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Abstract In this study, the analytical data set of 26

groundwater samples from the alluvial aquifer of

Boumerzoug-El khroub valley has been processed simul-

taneously with Multivariate analysis, geostatistical model-

ing, WQI, and geochemical modeling. Cluster analysis

identified three main water types based on the major ion

contents, where mineralization increased from group 1 to

group 3. These groups were confirmed by FA/PCA, which

demonstrated that groundwater quality is influenced by

geochemical processes (water–rock interaction) and human

practice (irrigation). The exponential semivariogram model

fitted best for all hydrochemical parameters values and

WQI. Groundwater chemistry has a strong spatial structure

for Mg, Na, Cl, and NO3, and a moderate spatial structure

for EC, Ca, K, HCO3, and SO4. Water quality maps gen-

erated using ordinary Kriging are consistent with the HCA

and PCA results. All water groups are supersaturated with

respect to carbonate minerals, and dissolution of kaolinite

and Ca-smectite is one of the processes responsible for

hydrochemical evolution in the area.

Keywords Groundwater � Multivariate analysis �
Geostatistical modeling � Geochemical modeling �
Mineralization � Ordinary Kriging

1 Introduction

Water is of paramount importance for human existence. It

plays a critical role in the development and maintenance of

the ecosystem. Under limited surface water resources

availability, groundwater is considered to be a dependable

alternative for industrial, domestic, and agricultural uses,

especially in arid and semi-arid regions.

Rapid growth in population, urbanization, and industri-

alization, and unregulated and uncontrolled utilization of

groundwater, is reducing the aquifers with serious conse-

quences of dropping the water table and increasing

saltwater.

Variation in groundwater chemistry is mostly a function

of the interaction between the groundwater and the mineral

composition of the aquifer constituents through which it

moves. In this regard, several different methodologies have

been applied to study, characterize, and evaluate the

sources of variation in groundwater geochemistry.

Amongst these methods are the multivariate statistical

methods, geostatistical techniques, and water quality index.
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Multivariate statistical techniques, hierarchical cluster

analysis (HCA), and factor analysis (FA) are effective

means to resolve hydrological factors such as aquifer

boundaries, groundwater flow paths, and hydrochemical

parameters (Wang et al. 2001; Locsey and Cox 2003;

Belkhiri et al. 2011; Mostafaei 2014; Mohamed et al. 2015;

Teikeu et al. 2015), recognise geochemical controls on the

composition (Alberto et al. 2001), separate anomalies such

as anthropogenic effect (Helena et al. 2000; Pereira et al.

2003), and differentiate some groundwater signatures,

including uncontaminated groundwater, sewage pollution,

mining activities, and agricultural activities (Love et al.

2004). Hierarchical cluster analysis, HCA, as a multivariate

statistical tool has also been frequently employed as a

classification tool and to formulate geochemical models on

the basis of available data based on factor scores (Meng

and Maynard 2001).

Recent progressions in the application of geographic

information systems (GIS) have extended its functionality

for spatio-temporal data to determine the spatial distribu-

tion of groundwater quality parameters and to map

groundwater quality assessment using geostatistics (Chen

and Feng 2013; Montero et al. 2015; Venkatramanan et al.

2016). Geostatistics employs Kriging, the best linear

unbiased estimator (Journel and Huijbregts 1978) for the

prediction of missing data at unknown points to map the

spatial variability (Ella et al. 2001). Ordinary Kriging

(OK), a type of Kriging, is the most commonly adopted

method for environmental studies, especially for environ-

mental and water quality studies (Wackernagel 1995).

The water quality can be evaluated using physico-

chemical parameters compared to permissible limits pre-

scribed at an international scale (WHO 2011; Ayers and

Westcot 1994). The best way to express the quality of

water resources for drinking or irrigation is the Water

Quality Index (WQI), as it is one of the most effective tools

by which water quality data is summarized and well pre-

sented (Tiri et al. 2018).

The spatial distribution of water quality index can be

mapped for better visualization of the potential zones, and

for estimating the extent of the problem prevalence (En-

wright and Hudak 2009).

The present work, therefore, focuses on the use of the

multivariate statistical analysis, geostatistical modelling,

and water quality index of groundwater chemistry data to

characterize the spatial groundwater quality evolution

process and to identify the controlling factors, which

dominate the chemical composition of Boumerzoug-El

Khroub valley groundwater, Northeast Algeria.

2 Study area

The Boumerzoug-El khroub valley is located in north-

eastern Algeria between the Constantine and Ain Mlila

mountains (Fig. 1). This vast Mio-Plio-Quaternary plain is

surrounded by isolated and abrupt reliefs oriented South-

west–Northeast, which represent the neritic limestone

massifs. It presents as cauldron subsidence that extends to

an altitude between 600 and 700 m. The study area is

subject to a semi-arid climate. Precipitation occurs in an

irregular manner, and the rainy season extends from

October to May. The average rainfalls are around 512 mm/

year and mean annual temperatures are around 15.15 �C.
The Boumerzoug Wadi, the main stream of the study

area, has for the spring from ‘‘Aioune (Spring Water)

Boumerzoug,’’ located in the southern part of the city of

Ouled Rahmoun. Its course is sinuous on a more or less flat

topography. Along the valley, the soil is generally alluvial

rather favorable to arboriculture. The rest of the soils are

more favorable for cereals (corn and barley). The majority

of its inhabitants are concentrated in the cities Constantine

([ 500,000 inhabitants) and El-Khroub ([ 100,000

inhabitants) working mainly in the industrial and admin-

istrative sector (ONS 2017).

