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Abstract Hydrogeochemistry and factor analysis were

conducted together to assess the distribution and the major

geochemical processes in fluoride-contaminated shallow

groundwater in the Yuncheng Basin. Spatially, fluoride

concentration was low (\ 1.5 mg/L) in the southern pied-

mont plain, medium (\ 4 mg/L) in the central basin, and

high (up to 14.1 mg/L) in Kaolao lowland areas in shallow

aquifers. A three-factor principal component analysis

model explained over 75.1% of the total variance. Sedi-

ment weathering leaching and evapotranspiration were

recognized as the first primary hydrochemical processes

response for the groundwater chemistry and explained the

largest portion (42.1%) of the total variance. Factor two

reflects the negative influence of human activities, with a

positive loading of NO3
- and HCO3

-, and negative load-

ing of well depth. Fluoride-bearing mineral dissolution and

alkaline condition was ranked as the third factors

responding for groundwater chemistry and explained

11.2% of the total variance.

Keywords Fluoride � Groundwater chemistry � PCA
model � Hydrogeochemical processes � Yuncheng Basin

1 Introduction

Groundwater plays a significant role in the water supply

and economic development in China, especially in the arid

and semi-arid areas in northern China. About one-third of

the total population in China relies on groundwater for

drinking water supply. However, potentially toxic ele-

ments, e.g. fluorine and arsenic, may reach hazardous

concentrations in groundwater as a result of specific

hydrogeological and geochemical processes. F-rich

groundwaters are found in many areas around the world,

including India (Choubisa 2013; Jacks et al. 2005; Rao

2001; Reddy et al. 2010; Srikanth et al. 2013; Vikas et al.

2013), Brazil (Souza et al. 2013), Mexico (Aguilar-Diaz

et al. 2011; Daessle et al. 2008; Irigoyen et al. 1995; Reyes-

Gómez et al. 2015), and China (Amini et al. 2008; Ando

et al. 2001; Cao et al. 1997; Gao et al. 2007; Smedley et al.

2003), yet notably in Asia and Africa (Appelo and Postma

2005; Hu et al. 2013; Mondal et al. 2014; Sajil-Kumar et al.

2015).

The Yuncheng Basin in North China is one of the rep-

resentative fluoride-polluted areas. The basin is surrounded

by mountains to the south, east, and north, forming a NE–

SW semi-closed rifted basin. Zhongtiao Mountain lies

down the south and east boundary, with elevation at the

main peaks of 1200–1900 m. To the northeast, north, and

northwest boundary of the Yuncheng Basin are Zijin
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Mountain, Jiwang Mountain, and Gufeng Mountain,

respectively. To the west is the Yellow River (Fig. 1). As a

semi-closed inter-mountainous basin, Yuncheng Basin is

subject to numerous environmental issues such as shortage

of water resources and deterioration of groundwater qual-

ity, especially the widely distributed F-rich groundwater.

Endemic fluorosis was first confirmed at Yuncheng

Basin in the 1980s. In 2005, Gao et al. focused on the

occurrence of fluoride in rocks as the original source of

fluoride in the groundwater. Then, Gao et al. (2007) studied

the effect of salt lake water intrusion on shallow ground-

water, which result in fluoride elevations. A study by

Zhang (2010) revealed the leacheability of fluoride in soils

from the Yuncheng Basin. Currell et al. (2010, 2011)

demonstrated natural mineral sources of fluoride in

groundwater in the central basin with some limited field-

work. As a further work, the hydrochemistry of F-rich

groundwater was reported by Khair et al. (2014), Li et al.

(2015, 2016, 2018), Luo et al. (2018) and Li and Gao

(2018).

