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Abstract: To investigate the natural convective process in a hydrodynamically and thermally anisotropic porous 

medium at the representative elementary volume (REV) scale, the present work presented a multiple- 

relaxation-time lattice Boltzmann method (MRT-LBM) based on the assumption of local thermal non-equilibrium 

conditions (LTNE). Three sets of distribution function were used to solve the coupled momentum and heat 

transfer equations. One set was used to compute the flow field based on the generalized non-Darcy model; the 

other two sets were used to solve the temperature fields of fluid and solid under the LTNE. To describe the 

anisotropy of flow field of the porous media, a permeability tensor and a Forchheimer coefficient tensor were 

introduced into the model. Additionally, a heat conductivity tensor and a special relaxation matrix with some 

off-diagonal elements were selected for the thermal anisotropy. Furthermore, by selecting an appropriate 

equilibrium moments and discrete source terms accounting for the local thermal non-equilibrium effect, as well as 

choosing an off-diagonal relaxation matrix with some specific elements, the presented model can recover the 

exact governing equations for natural convection under LTNE with anisotropic permeability and thermal 

conductivity with no deviation terms through the Chapman-Enskog procedure. Finally, the proposed model was 

adopted to simulate several benchmark problems. Good agreements with results in the available literatures can be 

achieved, which indicate the wide practicability and the good accuracy of the present model. 

Keywords: lattice Boltzmann method, natural convection in anisotropic porous medium, local thermal 

non-equilibrium

1. Introduction 

Natural convection in the porous media has been 
extensively studied, owing to the widespread applications 
in many fields of science and engineering, such as 
geothermal energy systems, underground spread of 
pollutants in soils, petroleum reservoir modelling, and 
electronic management with porous media. In order to 

further analysis the performance of such systems, it is of 
considerable interest to predict the convectional fluid 
flow and temperature distribution of the porous media. In 
the literatures, there exist two major models for the 
natural convection in porous media. The first and most 
commonly employed one is the local thermal equilibrium 
(LTE) model, which assumes that the saturating fluid and 
the constituent porous solid matrix are at the same  
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temperature. However, the assumption of LTE will 
induce substantial error in cases of certain applications, 
such as the case with a significant internal heat 
generation in fluid phase or solid matrix, or the case with 
a very large difference in thermal conductivity between 
the solid and fluid, and so on. In these cases, the rate of 
temperature change for the fluid and solid will be no 
longer equal and thus the assumption of LTE will be 
broken down [1]. Thus, the local thermal non-equilibrium 
(LTNE) model, which assumes that there exists a finite 
temperature difference between the solid and the fluid 
phases leading to the heat transfer between these two 
phases, must be adopted in these applications. In the 
LTNE models, two energy equations with appropriate 
coupling term accounted for the interfacial heat transfer 
are usually adopted to model the temperature fields of the 
fluid and solid phases, respectively [2]. In the past two 
decades, many numerical simulations based on the 
well-developed traditional methods (e.g. finite difference 
method (FDM) and finite volume method (FVM)) have 
been conducted to investigate the natural convection in 
porous media under LTNE condition [3]. 

As a promising numerical tool for computational fluid 
dynamics, the lattice Boltzmann method (LBM), which is 
based on the kinetic theory and the discretization of the 
mesoscopic kinetic equations, has been successfully 
adopted to study the heat transfer and fluid flow in 
porous media, owing to its numerous advantages [4–6]. 
By introducing some additional terms into the LB 
equation to account for the drag force due to the presence 
of the porous media, Guo and Zhao [7] developed a 
generalized LB model for the incompressible flow in 
porous media at the representative elementary volume 
(REV) scale. Then, they further extended the generalized 
LB model to study the natural convection heat transfer in 
the porous media with double distribution function LB 
model [8]. Gao and Chen [9] proposed a thermal LB 
model to investigate the natural convection in the porous 
media at the REV scale under the LTE condition. Wang 
et al. [10] also proposed a modified LBGK model for 
convection heat transfer in porous media under the LTE 
condition, in which the macroscopic equations can be 
correctly recovered by constructing a modified 
equilibrium distribution function and the corresponding 
source term. However, all of the above-mentioned LB 
models employ the Bhatnagar-Gross-Krook (BGK) 
collision model, which encounters some defects, such as 
numerical instability at low viscosities. In order to 
overcome these defects of LBGK models, Liu et al. [11] 
established a multiple-relaxation-time (MRT) LB model 
for simulating convection heat transfer in porous media, 
in which the porosity of the porous media is introduced 
into the equilibrium moments and force terms in the 
moment space. Very recently, Hu et al. [12] proposed a 
MRT-LB model for simulating flow and heat transfer in  