The geology of the plain is characterized by three

lithostratigraphic sets (Raven 1957; Voute 1967; Coiffait

and Villa 1977; Vila 1980; Lahonder 1987): a Lower

Jurassic-Cretaceous neritic carbonate complex, covered by

a dominant marly age group from Upper Senonian to

Paleocene, and an upper set comprising heterogeneous

detrital Mio-Plio-Quaternary series.

The aquifer of the Boumerzoug-El Khroub valley con-

sists of Mio-Plio-Quaternary alluvial deposits. The lithol-

ogy is a detritic set consisting mainly of conglomerate and

Miocene sandstone, Pliocene lake limestone, and finally

Quaternary conglomerates and sand along the valley of

Boumerzoug, especially in the immediate vicinity of El

Khroub. The aquifer is recharged by meteoric water (ver-

tical infiltration) and by stream water coming from the

surrounding limestone mass. Groundwater hydraulic

properties vary in vertical and horizontal dimensions. The

flow is from East to West towards the Boumerzoug Wadi,

and water table depth ranges from 0.3 to 24 m. The

pumping tests applied to wells in different parts of the plain

reveal that transmissivity and permeability are about

10-4 m2/s and 10-5 m/s respectively (Boularak 2003),

indicating low to medium yields.

Acta Geochim (2019) 38(6):796–814 797

123



3 Materials and methods

3.1 Sampling analysis

The field investigation led us to choose twenty-six wells

distributed so as to cover the whole plain. These wells are

used primarily for domestic and agricultural purposes.

Sampling was done during the high-water period (March

2013). It was carried out after a short pumping period in

polyethylene bottles and stored in an icebox at a temper-

ature\ 4 �C. Hydrogen potential (pH), electrical conduc-

tivity (EC), and temperature (T �C) were measured

immediately after field sampling using a HANNA Hi-9813-

6 multi-parameter. Subsequently, the samples were trans-

ported to the laboratory and analyzed for their major

chemical constituents (Ca, Mg, Na, K, Cl, SO4, HCO3, and

NO3). The methods of analysis are those recommended by

the American Public Health Association (Eaton et al.

2005). The concentrations of Ca and Mg were measured by

the volumetric method in the presence of an aqueous

EDTA solution; this method was also used for titration of

bicarbonates using 0.1 N hydrochloric acid. The chlorides

are determined in the neutral medium by a titrated solution

of silver nitrate in the presence of potassium chromate. The

measurement of sulphates and nitrates was carried out by a

spectrophotometric method and that of sodium and potas-

sium by a flame photometer.

Fig. 1 Map showing sampling site and geology of the study area
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3.2 Statistical analysis

The hierarchical cluster analysis (HCA) and Factor analy-

sis (FA)/Principal component analysis (PCA) are multi-

variate statistical techniques commonly used by scientists

on hydrochemistry to classify water samples (Riley et al.

1990; Da Silva and Sacomani 2001; Güler et al. 2002;

Demirel and Güler 2006; Belkhiri et al. 2010; Varol et al.

2012; Salman et al. 2014; Foued et al. 2017). These tech-

niques allowed the exploration of the multivariate data

holding several variables.

Cluster analysis is a powerful tool for hydrochemistry

investigation by grouping water samples into separate

groups significant in the geologic and hydrologic context to

understand hydrogeochemical process occurring in the

study area (Güler et al. 2004; Singh et al. 2017). This

unsupervised classification of water quality variables on

the basis of their similarities is termed Q-mode classifica-

tion. Q-mode HCA method on the normalized data set was

performed using Ward’s method with Euclidean distance

as a measure of similarity.

FA, which uses PCA, is widely used to reduce sets of

observations of many variables using associations between

them. This reduction is achieved by diagonalization of the

correlation matrix which obtains a new data set uncorre-

lated (orthogonal), arranged in decreasing order of impor-

tance named principal components (PCs) (Helena et al.

2000; Singh et al. 2004). Only PCs with eigenvalue[ 1 are

taken into consideration (Kaiser 1960). Varimax rotation

was executed to these PCs to make the factors easier to

interpret according to hydrochemical or anthropogenic

processes controlling groundwater quality. The terms

‘‘strong,’’ ‘‘moderate,’’ and ‘‘weak’’ are considered to

factor loadings with absolute loading values [ 0.75,

0.75–0.50, and 0.50–0.30 respectively (Liu et al. 2003).

3.3 Water quality index

The Water quality index WQI is a recognized technique

that offers powerful tools that simplify the expression of

water quality to the concerned citizens and policymakers

(Chauhan and Singh 2010).

It is a numerical expression where water quality data set

is summarized into simple terms (excellent, good, poor,

etc.) There are various water quality indices (WQI)

developed by governmental agencies around the world.