Based on the previous researches, several hydrogeo-

chemical processes, including water–rock interaction,

evaporation, saline water intrusion, and polluted water

leakage were considered to be the major sources for fluo-

ride in groundwater in the basin. Additionally, alkaline pH

values are favorable for fluoride desorption from the sed-

iments (Jacks et al. 2005; Smedley et al. 2005; Bhat-

tacharya et al. 2006). The mechanisms may include: 1)

high pH could affect the ion charge of F- and properties of

solid surface, and further to promote the adsorption of

anions; 2) considerable OH- in groundwater could pre-

cipitate Ca2?, Fe3?, and Al3?, preventing F- from com-

plexing with cations, which results in copious release of F-

in groundwater; and 3) under alkaline condition, OH-

could be exchanged by F- adsorbed in clay minerals,

humus, and soil colloid. However, further understanding

the extent of the hydrogeochemical processes involved

requires an understanding of the contributions of these

major geochemical factors, which are not well stated in the

studies mentioned above. Multivariate statistical method

(Principal Component Analysis) is a useful tool in pro-

viding additional information on groundwater chemistry

interpretation. Principal Component Analysis reduces a

large data matrix to a new matrix with fewer dimensions

where the new references axes are the main variation

directions. The geological interpretation of components

yields insight into the main hydrogeochemical processes

which may govern the distribution of hydrochemical vari-

ables (Belkhiri et al. 2010; Cloutier et al. 2008; Dassi 2011;

Galazoulas and Petalas 2014; Gao et al. 2011; Masoud

2014; Singh et al. 2013; Suk and Lee 1999; Wang et al.

2001).

The aims of this study were: (1) to investigate the

hydrochemistry of groundwater in the Yuncheng Basin; (2)

to evaluate the distribution of F- in groundwater in the

Yuncheng Basin; and (3) to identify and assess the

potential contribution of major hydrochemical processes on

hydrochemistry of fluoride contaminated groundwater.

Fig. 1 A simple

geomorphology map of the

Yuncheng basin, China

(? groundwater flow direction;

Line AB, position of cross-

section in Fig. 2)
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2 Geology and hydrogeology

Basin geology and hydrogeology is discussed by Currell

et al. (2010) and Li et al. (2015), hence only a brief sum-

mary is given here. The Yuncheng Basin comprises a

300–500 m thick Quaternary sediments (Q1–Q4), which

are composed of aeolian loess, lacustrine clays, fluvial

sands, and gravels. Basement rock outcrops in the south of

the area are Archean metamorphic rock. This rock forma-

tion (Arsm) is composed of granite, biotite plagioclase

gneiss, quartzite, and migmatite; the major minerals in the

rocks include feldspar, biotite, quartz, chlorite, and so on.

Elsewhere, sedimentary rocks, mainly Neogene mudstone

and Cambro-Ordivician limestone, underlie the Quaternary

sediments.

Due to the thick loose sediments accumulated in the

Yuncheng Basin, groundwater is stored in the Quaternary

alluvium that forms several aquifers (Fig. 2). On account

of the differences in runoff conditions, shallow ground-

water flows from the mountain fronts towards the center of

the basin. The hydraulic gradient is 6–12% in the mountain

front, 7% in the Emei tableland, and 3% in the flatlands

(Chen et al. 1993). Phreatic and artesian aquifers are the

main water resources for exploitation in the study area.

Based on the distribution characteristics of aquifers and the

hydraulic features, pore waters in the Yuncheng Basin

could be classified into three types: (1) phreatic aquifers

(5–70 m) which are supplied by precipitation, canal seep-

age, infiltrating of irrigation return flow, reservoir seepage,

and lateral recharge, whose discharge is dominated by

artificial exploitation and by evaporation; (2) intermediate

semi-confined artesian aquifers (70–120 m), which are

recharged mainly by lateral runoff from mountain fronts,

and discharged dominantly by artificial exploitation; (3)

semi-confined phreatic-artesian aquifers (130–500 m),

which are remotely recharged and their hydrogeological

conditions are controlled by leakage through aquitards.

3 Sampling and methods

A total of 79 samples, including one rainwater, six surface

water, 22 groundwater from shallow aquifers, 9 ground-

water from intermediate aquifers and 41 groundwater from

deep aquifers were collected across the Yuncheng Basin in

August 2013. When sampling, water samples were col-

lected only after the in situ physicochemical parameters,

including temperature, pH, and electrical conductivity (EC)

were stable and all these parameters were measured within

several minutes by portable meters.

