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Abstract: To weaken the influence of profile error on compressor aerodynamic performance, especially on 

pressure ratio and efficiency, a robust design method considering profile error is built to improve the robustness 

of aerodynamic performance of the blade. The characteristics of profile error are random and small-scaled, which 

means that to evaluate the influence of profile error on blade aerodynamic performance is a time-intensive and 

high-precision work. For this reason, non-intrusive polynomial chaos (NIPC) and Kriging surrogate model are 

introduced in this robust design method to improve the efficiency of uncertainty quantification (UQ) and ensure 

the evaluate accuracy. The profile error satisfies the Gaussian distribution, and NIPC is carried out to do 

uncertainty quantification since it has advantages in prediction accuracy and efficiency to get statistical behavior 

of random profile error. In the integrand points of NIPC, several surrogate models are established based on Latin 

hypercube sampling (LHS) + Kriging, which further reduces the costs of optimization design by replacing calling 

computational fluid dynamic (CFD) repeatedly. The results show that this robust design method can significantly 

improve the performance robustness in shorter time (40 times faster) without losing accuracy, which is 

meaningful in engineering application to reduce manufacturing cost in the premise of ensuring the aerodynamic 

performance. Mechanism analysis of the robustness improvement samples carried out in current work can help 

find out the key parameter dominating the robustness under the disturbance of profile error, which is meaningful 

to further improvement of compressor robustness. 

Keywords: robust design, non-intrusive polynomial chaos, aerodynamic performance, random profile error, 

uncertainty quantification 

1. Introduction 

Compressor has the most components in aircraft 
engine, and its performance is dependent on the blade 
profile extremely, which means the slight profile devia- 
tion will bring out the change of the whole compressor 
[1]. Due to thin-walled part and the large curve [2], its 

geometric variability is introduced inevitably in the 
process of the blade manufacturing process. The profile 
error distribution of bulk-production blades is uncertain, 
various and random [3,4] due to positioning, tool wear 
and material deformation and so on in the blade machi- 
ning process [5,6]. Some studies show the random and 
small profile error influences the compressor efficiency 
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Nomenclature 

a coefficients of NIPC 2D two-dimensional 

C chord length/mm CFD computational fluid dynamics 

d y coordinate distance of control points LHS Latin hypercube sampling 

E mean value of variable MCS Monte Carlo simulation 

e profile error NIPC non-intrusive polynomial chaos 

g random sample in the sample set NSGA-II
Non-dominated Sorting Genetic  
Algorithm II 

h the number of samples NURBS non-uniform rational B-spline 

j term index of NIPC Opt optimal sample 

L thickness PS pressure surface 

lb low bound of control points QoI quantity of interest 

m the number of integrand points SS suction surface 

n the number of uncertain variables UQ uncertainty quantification 

p order of NIPC Greek symbols 

Q the term number of NIPC β stagger angle/° 

R control point π static pressure ratio 

s index number of samples σ standard deviation 

t pitch of the blade/mm τ solidity 

ub up bound of control points Ψ polynomial basic function 

w weight of polynomial basic function  total pressure loss coefficient 

X x coordinate Subscripts 

X/C normalized x coordinate Design Design blade 

x uncertain variable of a system f deflection 

Y output of a system p pressure 

y y coordinate of control points s suction 

Abbreviation y y coordinate 
 
and stable work range [1,7,8]. The performance can be 
guaranteed by requiring more severe machining tolerance 
but accelerated manufacturing cost [9] will be frustrated 
due to a massive number of blades [10]. Therefore, it is 
very important to develop robust blade design method 
considering profile error to trade-off the compressor 
performance and manufacturing cost. 

Robust design method was first proposed by Genichi 
Taguchi in 1986 to improve the quality of manufactured 
products by reducing the effect of uncertainties [11]. 
With the development of robust design method and 
uncertainty quantification (UQ) method, robust design 
has been applied in many fields to improve the 
robustness of products or systems, and many published 
literatures have showed that such methods managed to 
get gratifying results [12-16]. 