WQI was made to assess the suitability of groundwater

quality of Boumerzoug valley for human consumption and

irrigation using a weighed arithmetic index method given

by Brown et al. (1972). This method has been widely used

by authors (Amadi 2011; Gebrehiwot et al. 2011; Desai and

Desai 2012; Aly et al. 2014; Amaliya and Kumar 2015;

Goher et al. 2015; Paul et al.; 2015). The calculation

method of WQI is given by the following mathematical

formula:

WQI ¼
Xn

i¼1

Qi Wi=
Xn

i¼1

Wi ð1Þ

where Qi quality rating for the ith parameter, W unit weight

of each parameter, n number of parameters.

Calculation of Qi value

Qi ¼ ðVi � V0½ Þ= Si � V0ð Þ� ð2Þ

Vi the observed value of the ith parameter, V0 ideal value

of the ith parameter in pure water, V0 zero for all param-

eters except for pH = 7.0, Si standard permissible value of

the ith parameter.

Calculation of Wi value

Calculation of unit weight Wi is inversely proportional

to the standard permissible value Si for water quality

parameters.

Wi ¼ K=Si ð3Þ

where K is the proportionality constant of the weights

K ¼ 1Pn
i¼1

1

Si

ð4Þ

Water quality index is considered excellent, good, poor,

very poor, and unsuitable when the value of the index falls

between 0–25, 26–50, 51–75, 76–100, and[ 100, respec-

tively (Goher et al. 2015) (Table 1).

3.4 Geostatistical modeling

Geostatistics was developed by Matheron (1965) for the

estimation of the characteristics of the mining deposits.

These robust techniques of applied statistics are amply

used in Earth sciences, like hydrogeology, to assess the

process of spatial distribution of groundwater quality.

Kriging and semivariogram models were performed for

the spatial distribution of hydrochemical parameters.

Kriging, especially ordinary Kriging (OK), is one of the

most popular and powerful linear appropriate interpolation

Table 1 Water quality assessment as per weight arithmetic WQI

method

WQI value Water quality status

0–25 Excellent

26–50 Good

51–75 Poor

76–100 Very poor

[ 100 Unsuitable
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techniques in ArcGIS geostatistical extension. OK gener-

ates predictive maps and interpolate the regionalized

variables for the unsampled locations with a minimum

square error (Sheikhy Narany et al. 2014; Bodrud-Doza

et al. 2016). Spatial distribution can be calculated by the

following equation (Delhomme 1978):

Ẑ x0ð Þ ¼
Xn

i¼1

nkiZ xið Þ ð5Þ

where Ẑ x0ð Þ is the estimated value at points x0, n is the

number of the sampled point, Z xið Þ is the known value at

sampled points xi, and ki is the weight attributed to the

sampled point.

Fig. 2 Dendrogram of Q mode

cluster analysis

Table 2 Parameter values of the three principal water groups

Group 1 Group 2 Group 3 WHO

(2011)

Ayers and

Westcot

(1994)Min Max Mean SD Min Max Mean SD Min Max Mean SD

EC 460 1170 887.27 221.9 1310 1980 1651.54 209.72 2610 2950 2780 240.42 1500 3000

T 13 19 15.82 1.54 14 18 15.69 1.32 16 17 16.5 0.71 – –

pH 7.3 7.9 7.65 0.2 7.4 7.8 7.55 0.13 7.6 7.6 7.6 0 8.5 8.5

Ca 72.14 140.28 97.65 21.15 100.2 220.44 160.32 34.67 180.36 184.37 182.37 2.84 75* 400

Mg 9.48 43.08 24.49 10.76 9.36 88.68 35.98 20.84 141.36 162.96 152.16 15.27 50* 60

Na 8.68 64.86 22.1 15.46 19.32 61.64 41.32 17.85 33.81 45.31 39.56 8.13 200 919

K 2.89 11.18 5.72 2.48 4.51 9.21 6.94 1.35 6.19 8.1 7.14 1.36 12 12

HCO3 140.3 347.7 239.01 56.56 231.8 445.3 327.57 68.05 280.6 317.2 298.9 25.88 120 630

Cl 28.4 142 69.74 36.19 53.25 319.5 163.85 74.93 213 276.9 244.95 45.18 250 1063

SO4 65 165 91.91 29.95 52 405 141.54 96.6 560 565 562.5 3.54 250 960

NO3 0.6 74 28.73 29.13 0.1 46 10.55 16.24 0.9 39 19.95 26.94 50 10

All values are in mg/l except pH, T (�C) and EC (lS/cm)

*WHO (2004)
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Fig. 3 Stiff diagram for three water groups
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For the best performance of Kriging, it is necessary to

check the spatial dependence of the regionalized variables

using variographic analysis. The main tool for this analysis

is the semivariogram c hð Þ, which describes the evolution

the semi-variance according to the distance between the

samples and thus makes it possible to study the spatial

relationship between the data (Hennequi 2010; Arslan

2012). The semivariogram formula commonly used is

given as follow:

c hð Þ ¼ 1

2n hð Þ
Xn hð Þ

i¼1

Z xið Þ � Z xi þ hð Þð Þ2 ð6Þ

where n is the number of pairs of sample points separated

by distance h called Lag, Z xið Þ is the value of the variable

Z at the location of xi, and Z xi þ hð Þ is the value of the

variable Z at the location of xi þ h.