Each sample was collected in three polyethylene bottles,

one for anion analysis, one for cation analysis and the rest

Fig. 2 A schematic diagram for the distribution of major aquifers, hydrochemistry facies and F- concentration in groundwater; Q1, Lower

Pleistocene; Q2, Middle Pleistocene; Q3, Upper Pleistocene
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kept in a refrigerator for future experimental use. The total

alkalinity was measured on the sampling day using the

Gran titration method with the triple repetition analyze

error\± 2%. The concentrations of HCO3
- and CO3

2-

were computed by the software PHREEQC 2.8. Hydro-

chemical analyses were performed at the Key Laboratory

of Biological and Environmental Geology, China Univer-

sity of Geosciences (Wuhan, China). The concentrations of

Cl-, SO4
2-, and NO3

- were determined using ion chro-

matography (IC, Dionex 120, Dionex, Sunnyvale, CA,

USA). For cation analysis, reagent-quality HNO3 was

added to one of these polyethylene bottles until the pH of

samples was less than 2. Major cations, K?, Na?, Ca2?,

and Mg2?, were measured using inductively coupled

plasma-atomic emission spectrometry (ICP-AES, IRIS

Intrepid XSP, Thermo Elemental, Madison, WI, USA). The

analytical precision for the measurements of cations and

anions is indicated by the ionic balance error, which is

observed to be within the standard limit of ± 5%.

Box plot and principal component analyses of the water

hydrochemical data were performed using the SPSS soft-

ware version 9.0 (SPSS Inc. 2008). Factor extraction was

carried out by principal component analysis. Varimax

rotation was applied to obtain unrelated components

(Kaiser 1958) and a three-factor model is determined. In

this present study, the dataset was made up, including 79

samples and 11 chemical parameters (pH, well depth, F-,

NO3
-, Cl-, HCO3

-, SO4
2-, Ca2?, K?, Mg2?, and Na?).

4 Results and discussions

4.1 Groundwater chemistry

The major properties and hydrochemistry of all water

samples are summarized in Table 1. The chemistry of the

groundwater in the area shows a wide variation in con-

centration ranges (Fig. 3). SO4
2- is found to be an extre-

mely variable component, ranging between 17.5 and

8295 mg/L, followed by Cl- (6.73 – 3044 mg/L) and

HCO3
- (66.45 – 1094 mg/L). Concentrations of Na?, the

major dominant cation, span over a wide range of

8.28–4967 mg/L. Other cations, including Ca2?, Mg2?,

and K?, are relatively stable. Ca2? and Mg2? are two

secondary dominant cations in groundwater, with average

concentrations of 51.53 and 75.17 mg/L, respectively. K?,

having had little impact on groundwater quality, is detected

at a low concentration with an average value of 3.96 mg/L.

Based on the burial depth and regional hydrogeological

conditions, groundwater samples were divided into three

categories: shallow groundwater, intermediate groundwa-

ter, and deep groundwater. Shallow groundwater from the

Kaolao lowland and the southern piedmont plain belong to

Na-HCO3 type with low F contents (Fig. 2). While shallow

groundwater from the central basin area gives the highest

TDS values, up to 17,452 mg/L. These groundwaters

belong to Na–SO4–HCO3/Cl or Na–Cl–SO4 type (Fig. 4),

with Na? as the dominant cation and SO4
2- and/or Cl- as

Table 1 Summary of major physical–chemical parameters of groundwater in Yucheng Basin (in mg/L, except for well depth, temperature and

pH)