Robust design sets mean value (normal value of 
quantities of interest (QoI)) and variance (fluctuation 
amplitude of QoI) as its robust design objects. For robust 
design and robust optimization, many meaningful works 
have been done to promote the development of it. Andy J. 
Keane in 2006 proposed robust design method to 

improve the aerodynamic performance of a compressor 
fan blade against erosion using Nondominated Sorting 
Genetic Algorithm II (NSGA-II) and surrogate models 
which set up with Monte Carlo simulation (MCS) [17]. 
In the following year, Apurva Kumar realized that the 
main drawback of direct MCS was the prohibitive 
computational cost and it was not viable when there was 
a great amount of candidate designs. For this reason, 
Bayesian Monte Carlo simulation (BMCS) was proposed 
by him to improve the computational efficiency in robust 
design procedures of compressor blades against 
manufacturing variations [18]. What’s more, the efficient 
Gaussian process emulators introduced in his work was 
also a main factor for conspicuous computational saving. 
The same author compared several methods. He 
concluded that a multi-objective response surface method 
supported GA performed well in design robust blade in 
2009 [19]. And then surrogate models like Kriging and 
modified ones [20] were introduced in robust design to 
improve the optimization efficiency. However, the 
drawback of MCS is computationally expensive which 
has not been solved fundamentally. For this reason, many 
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researchers propose alternative methods for this problem, 
such as quadrature methods [21,22], support vector 
regression (SVR) [23], collocation methods [24,25] and 
polynomial chaos expansion methods (PCE) [26]. 
Among these new ideas, PCE stood out because of his 
high efficiency and accuracy. Zhao set up a robust 
optimization of airfoil combined with CST parameter- 
rization and NSGA-II based on non-intrusive polynomial 
chaos (NIPC) [27], his study showed that the drag 
coefficient of optimization results was less sensitive to 
Mach number. In his work, CFD was carried out directly 
without any surrogate model to ensure the accuracy of 
uncertainty quantification results. Similar robust design 
methods based on PCE coupled with a multidisciplinary 
design optimization (MDO) have been widely applied in 
industrial engineering, for instance, improving the 
hovering rotor airfoil under uncertain operating 
conditions [28] and designing an industrial mixed flow 
fan resisting erosion [29]. Recently, several works focus 
on three-dimensional robust optimization design of 
turbine [30] /compressor [31] blade have been published, 
which attempted to deal with potential large-scale indus- 
trial application problems. 

In general, robust design combines a multi-objective 
optimization method with an uncertainty quantification 
method, but the views of different researchers are various 
on the specific methods chosen to perform the robust 
design. However, they have the same view on this: the 
efficiency and accuracy of robust design procedure are 
the key points for each researcher. 

According to the above statement, to deal with the 
effect of geometric variation (especially caused by 
erosion and manufacturing variations) of blade on its 
aerodynamic performance, robust design is an acknow- 
ledged approach to deal with it. Although many public- 
shed literatures have proposed a variety of robust design 
procedures to improve the robustness of blades, the 
efficiency and accuracy of those procedures are still 
needed to improve further. 

For this reason, a new robust design method is 
developed based on non-intrusive polynomial chaos 
(NIPC) in this paper, concentrating on improving the 
efficiency and accuracy of robust design. This work aims 
at reducing the sensitivity of aerodynamic performance 
to profile error.  

2. Robust Blade Design Method based on NIPC 

2.1 Uncertain profile error and aerodynamic 
robustness of blade 

Profile error (e) is inevitable in the blade machining 
process due to positioning, tool wear and material 
deformation and so on. For any qualified bulk-production 
blades, set s as the index of blades (s =1, …, g, … h), 

there are profile errors on each of them. The profile error 
of g1th and g2th machined blades (dash-dot-dot lines) are 
showed in Fig. 1. The dotted line represents design 
profile line and solid lines represents the tolerance range. 
All the profile error of machined blades should be in the 
tolerance range without exception [32]. 

1ge and
2ge are 

the profile error of g1th and g2th machined blades, 
respectively. It means the distance between machined 
blade profile line and the design profile line. Profile error 
is a small-scale parameter generated during the process, 
its distribution satisfied Gaussian distribution [10, 33-36] 
based on statistical analysis of lots of blades and many 
published literatures.  

 

 
 

Fig. 1  Tolerance, profile error and design profile line 

 
The profile deviation finally reflects on uncertainty of 

QoI. There is a i (total pressure loss coefficient) [33] 
and a πi (static pressure ratio) [37] for each machined 
blade. For bulk-production blades, the average aerody- 
namic performances can be expressed by mean value: E 
() and E (π). The smaller the difference between the 
average performance and the original desired design 
value, the more the designer’s idea can be expressed. 
And the fluctuation of their aerodynamic performance 
can evaluate by variance σ2 () and σ2 (π). The smaller σ2 

() and σ2 (π), the better the robustness of design blade. 
Their definitions are in the following formulas (1)-(4): 
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2.2 Uncertainty quantification based on NIPC 

The NIPC belonging to stochastic spectral methods is 
gradually caught the attention because of the advantages 
in its prediction accuracy and the efficiency in UQ. For 
CFD simulations, NIPC can tremendously reduce the 
simulation number to predict the stochastic output 
moments [38] compared with classical UQ methods. 
What’s more, NIPC can regard the solving process of 
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CFD package as a black box without knowing the exact 
functions. That is the reason why this very method is 
introduced in this paper. 