the hydrodynamically and thermally anisotropic porous 
medium at the REV scale under LTE condition. In their 
model, the correct Darcy-Brinkman-Forchheimer and 
energy equations with anisotropic permeability and 
thermal conductivity can be recovered through the 
Chapman-Enskog procedure by selecting the appropriate 
equilibrium distributions, relaxation matrix and discrete 
force/heat source terms.  

It can be found from the above literatures review that 
most REV-LB models for natural convection in porous 
media are based on the LTE assumptions. Gao and Chen 
[13] further extended the model to account for the 
non-local thermodynamic equilibrium (non-LTE) 
condition with two new distribution functions for the 
temperature fields of the fluid and solid matrix phases. It 
should be noted that in most of the existing REV-LB 
models for porous media, deviation term exists in the 
corresponding macroscopic equations when the velocity 
vector varies with space or time through the Chapman- 
Enskog analysis, which has significant influence on 
numerical error. Furthermore, there is no LB model for 
flow and heat transfer problems in the anisotropic porous 
medium under LTNE condition, which are very important 
due to its wide range of applications. Thus, the aim of the 
present paper is to develop a MRT-LB model to model 
the natural convection in a hydrodynamically and 
thermally anisotropic porous medium under LTNE. For 
this purpose, through an appropriate selection of the 
equilibrium moments, discrete source terms and an 
off-diagonal relaxation matrix, the proposed MRT-LB 
model can recover the governing equations under LTNE 
with anisotropic permeability and thermal conductivity 
with no deviation terms through the Chapman-Enskog 
procedure.  

2. Problem Description & Governing Equations 

The schematic of the physical model for the natural 
convective flow and heat transfer in a 2D cavity filled 
with a fluid-saturated porous medium is shown in Fig. 1. 
The side length of the cavity is L. To derive the 
governing equations, the following simplifying 
assumptions are particularly made: (1) the flow is 
incompressible and laminar; (2) the solid matrix of the 
porous media is in local thermal non-equilibrium (LTNE) 
state with the fluid; (3) the thermos-physical properties of 
the fluid as well as of the porous matrix are constant 
except for density dependency of the buoyancy term in 
the momentum equation, which follows Boussinesq 
approximation; (4) the viscous dissipation and radiative 
heat transfer can be neglected; (5) the porous medium is 
anisotropic in permeability and the solid matrix is 
anisotropic in thermal conductivity; (6) the generalized 
non-Darcy model is used to depict the drag force due to 
the presence of porous medium. Based on these 
assumptions, the detailed volume-averaged governing 
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Fig. 1  The schematic of the physical model 
 
equations for the natural convective flow and heat 
transfer in a 2D cavity filled with a fluid-saturated porous 
medium at the REV scale can be derived as follows: 

Continuity equation: 
 0 u                 (1a) 

Momentum equation: 
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Energy equation for solid matrix: 
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where, ρ is the density of the fluid; u and p are the 
volume-averaged velocity and pressure respectively; ε is 
the porosity of the porous media; νe is the effective 
kinematic viscosity; cp is the specific heat; κe is the 
second-order tensor for the effective conductivity; Q is 
the volumetric internal heat source; T is the temperature; 
the subscripts “m” and “f” denote the solid matrix and the 
fluid respectively. Fb represents the total body force 
induced by the presence of a porous medium and other 
external force fields, and can be given by: 