Water type Well depth (m) Temperature (�C) pH HCO3 F Cl SO4 NO3 Ca Mg K Na TDS

Shallow groundwater

Max 70 23.4 9.2 1094 14.1 3044 8295 67.9 280.5 489.6 14.1 4967 17,452

Min 9 16.5 7.1 148.3 0.53 10.86 18.51 3.10 4.00 4.80 0.30 8.28 362.4

Mean 37 18.2 7.9 581.2 4.80 393.4 918.4 17.4 51.9 98.4 2.37 673.1 2445

Medium 32 17.9 7.9 571.5 3.80 117.7 295.4 13.9 33.6 54.3 1.61 283.5 1.026

SD 20.1 1.57 0.5 256.9 4.13 700.9 1815 14.1 62.2 124.9 2.99 1073 3.765

Intermediate groundwater

Max 120 21.3 8.4 717.6 3.15 156.6 230.5 16.3 73.1 45.9 4.12 363.6 1128

Min 85 16.50 7.6 66.5 0.40 11.39 42.5 1.17 8.21 16.2 0.97 16.7 231.1

Mean 106 18.9 8.1 393.4 1.53 62.99 131.1 6.73 31.8 29.1 2.53 161.4 622.3

Medium 110 19.0 8.1 271.3 1.51 38.49 134.2 4.83 17.4 30.1 2.25 142.3 653.2

SD 13.5 2.02 0.3 232.3 0.82 48.98 55.0 5.01 25.6 12.3 1.03 122.6 304.5

Deep groundwater

Max 500 20.7 8.6 830.9 2.90 1402 2106 23.9 268.5 470.4 10.1 1074 5253

Min 130 17.2 7.3 175.6 0.10 6.73 17.5 1.31 12.0 10.9 0.96 16.3 228.8

Mean 234 20.2 8.0 385.4 1.22 192.9 359.2 7.17 51.4 65.3 3.49 260.3 1132

Medium 220 19.9 8.0 372.1 1.22 74.0 144.4 5.82 31.9 39.9 2.70 205.3 731.4

SD 72.1 1.97 0.3 143.4 0.75 307.7 477.6 4.59 52.4 81.0 2.43 230.6 1110
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the dominant anions. The concentrations of Na?, Cl- and

SO4
2- are up to 4967, 3044 and 8295 mg/L, respectively,

in these higher TDS groundwaters. Evaporation tends to

concentrate all the species in the shallow groundwater (Li

et al. 2015), therefore, strong evaporation is believed to be

one of the major factors inducing the enrichment of sulfate

and chloride concentration in shallow groundwater at

Yuncheng Basin. Gypsum dissolution and anthropogenic

activities, like agricultural fertilizers, may also contribute

to the groundwater chemistry. Soluble gypsum is widely

distributed in the middle Pleistocene and, hence, can be

regarded as one of the primary sources of sulfate in shallow

groundwater in the Yuncheng Basin (Gao et al. 2007;

Shanxi Province Geological Survey 1982). More than 70%

of the shallow groundwater contains NO3
- in excess of the

WHO standard for drinking water (10 mg/L). On account

of the lack of natural nitrate in most geologic formations,

NO3
- concentrations[ 5 mg/L are generally indicative of

water contamination by animal wastes, fertilizers, and/or

effluents (Heaton 1986). The highest NO3
- content

(67.9 mg/L) is observed in shallow groundwater, implying

an anthropogenic source in this area.

Intermediate and deep groundwaters are all alkaline,

with a pH range of 7.3–8.6. Most of them are freshwaters

with TDS lower than 1000 mg/L and belong to Na-HCO3

type water. About 30% of intermediate and deep ground-

water collected from the Kaolao lowland and central basin

areas belong to Na–SO4–HCO3/Cl or Na–Cl–SO4 type with

TDS[ 1000 mg/L. The sources of salt in these waters may

either come from evaporite (e.g. gypsum, halite, and mir-

abilite) dissolution (Li et al. 2015) or leakage of saline

shallow groundwater. High NO3
- concentrations are also

observed in intermediate and deep groundwaters. Due to

the low background nitrate concentrations in intermediate

and deep groundwater samples, the elevated NO3
- con-

centrations in these groundwaters indicate the downwards

vertical leakage of irrigated water and/or polluted shallow

groundwater.