The main theoretical basis and solving principle of the 
NIPC are detailed in [39]. For NIPC method, the mean 
value (

1 2
( ( , , , ))

nm m mE Y x x x ) and variance 

(
1 2

2 ( ( , , , ))
nm m mY x x x  ) of the random variable 

response can be obtained by Eqs. (5) and (6), and the 
physical meaning of these two parameters are detailed in 
Section 2.1:  
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where, 
1 2

( , , , )
nm m mY x x x    presents the output of a 

system and  1, ,
imx i n    are the uncertainty 

variables, and n is the number of random variables. In 
this paper, 

1 2
( , , , )

nm m mY x x x    could be the value of 

aerodynamic performance parameters (π and ) and 

imx is profile error value at Gaussian Hermite integrand 

points. j is j term index of Hermite polynomial of 
random variables [40], and aj is the coefficient of NIPC. 
Q in formula (6) is the number of terms in NIPC. The p 
in formula (7) is the order of NIPC. This value depends 
on the accuracy requirement in different cases. For the 
above formulas, the mean value (

1 2
( ( , , , ))

nm m mE Y x x x   ) 

is 0 order term of the coefficient of the polynomial chaos 

expansion, and the variance (
1 2

2 ( ( , , , ))
nm m mY x x x   ) is 

the quadratic sum of coefficients except 0a . It is easy to 

know that once the coefficients have been solved, the 
mean value and the variance are not hard to get. It is 
needed to note that the way to solve the coefficients is the 
key point of NIPC. In this paper, the coefficients are 
calculated by formula (8): 
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where, m is the number of integrand points; 
( 1,2, , )

kmw k m   is weight, which is constant with 

respect to order of polynomials. The specific calculation 
method can be found in [40].  

2.3 Robust blade design method 

The goal of robust design is improving the robustness 

of product properties when parameters changes randomly. 
For compressor blade, the robust blade design method 
considering the profile error aims to enhancing the 
aerodynamic robustness of compressor blade and 
reducing its dependency on the blade profile error. 
Improving the robustness of aerodynamic performance 
parameters of blades means little changes in E () and E 
(π) or make improvement of these parameters to some 
extent meanwhile the smaller σ () and σ (π), the better. 
In this paper, the robust design objects are set as finding 
out minimum E () and σ (); and control variables 

1 2 3 4 5 6{ , ,, , , }y y y y y y  in formula (9) used to generate new 

blade samples in the optimization procedure; at the same 
time, the constraints of this robust blade design method 
ensures the average aerodynamic performance parame- 
ters should not get worse than design value. lbi and ubi 
provide the low bound and up bound of the control points. 
In the following, this robust blade design method will be 
introduced in detail. 
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The entire procedure in this robust design method 
mainly consists of three parts as showed in Fig. 2: In Part 
I, parameterizing blade and confirming random profile 
error distribution; In Part II, training surrogate model; In 
Part III, optimization method combined with NIPC to get 
the final optimal samples. 

For Part I, parameterization can provide control 
variables which are used for adding profile error on the 
design blade. Here, non-uniform rational B-spline 
(NURBS) is used to parameterize the pressure surface 
(PS) and suction surface (SS), since NURBS is better at 
showing blade profile lines than other parameterization 
methods [41-43]. Confirming the profile error distribu- 
tion in this part helps to make sure the specific profile 
error values add to the design blade, which will be used 
in NIPC as integrand points. Since the profile error 
satisfied Gaussian distribution as discussed in section 2.1, 
the integrand points used in NIPC to assess the influence 
of profile error in this study are based on the integrand 
points of Gauss-Hermite polynomial. 