1
b f     FF K u C u u G         (2) 

where, K and CF are the second-order tensors for the 
intrinsic permeability of the porous media and the 
Forchheimer coefficient respectively; |u| is the magnitude 
of the superficial velocity; νf is the viscosity of the fluid 
which is related, but not necessarily equal to νe. The first 
and the second terms on the right side of Eq. (2) denote 
the linear viscous and non-linear inertial drag forces due 
to the presence of the porous media, respectively. The 
buoyancy force G induced by the gravitational force can 
be given by the Boussinesq approximation: 

 T f refT T G g              (3) 

where g is the gravity acceleration vector; βT is the 
thermal expansion coefficient; Tref is the reference 
temperature. 

The anisotropic porous medium is assumed to be 
hydrodynamically and thermally anisotropic. The 
hydrodynamic anisotropy can be represented based on 
both permeability and Forchheimer coefficient tensor, 
while thermal anisotropy of the solid matrix can be 
depicted by the thermal conductivity tensor. The 
principal permeabilities are K1 and K2, respectively. The 
angle between K1 direction and x-direction is θp. Then the 
permeability tensor K can be given by the following 
matrix: 
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The inverse matrix of K in Eq. (2) can be given as: 
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The Forchheimer coefficient tensor CF can be given as: 
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where F1 and F2 are the geometric function. The Ergun’s 
equation can be employed to evaluate F’s value, e.g. for 
the granular porous medium, F1 can be expressed as: 

 1 3

1.75
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
                 (7) 

For the anisotropic thermal conductivity of the solid 
matrix, the principal effective thermal conductivities of 
the solid matrix are κem1 and κem2, respectively. The angle 
between κem1 direction and x-direction is θt. Then the 
effective conductivity tensor κem can be given by the 
following matrix: 
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The effective thermal conductivity κe determined by 
the thermal conductivities of each constituent and the 
microstructural characteristics such as porosity and pore 
diameter distribution can be estimated by the effective 
medium theory (EMT) [14]. However, a simplified 
equation is adopted in the present study, which yields the 
following formulation: 
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where the κf and κm are the thermal conductivity of the 
fluid and solid, respectively.  

The convective flow and heat transfer can be 
characterized by several dimensionless parameters, 
which are given as follow: 
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where Ra is the Rayleigh number; Pr is the Prandtl 
number; Da is the Darcy number; J is the viscosity ratio 
of the effective viscosity to the fluid viscosity; γ is the 
ratio of the effective conductivity; λ is the thermal 
conductivity ratio of the solid matrix to the fluid; σ is the 
heat capacity ratio of the solid matrix to the fluid; Hv is 
the dimensionless volumetric heat transfer coefficient; 
Ha is the dimensionless volumetric heat generation rate; 
∆T=Th−Tc or QL/κf is the characteristic temperature 
difference. We also define three non-dimensional 
parameters to take into the anisotropic media 

consideration: the ratio of Forchheimer constants RC, the 
ratio of permeability RK and the ratio of thermal 
conductivity Rκ, which are given as: 
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3. Multiple-Relaxation-Time Lattice Boltzmann 
Model  

A MRT lattice Boltzmann model is then established to 
model the natural convective heat transfer in the 
hydrodynamically and thermally anisotropic porous 
medium under LTNE conditions at the REV scale. The 
proposed thermal LB model consists of three sets of 
distribution function, one for the flow field based on the 
generalized non-Darcy model, and the other two sets for 
the temperature fields of the fluid and solid matrix under 
the LNTE conditions, respectively. The flow field and the 
fluid temperature field couple with each other by the 
buoyancy source term, while the fluid temperature field 
and the solid temperature field couple with each other by 
the source term for the interfacial heat transfer between 
the solid and fluid phase.  