Fig. 4 Piper diagram of water

samples from the Yuncheng

basin (filled diamond surface

water, filled square deep

groundwater; filled triangle

shallow groundwater; cross

mark intermediate

groundwater)

Fig. 3 Box plots of major ions in the water samples of Yuncheng basin
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4.2 Fluoride pollution in groundwater

Rainwater, surface water and groundwater are collected for

fluoride were analyzed in this case study. Rainwater con-

tains a low fluoride concentration of 0.32 mg/L. Generally,

fluoride content in precipitation is lower than the detection

limit, but seawater spray and atmospheric pollutants are the

major sources of fluoride in precipitation. As an inland

catchment, the fluoride in rainwater at the Yuncheng Basin

mainly derives from atmospheric pollution from local

industries and coal consumption (Luo et al. 2018).

Concentrations of fluoride in surface waters vary

between 0.32 and 11.2 mg/L with an average value of

4.1 mg/L. Fluoride concentration is low in the surface

water samples collected from mountain areas and the

piedmont plain areas and higher in lakes and reservoir

where human activities are frequent and intensive. This

suggests that human activities are partly responsible for the

enrichment of fluoride in these waters.

Groundwater has severely suffered from fluoride pollu-

tion in Yuncheng Basin (Cao 2005; Gao et al. 2007; Li

et al. 2015). Over 68% of the shallow wells contain fluoride

concentrations above the WHO provisional drinking water

guide value of 1.5 mg/L (WHO 2004). The concentration

of fluoride in groundwater is not uniform in the study area.

In the case of shallow aquifer, fluoride concentrations

range between 0.32 and 14.1 mg/L with an arithmetical

mean value of 4.27 mg/L. The fluoride concentration is

low in the shallow groundwater from the south piedmont

plain areas (Fig. 2), whereas the highest fluoride concen-

tration (14.1 mg/L) is found in shallow groundwater from

the Kaolao lowland area in the Shushui river basin.

Increase of fluoride content is supposed to be controlled by

hydrological and geochemical processes in this area (e.g.,

irrigation leaching, dissolution of fluorine minerals, cation

exchange, and evaporation). Shallow groundwater that has

medium to high fluoride contents with elevated Ca and

TDS contents are observed from the north part of the salt

lake.

Intermediate and deep groundwater samples are char-

acterized by low to medium F- concentration values,

ranging from 0.19 to 3.2 mg/L and 0.1 to 2.9 mg/L,

respectively. Forty percent of the intermediate wells and

thirty percent of the deep wells fall above the 1.5 mg/L

threshold. The wide distribution of F-rich groundwater in

intermediate and deep groundwater suggests that the fluo-

ride pollution is a non-point source pollution.

The spatial variation of the fluoride concentration is

presented in a spatial distribution map (Fig. 2). It can be

seen that high fluoride groundwater is concentrated mostly

in the central areas rather than in the margins (Figs. 1, 2).

4.3 Assessment of major geochemical processes

using PCA

In general, PCA (principle component analysis) extracts

correlations and reduces the amount of data into compo-

nents that explain a portion of the total variances between

chemical parameters. These variances are mainly related to

the chemical parameters showing the highest loading fac-

tors obtained by using the varimax rotation. Those high

loaded components are further regarded as references for

identifying the geochemical processes involved. In this

case study, three factors are defined and 75.11% of the total

cumulative variances are obtained (Tables 2, 3; Fig. S1).

Factor one, associated with high positive loadings for

Cl-, SO4
2-, Ca2?, Mg2?, and Na?, explains the largest

portion of the total variance (42.1%). This factor can be

explained by chemical weathering and evapotranspiration

processes. In general, groundwater in the Yuncheng basin

is recharged by precipitation and discharged by abstraction

and evapotranspiration. During the movement of ground-

water from the margins to the central areas, the chemical

constituents in groundwater are naturally sourced from the

dissolution of sediment/rock minerals. The major minerals

Table 2 Eigenvalues, percent

of variance, cumulative

eigenvalue, cumulative percent

of variance for the factor

analysis of physical–chemical

parameters

Factors Eigenvalue Percent of variance Cumulative Eigenvalue Cumulative percent of variance