For Part II, training surrogate models here is a 
preparation work to save time of optimization in Part III. 
Generally speaking, surrogate model is used to establish 
links between input variables and output variables. In 
present work, directly CFD calculations can totally 
replace by Kriging models. Kriging model [44, 45] is 
chosen because it behaves well in building accurate 
global approximations of a sample space [46]. It should  
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Fig. 2  Procedure of robust optimization design method 
 

be noted that different kinds of surrogate models have 
been compared and tested beforehand, such as 
polynomial response surface, radial basis function and 
Kriging. For the same binary nonlinear function, the 
prediction results of Kriging are much better than other 
models but space lacks for a detailed description of it in 
this paper. All in all, the Kriging surrogate model is 
sufficient to meet the accuracy requirements of this work. 
The training random samples for Kriging surrogate 
model are generated by Latin hypercube sampling (LHS) 
method [47-49], which has advantage in filling the 
sample space efficiently and avoid repeating sampling. 
There are several integrand points used in NIPC as 
mentioned above. To guarantee the output precision, each 
integrand point corresponds to a surrogate model instead 
of one surrogate model for all the integrand points. 

For Part III, a multi-objective robust design method is 
developed for compressor blade. Non-Dominated Sorting 
Genetic Algorithm (NSGA-II) is employed to find out the 
optimal robust samples (Pareto optimal set). NSGA-II is 
able to find much better spread of solutions and better 
convergence near the true Pareto-optimal front. Aerody- 
namic performance of all the samples generated in each 
generation is evaluated by NIPC. It is worth highlighting 
that NIPC is the key point to improve the efficiency run 
through this robust design method which shrinks 

thousand times simulations to several times (based on the 
order of NIPC). The trained surrogate models in Part II 
are used here to get the aerodynamic performance of 
samples and applied to integrand points of NIPC. 

Since the object of this method is the robustness of 
blade aerodynamic performance, the mean value and 
standard deviation are used as objects in the optimization 
step. The mean value refers to the average performance 
of the response and the standard deviation represents how 
far a set of numbers are spread out from their average 
value. The smaller the standard deviation, the more 
robust the performance. 

3. Results and Discussion 

3.1 Description of geometry and uncertainty 

The design blade used here is a two-dimensional (2D) 
compressor blade. Its chord length (C) is 69.95 mm, 
solidity (τ = C/t) is 2.3 and stagger angle (β) is 26.58° as 
shown in Fig. 3. Inflow Mach number is 0.75 and angle 
of attack is 5°. Random profile error within the tolerance 
(0.1 mm) satisfied Gaussian distribution [33,50]. Due to 
the high inflow Mach number, aerodynamic performance 
is extremely sensitive to geometric shape. The robust 
design here aims to decrease the sensitivity of aerody- 
namic performance to geometry. 
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Fig. 3  Geometry parameters of compressor blade 
  

To add profile error to design blade, pressure surface 
and suction surface both parameterized with eight control 
points (Ri) by NURBS curve as shown in Fig. 4. And d 
shown in Fig. 4 is the profile error, the new blade profile 
line is created by translating the y coordinate of design 
blade control points d distance. 

 

 
 

Fig. 4  Construction of profile error 

3.2 Validation of NIPC 

As mentioned in Section 2.2, the calculation accuracy 
and calculation time of NIPC are positively related to the 
order of NIPC. To set the appropriate order for following 
robust design considering profile error, the 2D blade is 
used as the research object to compare NIPC results of 
different orders with MCS on the same computing 
platform. MCS puts here as reference because it is 
famous for its solution converging to the exact stochastic 
solution in UQ. The detail comparisons about the 
accuracy of E (ϖ), σ (ϖ), E (π) and σ (π) are discussed in 
[33] by our research group. With the increase of order of 
NIPC, the prediction accuracy of these four parameters 
improved and the prediction result of NIPC is closed to 
MCS. In addition, the prediction error of NIPC is smaller 
gradually with the order goes higher. Considering the 
prediction accuracy and computation cost, the fourth 
order NIPC method is more appropriate to deal with the 
profile error problem in this research. Time used by 

NIPC (4th order, 5 calculation times) is at least 1000 
times less than MCS (taking 5000 samples for example), 
meanwhile, the accuracy satisfies the requirements. 

In summary, NIPC method has the advantage of small 
computation and high prediction accuracy which 
confront the small-scaled random profile error problem. 
The application of NIPC in the robust blade design 
method is a good choice to improve the calculation 
efficiency substantially. 