The D2Q9 discrete velocity set is adopted to solve the 
velocity and temperature field in the present study, the 
corresponding nine discrete velocities are given as: 
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where α is the discrete velocity direction; and c is the 
lattice speed, defined as c=δx /δt with δx and δt are the 
lattice spacing and time step, respectively. It should be 
noted that both δx and δt, as well as all the other variables 
in this study, are given to be dimensionless and c=δx /δt=1. 
The corresponding weighted coefficient wα satisfies the 
following conditions: 
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where δij is the Kronecker delta with two indices i and j, △ijkl=δijδkl +δikδjl +δilδjk. 
The lattice Boltzmann equation with the MRT 

collision scheme can be expressed as: 
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which can be decomposed into two steps, i.e., the 
collision process: 
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and the streaming process: 

   ,  + ,  k k
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where kf  is the poststreaming distribution function; 
kf is the postcollision distribution function. The 

superscript “k” denotes the velocity field when k = u or 
the temperature field for the fluid phase when k = Tf and 
solid matrix when k = Tm, respectively. I is the unit 
matrix; M is a 9×9 orthogonal transformation matrix,  

mk=Mfk and mk, eq=Mfk,eq are the vectors for the moments 
of the distribution function and its corresponding 
equilibrium moments vector, respectively. Sk=MΛkM−1 is 
a non-negative 9×9 relaxation matrix in the moment 
space, which can be chosen as either a diagonal matrix or 
a non-diagonal matrix for a specific problem. Λk is the 

relaxation matrix in the discrete velocity space. k
mF  is 

the discrete force term in the moment space. For D2Q9 
model, the transformation matrix M can be chosen as: 
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3.1 MRT-LB model for the flow field 

For the velocity field (k=u), the equilibrium moments 
vector mu, eq can be given by: 
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It should be noted that an incompressible LB model 

with a modified equilibrium distribution function is 
adopted in the present work, the corresponding 
equilibrium distribution function in the discrete velocity 
field can be given as: 
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where the mean density 0 is set to be 1.0; the lattice 

sound speed cs is defined as 3sc c  for the D2Q9 

model. The corresponding relaxation matrix in the  

moment space Su can be chosen as a diagonal matrix: 
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For avoiding error terms induced by the unsteady and 

non-uniform force, the discrete force term vector u
mF  

can be given as: 
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where Fb=(Fbx, Fby) is the force term represented by Eq. 
(2).  

With the distribution function evolving on the discrete 
lattices, the corresponding macro-quantities can be 
computed as: 
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It should be noted that the force term Fb is the 
nonlinear function of the velocity u, and with the help    
of Eq. (2), a nonlinear implicit form of the velocity u   
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can be derived: 
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It is difficult to obtain an explicit solution for this 
nonlinear implicit equation. To keep the merit of the high 
computational efficiency of the LBM, we replace the 

nonlinear term    t t t t  u u  with    t t tu u  

as suggested by Hu et al. [12]. Thus, an approximate 
explicit solution for the velocity can be obtained: 
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Through the Chapman-Enskog analysis, the proposed 

MRT-LB model for the velocity field can recover Eq. (1a) 
and Eq. (1b) in the incompressible limit where the Mach 
number is small enough. 

3.2 MRT-LB model for the temperature fields 

For the temperature field of the fluid phase and solid 
matrix phase, a two-temperature MRT-LB model is 
developed to solve the energy equations under LTNE 
conditions depicted by Eq. (1c) and Eq. (1d).  
Particularly, by constructing two newly equilibrium 

distribution functions, as well as choosing two special 
relaxation matrixes with some additional off-diagonal 
elements inspired by Huang et al. [14], the convection- 
diffusion equation for fluid phase and the diffusion 
equation for the solid matrix with anisotropic diffusion 
coefficient without the unwanted deviation term can be 
recovered exactly through the Chapman-Enskog analysis.  