3.5 Geochemical modeling

The saturation index calculation was done using

PHREEQC for groundwater samples. PHREEQC is a

computer program which uses equilibrium chemistry of

aqueous solutions to simulate chemical reactions and

transport processes (Parkhurst and Appelo 1999). The

saturation index (SI) can be defined as:

SI ¼ Log IAP/Kspð Þ ð7Þ

where IAP is the ion activity product and Ksp is the sol-

ubility product at a given temperature.

The equilibrium state of the mineral is reached when

SI = 0. The positive value of SI represents the oversatu-

ration of groundwater for that mineral, which may pre-

cipitate, whereas negative value defines undersaturation of

water and mineral phase indicates possible dissolution.

Fig. 4 Piper diagram for water samples
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4 Results and discussion

4.1 Groundwater chemistry and water type

The chemical facies of the groundwater is extremely var-

ied. The temperature of the groundwater samples varies

from 13 to 19 �C. The EC values of the samples vary from

460 to 2950 lS/cm and the pH values range from 7.3 to

7.9, indicating strongly mineralized and slightly alkaline

waters.

Major ion concentrations have been considered on the

normalized data to determine possible hydrochemicals

groups using Q-mode hierarchical clustering analysis

(HCA) technique, which is carried out using Ward’s

Fig. 5 Chadha diagram of the

groundwater samples

Table 3 Score of PCA after Varimax rotation

PC1 PC 2 PC 3

CND 0.3905 0.8997 - 0.0593

T 0.0309 0.0868 0.8603

pH - 0.813 - 0.0175 - 0.3021

Ca 0.5643 0.6025 - 0.1625

Mg - 0.0435 0.9027 0.0457

Na 0.9053 0.1334 - 0.1974

K 0.8064 0.166 - 0.2119

HCO3 0.6765 0.1591 - 0.4386

Cl 0.2946 0.6757 0.0114

SO4 - 0.0781 0.9384 - 0.0094

NO3 - 0.226 - 0.073 0.723

Eigenvalue 3.38 3.41 1.66

Variance (%) 30.70 30.98 15.11

Cumulative variance (%) 30.70 61.68 76.80

Bold value indicates significant loading of water parameter Fig. 6 Plots of PC scores for PC1 versus PC2
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linkage method with the Euclidean distance for similarity

measurement of water samples. Spatial HCA generated a

dendrogram (Fig. 2), where groundwater samples were

grouped into three groups. EC seems to be a determining

factor in differentiating these groups. It increases from

group 1 to group 3. These groups are plotted on the Piper

diagram (Piper 1944) to identify the geochemical evolution

of water type.

Physical and chemical parameters of water groups,

including statistical measures, were compared with the

World Health Organization (2011) and Food and Agricul-

ture Organization (Ayers and Westcot 1994) and reported

in Table 2.

Group 1 is formed by eleven wells (wells 7, 10, 11, 12,

16, 17, 18, 19, 21, 22, and 24) with a mean value of EC

equal to 887.27 lS/cm, indicating low salinity and there-

fore fresh water. The majority of wells are localized in the

recharge area. The order of abundance of the major ions is

Ca[Mg[Na[K and HCO3[ SO4[Cl-[NO3

(Fig. 3), and the hydrochemical type is characterized by

Ca–Mg–HCO3 and Ca–Mg–SO4–Cl facies (Fig. 4). This

group is dominated by bicarbonates (min = 140.30 mg/L,

max = 347.7 mg/L, and mean = 239.01 mg/L), however,

calcium (min = 72.14 mg/L, max = 140.28 mg/L, and

mean = 97.65 mg/L) and sulphates (min = 65 mg/L,

max = 165 mg/L, and mean = 91.91 mg/L) are also pre-

sent. Most samples exceeded the desirable calcium (75 mg/

L) (WHO 2011) and bicarbonates (120 mg/L)limit for

drinking water, whereas concentrations of nitrate show that

only two wells (well 16 and 18) exceed the standards

required for consumption (50 mg/L).

Group 2 consists of wells 1, 2, 3, 4, 5, 6, 8, 9, 13, 20, 23,

25, and 26. These wells represent 50% of the water samples

and are mainly located along Boumerzoug Wadi and its

tributary El Berda Wadi (wells 1 and 2). This group is

characterized by high salinity (1310\EC\ 1980 lS/cm,

mean = 1651.54 lS/cm), with a clear dominance of cal-

cium, bicarbonate, chloride, and sulphates. The concen-

tration of Ca and HCO3 varies from 100.2 to 220.44 and

from 231.8 to 445.3 mg/L with mean concentrations of

160.32 and 327.57 mg/L, respectively. Chloride and sul-

phates values range from 53.25 to 319.5 mg/L and 52 to

405 mg/L with average values of 163.85 and 141.54 mg/L,

respectively. All samples exceeded the desirable limit of

Ca and HCO3, whilst only one well exceeds the standards

required for consumption for chloride (well 26) and sul-

phates (well 2). Water type is strongly influenced by the

geology of the study area (water–rock interaction), but also

by the surface-water/groundwater mixing process through

irrigation and during this period of high-water where the

main stream reaches its floodplain.