1 4.825 43.864 4.825 43.864

2 2.200 19.997 7.025 63.861

3 1.237 11.247 8.262 75.108

4 0.949 8.629 9.211 83.737

5 0.681 6.191 9.892 89.929

6 0.500 4.543 10.392 94.471

7 0.301 2.734 10.693 97.205

8 0.166 1.507 10.859 98.712

9 0.111 1.009 10.970 99.721

10 0.031 0.279 11.000 100

11 4.63e-8 4.21e-7 11.000 100
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in sediments are quartz, albite, k-feldspar, mica, calcite,

chlorite, and some amphibole and dolomite in the Yunch-

eng Basin (Table 4, Li et al. 2015). Minor contents of

gypsum, mirabilite, and halite are also reported for sedi-

ments from the basin (Gao et al. 2007; Shanxi Province

Geological Survey 1982). As a consequence, the weather-

ing leaching of these minerals yields high contents of

HCO3
-, SO4

2-, Na?, Cl-, Ca2?, and Mg2? in Quaternary

groundwater.

However, the involvement of additional hydrochemical

processes in this stage is suggested by the low loading of

HCO3
- in factor one. Evapotranspiration is regarded as

another crucial factor affecting groundwater chemistry. If

groundwater undergoes the evapotranspiration process,

there would be a consistency of (Na ? Ca ? Mg)/Cl ratios

of samples with increasing TDS value. As shown in Fig. 5,

the distribution of the water samples shows two trends: (1)

parallel to the X-axis reflecting the influence of evapo-

transpiration and (2) close to the Y-axis indicating a sus-

tained increase of Na/Ca/Mg-bearing mineral dissolution.

Block groundwater samples, collected from intermediate

and deep aquifers, located close to the Y-axis showed a low

TDS value and increased (Na ? Ca ? Mg)/Cl ratio. Some

surface water and shallow groundwater samples, collected

from the piedmont plain areas, also dropped into this

group. The increasing (Na ? Ca ? Mg)/Cl ratio and low

TDS in this group suggest that water chemistry components

here were obtained by natural mineral weathering leaching

process, which was controlled by the kinetic dissolution

rate of minerals.

Two surface water samples and several shallow

groundwater samples, collected from the central basin,

displayed a significant increase of TDS value with little

change in (Na ? Ca ? Mg)/Cl ratio. Several deep

groundwater samples were classified into this group too.

Evapotranspiration generally increases the concentration of

major ions and TDS in groundwater without making a

significant change of the ion ratios. The constant (Na ?

Ca ? Mg)/Cl ratio and the elevated TDS value in these

waters suggest a significant influence of evapotranspiration

on groundwater chemistry. Considering the fact that deep

groundwater is not affected by evapotranspiration, deep

samples that appeared in this group may be due to the

leakage of shallow groundwater or surface water subjected

to evapotranspiration.

Factor two, which explains 19.997% of the total vari-

ance, is dominated by well depth (- 0.702), NO3
- (0.685),

and HCO3
- (0.668). The negative loading of well depth

and positive loading of HCO3
- and NO3

- suggest a reverse

correlation between burying depth and groundwater

chemistry components. Basically, deep burying depth

stands for a weak surface leakage and/or interference of

human activities. Hence, high concentrations found in

wells with lower depth indicates heavier human activity

influence.