For the fluid temperature field (k=Tf) and the solid 
matrix temperature field (k=Tm), two newly equilibrium 
distribution functions are constructed to solve Eq. (1c) 
and Eq. (1d), which can be given as: 
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The corresponding weighted coefficient wα can be 

defined as w0=5/9, w1,2,3,4,5,6,7,8=1/18. It should be noted 
that the reference porosity ref which keeps unvaried over 
the entire space is introduced into the equilibrium 
function. Benefit from this treatment, the present LB 
model can be used to tackle the problem with the 

variation of the porosity which cannot be correctly solved 
by many previous LB models. We will give the details in 
the next section. In the computation, ref can be chosen as 
the harmonic mean of the overall porosity of the domain. 
The corresponding equilibrium moments function vector 
mk,eq are given by: 

 

   , ,  2 2 ,  2 2 , ,  ,  ,  ,  0,0f

T

T eq y yx x
f f ref f ref f f f f

u uu u
T T T T T T T

c c c c
    
 

      
 

m        (28a) 

      , 1 ,  2 2 1 ,2 2 1 ,  0,  0,  0,  0,  0,0m
TT eq

m m ref m refT T T          m            (28b) 

 
Followed by the inspiration of Huang and Wu [14], 

some additional off-diagonal elements are introduced into 
the relaxation matrix to account for the anisotropic heat 
transfer and eliminate the unwanted deviation term induced 

by the influence of the convection term on the diffusion 
term when the velocity vector varies with space or time.  

The relaxation matrix for the fluid temperature field 
(k=Tf) can be given as:  



YANG Bo et al.  A MRT LB Model for Natural Convection in Hydrodynamically and Thermally Anisotropic Porous Medium 615 

 

0

1

2

,      0,      0,         0,           0,            0,        0,             0,   0

 0,     ,      0,         0,           0,            0,        0,             0,   0

 0,      0,     ,         0,        

f

f

f

f

T

T

T

T

s

s

s

S 

6
4

4

   0,            0,        0,             0,   0

 0,      0,      0,        ,    1 ,     ,   ,    0,   0
2 2

 0,      0,      0,         0,          ,            0,       0,         

fff
ff f

f

TTT
TT T xyxx

xx xy

T

s ss
s s s

s

 
  

 

4
6

6

     0,   0

 
 0,      0,      0,       ,        ,    ,  1  , 0,   0

2 2

 0,      0,      0,         0,           0,            0,        ,            0,   0

 0,      0,      0,        

ff f

ff f

f

TT T
TT Txy yy

xy yy

T

s s s
s s s

s

 
 
 
 

7

8

 0,           0,            0,         0,            ,  0

 0,      0,      0,         0,           0,            0,         0,             0,  

f

f

T

T

s

s

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

                  (29a) 

 

and the corresponding relaxation matrix for the solid matrix temperature field (k=Tm) can be expressed as: 
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It should be noted that the matrix Ak for 
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to account for the anisotropic diffusion, while the 
additional off-diagonal elements matrix 
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B  is introduced to 

eliminate the unwanted deviation term when the fluid 
velocity vector varies with space or time. The 

corresponding discrete heat source term vector fT
mF and 

mT
mF  can be given as: 
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where the effective heat source term can be expressed as: 
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The corresponding macro-quantities Tf and Tm then 
can be computed as: 
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  01 =
2 2
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Since the effective heat source terms also contain the 
priori unknowns Tf and Tm, Eq. (32a) and Eq. (32b) are 
implicit linear equations. The corresponding explicit 
solutions are given as: 
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3.3 Chapman-Enskog analysis 

Then, the Chapman-Enskog analysis is performed to 
recover the energy equations for the temperature fields 
under LTNE. By introducing a small parameter ζ, the 
moments of the distribution function and the derivatives 
of space and time can be expanded as: 
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where t1 and t2 are the convective time scale and 
diffusion time scale, respectively. 