Two wells (wells 14 and 15) represent group 3.

Groundwater is highly mineralized (EC = 2780 lS/cm). Ca

and SO4 are the most dominant ions, which indicate SO4–

Cl–Ca water facies. These two wells didn’t reflect recharge

area chemistry; they are strongly influenced by their

environment, including agricultural vocation (chemical

fertilizers and livestock). The important well depths

observed in this group could influence the mineralization

by dissolution of Triassic formations (clay, marl, and salt).

On the other hand, the Chadha diagram (Chadha 1999)

which is a rather modified version of the Piper diagram,

shows that most groundwater samples are characterized by

dominance of alkaline earth (Ca2? ? Mg2?) over alkalis

(Na ? K) and strong acids (SO4 ? Cl) over weak acids

(HCO3); however, some samples (31%) indicate domi-

nance of weak acids over strong acids. Therefore, most of

the groundwater groups fall in the field of Ca–Mg–HCO3

and Ca–Mg–Cl/Ca–Mg–SO4 water type (Fig. 5). These

facies indicate the coexistence of the dissolution of both

calcite and dolomites and the Ca–Na cation exchange.

Suitability of the data for FA/PCA was checked using

Bartlett’s sphericity and Kaisere–Meyere–Olkin (KMO)

tests. Bartlett’s sphericity test of normalized data set is

carried out and reveal that v2 (cal) = 280.39 is greater than

the v2 (crit) = 73.31 at the degree of freedom 55, signifi-

cant level 0.05 and p value\ 0.0001. The value of KMO

was 0.61. Hence, these tests indicate that the sampling is

adequate for factor analysis. According to Kaiser Criterion

(Kaiser 1960), the first three PCs explaining 76.80% of the

total variance are chosen to represent the hydrochemical

process of groundwater (Table 3).

Factor 1 represents 30.70% of the total variance and had

strong positive loading on Na and K, a moderately positive

loading on HCO3 and Ca, and a strong negative loading on

Table 4 Suitability of

groundwater for drinking and

irrigation based on WQI

WQI value Class Representing wells

Drinking water Irrigation

0–25 Excellent Nil All wells

25–50 Good Nil Nil

50–75 Poor 6–7–10–11–12–13–16–17–18–19–22–23 Nil

75–100 Very poor 1–2–3–4–5–8–9–15–20–21–24–25–26 Nil

[ 100 Unsuitable 14 Nil

804 Acta Geochim (2019) 38(6):796–814

123



Table 5 Best-fitted variogram

models of water quality

parameters

Parameters Model Nugget (C0) Sill (C0 ? C) (C0/C0 ? C) * 100 (%) Spatial dependence

EC Exponential 0.096 0.299 32.22 Moderate

Ca2? Exponential 0.081 0.272 29.85 Moderate

Mg2? Exponential 0.125 0.651 19.24 Strong

Na? Exponential 0.006 0.511 1.21 Strong

K? Exponential 0.493 1.120 43.99 Moderate

HCO3
- Exponential 0.329 0.599 54.86 Moderate

Cl- Exponential 0.140 0.855 16.40 Strong

SO4 Exponential 0.156 0.533 29.28 Moderate

NO3 Exponential 0.034 0.614 5.52 Strong

WQIdrk Exponential 0 0.174 0 Strong

WQIrrig Exponential 00842 2.013 41.825 Moderate

Fig. 7 Spatial distribution map for EC
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pH, which is probably associated to carbonate and evapo-

rate minerals.

Factor 2 explains about 30.98% of the variance and

shows strong positive loadings on EC, Mg, and SO4, a

moderately positive loading on Ca and Cl. This factor

shows that the EC is due to hardness, chloride, and sulfates,

and probably indicates the signatures of water–rock

interaction.

Factor 3 has a total variance of 11.2% and shows high

positive loading on temperature and a moderately positive

loading on NO3. Nitrate is related to anthropogenic activ-

ities, such as the agricultural practice (fertilizers, animal

waste, etc.).

A scatter-plot (Fig. 6) of PC1 versus PC2 reveals that all

water groups are well distinguished from each other in the

PC space and absolutely coherent with groupings extracted

from Q-mode HCA.

4.2 Water quality index

The weighted arithmetic water quality index method

developed for groundwater parameters represents the

overall quality of water according to the degree of purity

for any intended use. For the study area, WQI value was

computed for drinking and irrigation water using the

guidelines of WHO (2011) and of Ayers and Westcot

(1994).

Table 4 represents WQI values for groundwater

samples.

The EC, pH, Ca, Mg, Na, K, Cl, SO4, HCO3, and NO3

have been used to obtain the WQI for drinking. Results

Fig. 8 Spatial distribution maps for the concentrations of major cations: a calcium, b magnesium, c sodium, and d potassium
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revealed that all wells had WQI above 50. However, 42.3%

of wells had poor water quality and 50% had very poor

water quality. Only one well (well 14) was unsuitable for

drinking purpose.