3.3 Robust design scheme of compressor blade 

A robust design is carried out on the 2D blade. In five 
integrand points of NIPC, it uses LHS to generate 500 
initial samples and then call CFD to get aerodynamic 
performance values to training the Kriging surrogate 
model, respectively. For NSGA-II, the optimization 
process of optimum population in this case is decided as 
200 and the genetic algebra is 100. The new blades are 
generated through the changing of control point 
coordinates (yi) of camber line and the thickness 
distribution (ΔLs, ΔLP) kept unchanged as shown in Fig. 5. 
To keep the richness of the optimizing sample space, the 
disturbance range of the coordinate (yi) is set as ±10% of 
the design coordinates. In the meanwhile, the first two 
and last two comber line control points are kept still to 
maintain the camber angle same as design blade. 

It is worth highlighting that, if going through the 
whole optimization process without Kriging surrogate 
models at 5 integrand points, 200×100×5 CFD simula- 
tions are needed. When Kriging surrogate models are 
introduced in, all needed is just 500×5 CFD simulations 
used for training Kriging models. All in all, the above 
optimization design scheme can increase the optimization 
efficiency up to 40 times.  

 

 
 

Fig. 5  Generation of new blades 

3.4 Robust design results 

The geometry of optimized final Pareto solution set 
(200 samples) is shown in Fig. 6. Overall, the geometry 
of this set is divided into two groups. The main 
difference is that the geometric profile curvature change 
of the front part. Another geometric profile difference of 
this set located in the range of X=57 mm to X=61 mm. To 
analyze the optimization results, two representative 
samples from Fig. 6 are selected, one sample in each 
group named as Opt1 and Opt2 shown in Fig. 7, 
respectively.  
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Fig. 6  Final Pareto solution set of blade geometry (200 
samples) 

 

 
 

Fig. 7  Optimized blades compared with design 
 

The geometrical characteristics of these two samples 
compared with design can be clearly seen. In the range of 
X=0 and X=10 mm, the curvature change of profile line 
of Opt1 is the largest. The profile line of Opt2 almost 
coincides with the profile line of the design. In the range 
of X=10 mm and X=20 mm, the curvature change of 
Opt2 is smaller than that of design. The curvature change 
of Opt1 is gradually larger than that of the design. Since 
then, the curvature change of design keeps larger than 
those of both Opt1 and Opt2. There is only a short region 
exception (the profile of Opt2 is higher than the Opt1 and 
design) between X=57 mm and X=67 mm of Opt2, but 
this difference is confirmed to be insignificant later. This 
trend of geometry described above directly affect the 
statistical characteristics (refer to mean value and 
standard deviation in current paper) of dynamic 
performance parameters, which will be discussed in 
detail in the following sections. 

The E () and E (π) of the Opt1 and Opt2 compared 
with the design are presented in Fig. 8. The parameters of 
optimal samples both satisfy the constraints of NSGA-II, 
i.e. E () ≤ E ()Design and E (π)≥E (π)Design. As the object, 
σ () of optimal samples are both lower than that of the 
design, which represents the robustness improvement. It 
can be concluded from Fig. 8 that the robust design 
framework is effective to improve the robustness of blade 
without worsen the average performance value. 

 
 

Fig. 8  Overall aerodynamic performance parameter comparison 
 

Comparing the statistical characteristics of optimal 
samples in Fig. 8(a), E () of Opt1 is lower than that of 
Opt2 while the σ () of Opt1 is higher than that of Opt2. 
In terms of Fig. 8(b), E (π) of Opt1 is higher than that of 
Opt2 while the σ (π) of Opt1 is lower than that of Opt2. 
From these comparisons, it can be concluded that the best 
mean value and standard deviation of some aerodynamic 
parameter is difficult to concentrate on certain sample. To 
some extent, the significant improvement in robustness 
has to sacrifice the mean value. That is to say, there is an 
unavoidable trade-off has to be made to choose the most 
suitable sample (proper mean value and standard 
deviation) among the final optimal geometry set for 
applied to the real compressor. 