Taking the Taylor series expansion for Eq. (14) and 
rewriting it, we can get: 
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Substituting Eq. (34) into Eq. (35), the following 
equations in the consecutive orders of the small 
expansion parameter ζ can be obtained: 

   0 , 0 ,: k k eq m m              (36a) 

       1 , 0 , 1 , 1
1

ˆ:
2

k k
k k k

m
t




 
     

 

S S
D m m I F    (36b) 

     
 

 

k, 1
2 , 0 1,

2 1

2,

ˆ:
2 2

k
k k t m

t

k
k

t






  
           

 

FS
m D I m

S
m

 (36c) 

Rewriting it, we can get: 
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With the help of Eq. (34), Eq. (32a) and Eq. (40) can 
lead to the following relationships: 
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The equations for the conserved moment, 0
km , in Eq. 

(37a) can be written as: 
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With the help of Eq. (38), Eq. (39c) can be rewritten as: 
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To further simplify Eq. (39d), by adding the fifth equation to the fourth equation of Eq. (37b), as well as adding the 
seventh equation to the sixth equation, and then combining the two resulting equations, we can get: 
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Utilizing Eqs. (28) and (30), Eq. (40) can be simplified as: 
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Thus, Eq. (39) can be rewritten as: 
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With the help of Eqs. (28), (30) and (38), the 
macroscopic equations in the t1 and t2 time scales for the 
fluid temperature field (k=Tf) can be obtained as: 
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It’s should be noted that the reference porosity εref 

keeps unvaried over the entire space. Therefore, Eq. (43b) 
can be further modified as: 
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Combining the equations for the time scale t1 and t2, 
i.e., Eqs. (43a) and (43c), we recover the equation as: 
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Therefore, the macroscopic energy equation for the 
fulid (Eq. (1c)) can be exactly recovered by setting: 
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 Similarly, the macroscopic equations in the t1 and t2 
time scales for the solid matrix temperature field (k=Tm) 
can be obtained as: 
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The corresponding macroscopic equation can be 
obtained: 
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The thermal diffusion coefficient matrix of the 

anisotropic solid matrix mTΓ  can be given as: 
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Thus, the energy equation for the fluid and solid 
matrix under LTNE can be recovered exactly as: 
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Through the Chapman-Enskog analysis, the proposed 
MRT-LB model for the temperature fields can exactly 
recover Eq. (1c) and Eq. (1d) of no deviation terms 
without any additional assumptions. Additionally, in the 
present study, the fluid is assumed to be thermally 
isotropic, thus: 
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And the parameters for the relaxation matrix can be 
chosen as: 
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4. Numerical Results and Discussion 

To evaluate the applicability of the proposed lattice 
Boltzmann model for the natural convection in 
anisotropic porous media under LTNE condition, 
numerical investigation of a natural convection problem 
in porous media is carried out. The simulated results are 
compared with the results reported in the literatures. 
Finally, the application of the proposed model considers 
the problem of natural convection in a hydrodynamically 
and thermally anisotropic porous medium under LTNE. 
In all cases, the non-equilibrium extrapolation schemes 
are applied to implement both the velocity and the 
thermal boundary condition [15, 16]. 

4.1 Natural convection in a heat generating isotropic 
porous medium 

In the first case, the steady natural convection in an 
isotropic porous medium with internal heat generating 
solid matrix is investigated by the present LB model.  

As shown in Fig. 1, a square cavity with isothermally 
cooled walls is filled with a fluid-saturated porous 
medium which generates heat in solid matrix at a 
uniform rate Qm. The four walls which are subjected to 
the no-slip velocity boundary conditions are cooled at a 
fixed temperature Tc. The characteristic temperature 
difference is given as ∆T=QfL/κf. The dimensionless 
parameters characterizing this problem are given as 
follows: Ra=107, Pr=7.0, Da=0.01, J=1.0, γ=1.0, 
Haf=0.0, Ham=1.0. The other parameters are set as: 
F1=0.5648, RC=1, RK=1, Rκ=1. Two cases with different 
dimensionless volumetric heat transfer coefficient Hv are 
simulated, which are set Hv =1.0 and 50.0, respectively. 