Sodium adsorption ratio (SAR) measures the relative

proportion of sodium to calcium and magnesium in irri-

gation water. A higher SAR may cause long-term damages

to the soil structure. This will lead to a decrease in crop

production. The US Salinity Laboratory Staff (USSL 1954)

recommended the equation given below to calculate SAR:

SAR ¼ Naþ= Ca2þ þMg2þÞ
� �

=2
h i1=2

ð8Þ

where the concentrations are reported in meq/L.

The SAR values vary from 0.23 to 1.38 and are less than

the permissible limit of 15 (Ayers and Westcot 1994) in

irrigation water. SAR has been used with EC, pH, Ca, Mg,

Na, K, Cl, SO4, HCO3, and NO3 to calculate WQI for

irrigation use. WQI intended for irrigation purposes

appears to have a low average of 3.51, with minimum and

Fig. 9 Spatial distribution maps for the concentrations of major anions: a bicarbonate, b chloride, c sulphate, and d nitrate
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maximum values of 1.36 and 5.78, respectively. Conse-

quently, all the samples are suitable for irrigation purposes.

4.3 Geostatistical modeling

The normality of the analyzed water parameters was con-

sidered for the best work of Kriging methods. The best

fitted semivariogram models were chosen based on the

mean error (ME) and root mean square standardized error

(RMSSE) values. The model is considered efficient with

the most accurate estimations when ME is minimum and

RMSSE is close to unity. The exponential semivariogram

model fitted best for all hydrochemical parameters values.

Regarding the nugget variance/sill ratio, three classifica-

tions are used to explain the spatial dependence of

groundwater parameters: the spatial dependence is con-

sidered strong when the ratio is\ 25%, moderate when the

ratio is between 25 and 75%, and weak if the ratio is more

than 75% (Table 5). According to nugget/sill ratios, the

study area indicates that groundwater chemistry has a

strong spatial structure for Mg, Na, Cl, and NO3, and a

moderate spatial structure for EC, Ca, K, HCO3, and SO4.

Spatial variability of EC (Fig. 7) shows that mineral-

ization increases ([ 1500 lS/cm) towards the north, south,

and in the center part of the study area, as a result of the

leaching of the tellian geologic formation, and agricultural

practice such as livestock farms and the extensive irrigated

land.

The trend of the distribution of Ca and HCO3 concen-

tration is increasing to the foothills of the carbonate

mountains (Figs. 8, 9a), such as marl and limestone for-

mations of tellian domain (Djebel tikbeb), carbonate neritic

nappe (Djebel Oum Settas and Mazela), and Pliocene lake

limestone surrounding El Khroub.

Magnesium and sulfates have the same homogenous

spatial distributions, which increase into the southwestern

part of the valley (Figs. 8b, 9c). SO4 might result from

leaching of clays and the dissolution of gypsum and

anhydrite present in clay levels (Bouteraa 2008).

Figures 8c–d, 9b show an increasing trend of Na, K, and

Cl to the south part of the valley and along Boumerzoug

Wadi and its tributary El Berda Wadi. The increasing

concentration of Na and Cl in the south part of the study

area is assumed to be the result of leaching of triassic clays.

Along Boumerzoug valley, Na and Cl concentration may

indicate sewage input without treatment and animal man-

ure (Wang et al. 2016).

The nitrate map (Fig. 9d) shows that wells that exceed

the standards required for consumption (50 mg/L) are

localized around irrigated land indicating the influence of

farming inputs.

Table 5 designates that the best-fit semivariogram

model used to obtain the most accurate estimations for

WQI was an exponential model. The nugget to sill ratio was

\ 25%, which represent a strong spatial dependency. The

WQI map (Fig. 10a) exhibits the spatial variability of

groundwater quality for drinking purpose. Most wells sit-

uated in the recharge area had a poor water quality,

whereas those located along Boumerzoug Wadi had a very

poor water quality. Poor water quality may be related to

geogenic processes and anthropogenic sources. On the

other hand, the distribution of water quality index for

irrigation (Fig. 10b) is homogenous and it is found below

the lower limit, explaining why all groundwater samples

are safe for irrigation.

Fig. 10 Spatial distribution map for WQI: a WQI for drinking, b WQI for irrigation
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Fig. 11 Bivariate plots of a well number versus Ca/Mg, b Ca ? Mg versus HCO3, c Ca ? Mg versus SO4 ? Cl, d Ca ? Mg versus

HCO3 ? SO4, e Ca ? Mg versus Cl, and f Na/Cl versus Cl
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4.4 Hydrogeochemical process

4.4.1 Origin of mineralization

Calcium and magnesium in groundwater result from the

leaching of limestone, dolomites, gypsum, and also from

the cation exchange process. The reaction of carbonate

minerals (calcite and dolomite) with water and carbon

dioxide is written as follows:

CaCO3 calciteð Þ þ H2Oþ CO2 ! Ca2þ þ 2HCO�
3 ð9Þ

CaMg CO3ð Þ2 dolomiteð Þþ2H2Oþ 2CO2

! Ca2þ þMg2þ þ 4HCO�
3 ð10Þ

Dissolution of calcite and dolomite can be identified by

calculating the Ca/Mg ratio. If the molar ratios of these

cations are close to 1, dissolution of dolomite should occur,

whereas dissolution of calcite is the dominant reaction

when Ca2?/Mg2? ratio is between 1 and 2 (Mayo and

Loucks 1995). Higher Ca/Mg molar ratio indicates non

carbonate mineral source, which may play a significant role

in the groundwater chemistry.