Fig. 5 Scatter map of (Na ? Ca ? Mg)/Cl ratios versus.TDS values

in water samples from Yuncheng Basin, China

Table 4 Summary of major minerals in sediments from Yuncheng

Basin, China (according to Li et al. 2015)

Minerals (weigh percent) Max Min Average SD

Quartz 68.25 19.71 40.02 9.40

Chlorite 14.14 0.26 4.12 2.95

Mica 31.52 0.86 11.71 6.69

Calcite 44.38 0.24 8.79 5.83

Albite 41.09 1.58 23.10 8.26

K-feldspar 43.26 0.17 8.96 7.61

Amphibole 5.50 0.45 2.15 0.95

Dolomite 9.60 0.09 1.50 2.10

Table 3 Loading for varimax rotated factor matrix of three-factor

model explaining 75.1% of the total variance

Parameters Factor 1 Factor 2 Factor 3

Well depth - 0.107 - 0.702 - 0.032

pH - 0.356 - 0.142 0.785

F- 0.319 0.337 0.804

Cl- 0.984 0.025 0.079

SO4
2- 0.937 0.173 0.096

HCO3
- 0.074 0.668 0.412

NO3
- 0.311 0.685 0.108

K? 0.235 - 0.550 0.188

Na? 0.904 0.214 0.242

Ca2? 0.883 - 0.195 - 0.243

Mg2? 0.886 0.164 - 0.194

Bold text means correlation is significant at the 0.05 level (two-tailed)
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Due to the lack of natural source in the geologic for-

mations in the area, high loading value of NO3
- indicates a

significant human activity input, e.g. animal wastes, agri-

cultural fertilizers and/or effluents. The highest NO3
-

content (67.9 mg/L, Table 1) observed in shallow

groundwater implies an anthropogenic source in this area.

Given the low background nitrate concentrations in deep

groundwater, the high NO3
- concentrations in some deep

samples with depth over 200 m may be due to mixing with

irrigation return water and/or shallow polluted

groundwater.

The common source of HCO3
- is derived from car-

bonate weathering dissolution due to the lack of organic

sources in the sediment aquifers (Currell et al. 2011). But

the negative loading of Ca2? and low loading of Mg2?

suggest that carbonate minerals dissolution may be masked

by a high degree of cation exchange. Briefly, the associa-

tion of well depth, NO3
-, and HCO3

- reflects the influence

of anthropogenic processes on pollution of groundwater

and can thus be termed as the ‘anthropogenic factor’.

Fluoride bearing mineral dissolution and alkaline con-

dition was ranked as the third factors responding for

groundwater chemistry. Factor three, containing only two

high loading factors F- (0.804) and pH (0.785), reflects the

influence of fluorine as a pollutant in the area, and could be

defined as the ‘F pollution factor’. Natural water–rock

interactions and hydrogeological processes are the key

factors controlling groundwater fluoride mobilization. In

general, F- is preferentially adsorbed to sediment mineral

surfaces under neutral conditions (Smedley et al. 2005;

Bhattacharya et al. 2006). pH is one of the major factors

that govern the liberation and mobility of fluoride into

groundwater. Thus, pH is considered to be the most

important factor causing F mobilization (Osei et al. 2016;

Tang and Zhang 2016; Zhang et al. 2015). Nonetheless, as

a mutable parameter in groundwater, pH is not an inde-

pendent parameter and it is closely associated with the

relevant hydrogeochemical processes mentioned above.

5 Conclusion

Groundwater in the Yuncheng Basin showed wide varia-

tions in major ions and fluoride concentration. [F] is low in

the shallow groundwater from the south piedmont plain

areas, whereas the highest fluoride concentration (14.1 mg/

L) is found in shallow aquifers from the Kaolao lowland

area in the Shushui river basin. Intermediate and deep

groundwater are characterized by low to medium F- con-

centrations (0.19 * 3.2 mg/L).

Integrated hydrogeochemistry and principal component

analysis provide important clues for understanding the

major processes controlling the hydrochemistry of fluoride

contaminated groundwater at Yuncheng Basin. Natural

water–rock interactions including dissolution of sediment/

rock minerals (e.g., fluoride bearing minerals, evaporites)

and evapotranspiration were recognized as the prime pro-

cess impacting the high fluoride groundwater. Anthro-

pogenic activities have affected the hydrochemistry of

fluoride contaminated shallow groundwater, as indicated

by high NO3
- contents, the negative loading of well depth

and positive loading of HCO3
- and NO3

- in Factor 2.

Alkaline condition is considered to be the most important

factor leading to F mobilization.
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