The temperature profiles results at vertical mid-plane 
for different Hv by the present LB model are plotted in 
Fig. 2. It can be found that, for a very small interfacial 
heat transfer coefficient Hv (i.e. Hv =1), the temperature 
of the solid matrix is much higher than the temperature of 
the fluid phase, resulting from the very weak heat 
transfer between the solid matrix and fluid. Thus, the 
temperature difference between the phases is very large, 
indicating that the non-equilibrium effect is very strong 
when the interfacial heat transfer coefficient Hv is very 
small. With the increase of Hv, the temperature of the 
fluid increases, while the temperature of the solid matrix, 
as well as the temperature difference between the phases 
decrease, due to the enhancement of the heat transfer 
between the two phases. Therefore, the non-equilibrium 
effect will decrease with the interfacial heat transfer 
between the solid and fluid phase. When the Hv is large 
enough (i.e. Hv=1000), the local thermal equilibrium 
condition between the fluid and solid have been almost 
achieved. Additionally, the temperature profiles by the 
present LB model have been compared with the results 
reported in Ref. [2]. It can be observed that very good 
agreement can be achieved. 

 

 
 

Fig. 2  The temperature profiles at vertical mid-plane for 
different Hv for Ra=107, Pr=7.0, Da=0.01, J=1.0, 
γ=1.0, Haf=0.0, Ham=1.0 
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Fig. 3  The streamlines (right) and temperature distribution of fluid (left) and solid matrix (middle) for different interfacial heat 
transfer coefficient Hv 

 
Fig. 3 shows the streamlines and temperature 

distribution of fluid and solid matrix for different 
interfacial heat transfer coefficient Hv. It can be observed 
that isotherms patterns of the fluid and solid matrix are 
evidently different for different parameters. And the 
temperature distribution for the fluid are different from 
that of the solid. The less the Hv is, the more evidently 
the difference between the solid temperature and fluid 
temperature is. It is observed that the flow consists of 
two eddies consisting of clockwise (right) and 
anti-clockwise (left) circulating vortices. It is also seen 
that the two circulating vortices are symmetrical with 
respect to the horizontal central plane of the cavity. 

4.2 Natural convection in a heat generating 
anisotropic porous media 

In the above test, the porous media is isotropic in 
thermal conductivity and permeability. To investigate the 
proposed LB model for the anisotropic porous media, the 
anisotropic effects of thermal conductivity and 
permeability are taken into account in this test. The 
dimensionless parameters characterizing this problem are 
given as follows: Ra=107, Pr=7.0, Da1=0.01, J=1.0, 
γ=0.001, Hv =1.0, Haf=0.0, Ham=1.0, F1=0.5648, RC=1. 
The porous media is assumed to be thermally and 
hydrodynamically anisotropic. The interfacial heat 
transfer coefficients between the fluid and solid phase are  
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fixed to be Hv =1.0 for all cases. In this study, the 
permeability K1 and thermal conductivity κ1 are assumed 
to be constant; the permeability K2 and thermal 
conductivity κ2 are varied with permeability ratio RK and 
thermal conductivity ratio Rκ. We investigate the 
influence of parameters such as RK, Rκ and the inclination 
of principal axes (θp) by analysing in terms of streamlines, 
isotherms of the fluid and solid. We also investigate the 
influence of the ratio of vertical thermal conductivity to 
horizontal thermal conductivity for the solid matrix. 