The percentage of σ (ϖ) is about 1% of the E (ϖ), 
which is much higher than the percentage of σ (π). The 
robustness improvement of ϖ is meaningful in this case. 
For this reason, the mechanism of σ (ϖ) decrease will be 
specially concerned and analyzed. Fig. 9 displays total 
pressure loss coefficient distribution at outlet section of 
two passages, X/C means normalized pitchwise length. E 
(ϖ) comparison is showed in Fig. 9(a). The order of 
maximum value of these three samples is E (ϖ)design>E 
(ϖ)Opt2>E (ϖ)Opt1; the order of pitchwise location of the 
maximum value of these three samples is X/C design<X/C 

Opt1<X/C Opt2. What’s more, the pitchwise scope of  
influenced by wake and suction surface boundary layer 
separation is also a parameter needed to be concerned, 
which are listed in Table 1. Combined with the data 
displayed in Fig. 9 and Table 1, Opt1 has advantage in 
both pitchwise scope of E (ϖ)and maximum E (ϖ).  
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Fig. 9  Total pressure loss coefficient at outlet 
 

Table 1  Pitchwise scope influenced by wake at outlet section 

Items Design Opt1 Opt2 

E () 55.48% 50.29% 56.53% 

σ () 46.12% 41.95% 41.96% 

 
Fig. 9(b) presents σ (ϖ) comparison, the order of 
pitchwise location of maximum is the same as the 
location information of E (ϖ), i.e. X/C design<X/C Opt1<X/C 

Opt2. The pitchwise scope and maximum value of σ (ϖ) of 
Opt2 are both the smallest among these three samples. 
Although the maximum value of Opt1 is the biggest, the 
shorter pitchwise scope of σ (ϖ) results in its overall 
effect of σ () is smaller than that of design. The core 
reason of this distribution will be discussed by E (ϖ) and 
σ (ϖ) distribution of whole flow field displayed in Fig. 10 
and Fig. 11. 

According to the E () shown in Fig. 10, it can be 
seen that the main loss sources are the wake and 
boundary layer separation of suction surface, which have 
close relationship with the x coordinate of maximum 
deflection (Xfmax, marked with dotted line). Compared 
with the Xfmax of design, the Xfmax of Opt1 moves forward 
while the Xfmax of Opt2 moves backward. Xfmax guides the 
boundary layer separation region on suction surface. 

 
 

Fig. 10  Mean value of total pressure loss coefficient of whole 
flow field 

 
Therefore, Xfmax of Opt1 moving forward directly shrink 
the pitchwise distance of high at outlet section In 
terms of Opt2, although Xfmax of Opt2 moving backward 
is not benefit to reduce , the flat profile limited the 
spread of loss along the pitchwise to reduce the total loss. 

Fig. 11 shows the σ (ϖ) distributions, which present 
the fluctuation amplitude of under the disturbance of 
profile error. The regions having higher σ (ϖ) in the flow 
field are the sensitive areas needed to be concerned. The 
most sensitive regions lies in the wake and related 
downstream flow field. Compared the Fig. 11(b) and Fig. 
11(c) with Fig. 11(a), the sensitive areas have shrunk 
significantly and fluctuation amplitude for the same 
location has decreased. The reason is that the boundary 
layer separation vortex on suction surface of these two 
optimal samples is compressed compared with the design 
one in both spanwise and chordwise size. This oblate 
separation vortex (marked with black frame) helps the 
main flow reduce disturbance of uncertain profile error. 
Subsequently, this influence propagating to downstream 
flow field will weaker. 
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Fig. 11  Standard deviation of total pressure loss coefficient of 
whole flow field 

4. Conclusions 

The influence of profile error uncertainty on 
aerodynamic performance of compressor blades was 
studied in this paper. Considering the characteristics of 
profile error are random and small-scaled, the accuracy 
and efficiency of the robust design method to deal with a 
large number of samples with profile error is the core 
problem. NIPC method was applied to uncertainty 
quantification and Kriging surrogate model is introduced 
to reduce CFD simulation time. Those improvements 
tremendously save design time and get robust blade 
considering profile error successfully. The conclusions 
are as follows: 

(1) The robust design method which consists of 
NIPC+ Kriging+ NSGA-II is built and the robust design 
considering profile error has been conducted. The NIPC 
method is used in terms of uncertainty quantification to 
solve the problem of time-consuming and insufficient 
accuracy. Kriging surrogate model in the optimization 

process further reduces the computation of optimization.  
(2) Based on the established robust design method, the 

robust design is applied to a two-dimensional blade, 
which has successfully verified the practical value of the 
process. The robust design method makes the blade 
profile being able to maintain good aerodynamic 
performance under the profile error interference. 
However, the best values of E (ϖ) and σ (ϖ) cannot be 
centralized in one sample. There is a trade-off between 
these two parameters which should be paid attention at 
compressor blade robust design stage. 

(3) Better control of separation vortex on the suction 
surface is a key point to improve the robustness of blade 
under disturbance of profile error, since the influence 
scope of this separation vortex can have significant 
changes with the profile error.  
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