Figure 11a shows that most water samples (group 1 and

group 2) have a ratio [ 2, which indicates probably the

influence of clay minerals (reverse cation exchange) and/or

gypsum dissolution. All water samples of group 3 are

characterized by dissolution of dolomite.

The majority of the water samples present an excess of

(Ca ? Mg) relative to HCO3 (Fig. 11b), which is why Ca

and Mg should be balanced by SO4 and Cl (Fig. 11c).

The plot of (Ca ? Mg) versus (HCO3 ? SO4) will be

close to the 1:1 line if the dissolution of calcite, dolomite,

and gypsum are the dominant reactions in a system (Cer-

ling et al. 1989; Fisher and Mulican 1997). If reverse ion

exchange is the process, the points take place on the left

side the 1:1 line due to excess (Ca ? Mg) over (HCO3-

? SO4). In the opposite case, the ion exchange is the

process due to excess HCO3 ? SO4 over Ca ? Mg.

Figure 11d indicates that most of the samples are dis-

tributed above the line 1:1 (R2 = 0.85) so that clay min-

erals weathering, with carbonate and gypsum weathering at

less degree, are considered as enriching factor for

groundwater mineralization.

The plot of Ca ? Mg versus Cl and Na/Cl versus Cl

shows that the salinity increased with a decrease in Na/Cl

and an increase in Ca ? Mg, which may be due to reverse

ion-exchange in the clay/weathered layers (Sheikhy

Narany et al. 2014). Clay minerals have a sheet structure

with boundaries and face negatively charged, onto which

cations can be fixed and exchanged (Clark 2015) as

follows:

Ca Mgð Þ � Clay2 þ 2Naþ ! Ca2þ Mg2þ
� �

þ Na� Clay2

ð11Þ

4.4.2 Geochemical modeling

Groundwater geochemistry is dominated by the interaction

between water and the aquifer matrix. The saturation index

was applied to predict the reactive mineralogy of the sub-

surface from the groundwater sample data without col-

lecting the samples of the solid phase and analyzing the

mineralogy (Appelo and Postma 1993).

The results of the saturation index calculations for the

selected minerals (Calcite, Aragonite, Dolomite, Gypsum,

Anhydrite, and Halite) are presented in Table 6.

The saturation index of minerals in groundwater sam-

ples indicates that only carbonate minerals (calcite,

Table 6 Statistical summary of

saturation indexes of minerals in

groundwater using PHREEQC

Anhydrite Aragonite Calcite Dolomite CO2 (g) Gypsum Halite

Group 1

Min - 2.16 0.03 0.18 - 0.07 - 2.65 - 1.77 - 8.08

Max - 1.65 0.47 0.62 0.91 - 1.76 - 1.24 - 6.83

Mean - 1.65 0.18 0.33 0.08 - 1.76 - 1.24 - 6.83

SD 0.15 0.13 0.13 0.33 0.27 0.15 0.4

Group 2

Min - 2.22 0.28 0.43 0.22 - 2.3 - 1.82 - 7.29

Max 0.25 3 3.15 5.66 - 0.44 0.64 - 4.2

Mean - 1.57 0.66 0.81 1.11 - 1.94 - 1.17 - 6.65

SD 0.6 0.72 0.72 1.4 0.48 0.6 0.78

Group 3

Min - 1.2 0.41 0.56 1.24 - 2.18 - 0.81 - 6.76

Max - 1.19 0.47 0.62 1.43 - 2.13 - 0.79 - 6.53

Mean - 1.2 0.44 0.59 1.34 - 2.16 - 0.8 - 6.65

SD 0.01 0.04 0.04 0.13 0.04 0.01 0.16
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bFig. 12 Saturation index of a carbonate minerals, b Gypsum–Anhy-

drite, and c Halite

Fig. 13 Mineral stability diagrams

Acta Geochim (2019) 38(6):796–814 811

123



aragonite, and dolomite) tend to precipitate in all groups

(Fig. 12). Given the semi-arid climate of the study region,

high evaporation and less rainfall (\ 600 mm/years) might

be responsible for the precipitation of aragonite, calcite,

and dolomite (Kumar and Singh 2015). However, anhy-

drite, gypsum, and halite are in the state of undersaturation,

indicating that their soluble component Na, Cl, Ca, and

SO4 concentrations are not limited by mineral equilibrium

(Güler and Thyne 2004). Anhydrite and Gypsum minerals

are in phase to reach their equilibrium. The precipitation of

Anhydrite and Gypsum in well 3 can be explained by

leaching of the Triassic formation that characterizes the

tellian domain and by the presence of Gypsum in the clay

and marl levels of Mio-Pliocene formation. Low concen-

tration of Na compared with Cl is probably due to the

nature of Na which can be linked with clay minerals by an

ion-exchange process. Reverse ion-exchange decreased the

concentration of Na and augmented that of Ca, involving

the reduction of Gypsum dissolution (Tarki et al. 2010).