The influence of the hydrodynamical anisotropy is 
shown in Fig. 4 for θp=π/2 with the ratio of permeability 
RK variation (Fig. 4(a)–(b)), as well as for RK =0.01 with 
the inclination of principal axes (θp) variation (Fig. 4(b) 
–(c)). It is observed that the temperature distributions for 

solid matrix almost keep unvaried when interfacial heat 
transfer coefficient keeps constant regardless of the 
permeability of the flow field. This is because heat 
conduction is the dominating heat transfer mechanism for 
the solid. As shown from Fig. 4(a) and 4(b), the increase 
in RK progressively strengths the natural convection due 
to increase in permeability in the direction of K2. 
Additionally, the increase in permeability causes decrease 
in obstruction for the flow field and that promotes the 
flow and convective heat transfer transport, so the fluid 
temperature in Fig. 4(b) is higher than that of Fig. 4(a). 
With the increase in RK, the maximum temperature for 
the fluid will decrease because of the fact that decrease in 
permeability will weaken the convection and thus 
weaken the internal heat transport. As shown in Fig. 4(c), 

 

 
 

Fig. 4  The influence of the hydrodynamical anisotropy: the streamlines (right) and temperature distribution of fluid (left) and solid 
matrix (middle) for θp and RK 
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Fig. 5  The influence of the thermal anisotropy: the streamlines (right) and temperature distribution of fluid (left) and solid matrix 
(middle) for different Rκm 

 

for θp = π/4, due to higher permeability (K1) at an angle 
of π/4 to the vertical axis, the non-symmetric nature of 
the vortices can be observed. 

Fig. 5 illustrates the streamline and the temperature 
distribution for fluid and solid. The temperature 
distributions for both the fluid and solid decrease with 
the increase in thermal conductivity ratio. It should be 
noted that the thermal conductivity in vertical direction 
increases as Rκm increases, thus the overall thermal 
conductivity increases and the internal heat transfer will 
be enhanced. For a very large Rκm (i.e. Rκm=100), the 
heat transfer will be dominated by conduction. And the 
influence of the convection is comparetively not as 
intense as conduction, so the centers of the eddies will 

move downward. Due to relatively larger thermal 
conductivity in the vertical direction, the temperature 
gradients for the interstitial fluid for Rκm=100 is smaller 
than that for Rκm=0.01 and 1. It can also be found that 
the direction with larger thermal conductivity (i.e. the 
horizontal direction in Fig. 5(a) and vertical direction in 
Fig. 5(c)) is the main direction for the heat transfer. 

5. Conclusion 

In the present paper, a multiple-relaxation-time (MRT) 
lattice Boltzmann (LB) method based on the assumption 
of local thermal non-equilibrium conditions (LTNE) is 
established to investigate the natural convective process 
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in a hydrodynamically and thermally anisotropic porous 
medium at the REV scale. Three sets of evolution 
equations are applied to solve the flow field based on the 
generalized non-Darcy model and the temperature fields 
of fluid and porous matrix under the LTNE conditions, 
respectively. The hydrodynamic anisotropy due to the 
porous media is considered by a permeability tensor and 
a Forchheimer coefficient tensor, while thermal 
anisotropy is accounted for with a heat conductivity 
tensor and a special relaxation matrix with some 
off-diagonal elements. Different from most of the 
existing Rev-LB models for porous media, where 
deviation term exists in the corresponding macroscopic 
equation, the presented model can recover the exact 
governing equations for natural convection under LTNE 
with anisotropic permeability and thermal conductivity 
with no deviation terms through the Chapman–Enskog 
procedure by selecting an appropriate equilibrium 
moments and discrete source terms accounting for the 
local thermal non-equilibrium effect, as well as choosing 
an off-diagonal relaxation matrix with some specific 
elements.  

The presented MRT model is firstly validated by the 
numerical simulation of the natural convection problem 
in porous media with internal heat generating solid 
matrix where there exists simulating results reported in 
the literatures. From the numerical analysis and 
comparison, it can be found that good agreements can be 
achieved between the predicted results and the existing 
results. Finally, the proposed model is adopted to 
investigate the problem of natural convection in a 
hydrodynamically and thermally anisotropic porous 
medium under LTNE. 
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