLu/Hf

23 0.011075 0.000538 0.000399 0.000016 0.282152 0.000014 - 16.8 1527 2322 - 0.99

24 0.011289 0.000466 0.000388 0.000017 0.282151 0.000015 - 16.8 1528 2325 - 0.99

25 0.009421 0.000328 0.000333 0.000010 0.282163 0.000016 - 16.4 1510 2297 - 0.99

Fig. 9 Age versus eHf (t) plot for the zircons from the rocks studied

from the Xinjiang Uygur Autonomous Region, China
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Fig. 10 Histograms of zircon eHf (t) values and two-stage Hf model ages for the investigated granite and diorite rocks in this study
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