Another approach to test the proposed hydrochemical

evolution is the use of mineral stability diagrams (Drever

1988). Activity plots of log (aCa
2?/a2H

?) versus log (aNa
? /aK

?),

log (aCa
2?/a2H

?) versus log (aMg
2?/a2H

?), and log (aMg
2?/a2H

?) ver-

sus log (aNa
? /aK

?) indicate four mineral stability for CaO–

Na2O–Al2O3–SiO2–H2O (Fig. 13a), CaO–MgO–Al2O3–

SiO2–H2O (Fig. 13b), and MgO–Na2O–Al2O3–SiO2–H2O

(Fig. 13c) systems at 25 �C and 1 bar. The three water

groups are plotted essentially in the Ca-smectite and

Kaolinite stability field. Therefore, equilibrium with Ca-

smectite and Kaolinite is one of the main processes con-

trolling water chemistry. Therefore the major geochemical

reaction controlling groundwater chemistry of Boumer-

zoug-El Khroub valley can be written as:

6CaAl2SiO10ðOHÞ2 Ca - smectiteð Þþ2Hþ þ 23H2O

$ 7Al2Si2O5ðOHÞ4 Kaoliniteð Þ þ Ca2þ þ 8H4SiO4a
2

þ 8H4SiO4

ð12Þ

MgAl2SiO10ðOHÞ2 Mg - smectiteð Þ þ 2Hþ þ 23H2O

$ 7Al2Si2O5ðOHÞ4 Kaoliniteð Þ þMg2þ þ 8H4SiO4

ð13Þ

5 Conclusion

Multivariate analysis, geostatistical modeling, WQI, and

geochemical modeling could be useful to define and clarify

the genetic origin of the factors controlling groundwater

chemistry of Boumerzoug-El Khroub’s Valley, Northeast

Algeria.

Q-mode cluster analysis identified three main water

types based on groundwater quality data sets. Group 1

represents a water sample with low salinity (EC = 887.27

lS/cm) and is mainly localized in the recharge area. Group

2 represents wells localized in transit and discharge areas;

this group has moderate salinity (EC = 1651.54 lS/cm)

and is dominated by Ca–SO4–Cl facies. The third group

has high salinity (EC = 2780 lS/cm) and is dominated by

Ca and SO4.

FA/PCA allowed extraction of three PCs that explain

76.80% of the total variance. PC1 and PC2 revealed that

the hydrogeochemical composition of groundwater is

affected by the geogenic process, which includes the dis-

solution of carbonate and evaporate rocks, reverse ion

exchange, and weathering processes. PC3 is related to the

agricultural area where the highest irrigation frequency

coincides with this period of plant development.

Geostatistical analysis using ordinary Kriging demon-

strated a strong spatial distribution for Mg, Na, Cl, and

NO3, and a moderate spatial distribution for EC, Ca, K,

HCO3, and SO4.

Mineralization has the tendency to increase along

Boumerzoug Wadi, around tellian domain, and towards the

hydraulic discharge area. Thus, WQI values revealed the

deteriorated drinking water quality from the recharge area

to the discharge area and assured the suitability of

groundwater for irrigation purposes.

Hydrogeochemical processes were dominated by reverse

ion exchange, which controls the groundwater chemistry.

Kaolinite and Ca-smectite is one of the processes respon-

sible for hydrochemical evolution in the area. All water

groups are undersaturated with respect to evaporite min-

erals. Per contra, carbonate minerals are supersaturated in

all groups.
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Wackernagel H (1995) Ordinary Kriging. In: Wackernagel H (ed)

Multivariate geostatistics. Springer, Berlin, pp 74–81

Wang Y, Ma T, Luo Z (2001) Geostatistical and geochemical analysis

of surface water leakage into groundwater on regional scale: a

case study in the Liulin karst system, northwestern China.

J Hydrol 246(1–4):223–234

Wang W, Song X, Ma Y (2016) Identification of nitrate source using

isotopic and geochemical data in the lower reaches of the Yellow

River irrigation district (China). Environ Earth Sci. https://doi.

org/10.1007/s12665-016-5721-3

WHO (2004) Guidelines for drinking water quality: training pack.

WHO, Geneva

WHO (2011) Guidelines for drinking-water quality, 4th edn. World

Health Organization, Geneva

814 Acta Geochim (2019) 38(6):796–814

123

https://doi.org/10.1007/s12665-014-3803-7
https://doi.org/10.1007/s12665-014-3803-7
https://doi.org/10.1007/s12665-010-0820-z
https://doi.org/10.1007/s12665-010-0820-z
https://doi.org/10.1007/s12665-015-4779-7
https://doi.org/10.1007/s12665-016-5813-0
https://doi.org/10.1007/s12665-016-5721-3
https://doi.org/10.1007/s12665-016-5721-3

	Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quality index (WQI): a case of study in the Boumerzoug-El Khroub valley of Northeast Algeria
	Abstract
	Introduction
	Study area
	Materials and methods
	Sampling analysis
	Statistical analysis
	Water quality index
	Geostatistical modeling
	Geochemical modeling

	Results and discussion
	Groundwater chemistry and water type
	Water quality index
	Geostatistical modeling
	Hydrogeochemical process
	Origin of mineralization
	Geochemical modeling


	Conclusion
	References




