
Journal of Thermal Science Vol.29, No.1 (2020)  144158  

                        
Received: Sep 03, 2018            Corresponding author: MING Pingjian               E-mail: pingjianming@hrbeu.edu.cn 

www.springerlink.com 

https://doi.org/10.1007/s11630-019-1167-8                           Article ID: 1003-2169(2020)01-0144-15 

A High Order Control Volume Finite Element Method for Transient Heat 
Conduction Analysis of Multilayer Functionally Graded Materials with Mixed 
Grids 

LIU Qi, MING Pingjian*, ZHAO Haiyang, ZHANG Wenping 

College of power and energy engineering, Harbin Engineering University, Harbin 150001, China 

© Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer 

Nature 2019 

Abstract: This paper describes a new two-dimensional (2-D) control volume finite element method (CV-FEM) 

for transient heat conduction in multilayer functionally graded materials (FGMs). To deal with the mixed-grid 

problem, 9-node quadrilateral grids and 6-node triangular grids are used. The unknown temperature and material 

properties are stored at the node. By using quadratic triangular grids and quadratic quadrilateral grids, the present 

method offers greater geometric flexibility and the potential for higher accuracy than the linear CV-FEM. The 

properties of the FGMs are described by exponential, quadratic and trigonometric grading functions. Some 

numerical tests are studied to demonstrate the performance of the developed method. First, the present CV-FEM 

with mixed high-order girds provides a higher accuracy than the linear CV-FEM based on the same grid size. 

Second, the material properties defined location is proved to have a significant effect on the accuracy of the 

numerical results. Third, the present method provides better numerical solutions than the conventional FEM for 

the FGMs in conjunction with course high-order grids. Finally, the present method is also capable of analysis of 

transient heat conduction in multilayer FGM. 

Keywords: finite volume method, functionally graded materials, transient heat conduction 

1. Introduction 

Functionally graded materials (FGMs) are a new class 
of materials that comprise a spatial gradation in structure 
and/or composition, designed for a special characteristic 
for harsh working conditions. The concept of FGMs was 
first introduced in the early 1980s [1] for aerospace 
structural applications. However, due to its attractive 
physical and mechanical properties, FGMs have been 
applied broadly to various industrial fields in recent years, 
for example, in machine parts [2–4], biomaterial [5], and 
electric power equipment [6–8]. The development of 

instruments for design in FGMs is a challenge for 
modern manufacturing industry. On this path, analytical 
and numerical approaches are very useful tools for design 
and study of FGMs. 

Heat conduction and thermoelastic analysis in FGMs 
have been studied by many investigators using analytical 
and numerical approaches. Ootao et al. [9] obtained the 
analytical solutions for the temperature and thermal 
stress distributions of a hollow cylinder in multilayered 
composite laminates by applying the methods of Fourier 
cosine transform and Laplace transform. Using the same 
analytical method, Ootao et al. also studied the 3-D 
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thermoelastic field of nonhomogeneous hollow cylinder 
with a moving heat source [10] and nonhomogeneous 
functionally graded rectangular plate with partial heating 
[11]. Sankar et al. [12] found exact solution for the 2-D 
and 3-D thermoelastic problems for functionally graded 
beam with the thermoelastic constants which vary 
exponentially through the thickness. Kwon et al. [13] 
studied the case of a gradient sphere under nonuniform 
temperature variations by using a numerical integration 
procedure. Zhou et al. [14] reported the exact analysis for 
a transient thermal conduction problem of a functionally 
graded thick strip in contact with fluid. Although the 
analytical approaches can provide exact solutions of the 
temperature of the FGMs, they are limited to simple 
geometries, certain types of material properties, and 
specific types of boundary conditions [9-14]. As a result, 
the numerical approach is a better choice to design and 
investigate these materials. Sladek et al. [15] presented a 
meshless local boundary integral equation method 
(LBIED) for 3-D axisymmetric transient heat conduction 
for exponentially graded materials. Sutradhar et al. [16] 
extended the Galerkin BEM to 3-D transient heat 
conduction problem considering exponential material 
variation with the method of Laplace transform. 
Sutradhar et al. [17] proposed a “simple” boundary 
element method (BEM) for steady-state and transient 
heat conduction analysis in FGMs, which leads to a 
boundary-only formulation without any domain integral. 
Wang et al. [18] developed a virtual boundary collocation 
method (VBCM) and pointed out the advantages and 
disadvantages for the 2-D transient heat conduction 
problems in non-homogeneous FGMs. Wang et al. [19] 
determined the 1-D transient temperature field in FGM 
plate, shell and sphere by the finite element method 
together with the finite difference technique (FEM/FD). 
Yan Yun [20] applied a statistical second-order two-scale 
(SSOTS) to analyze the heat conduction performances of 
inconsistent random structures with varying volume 
fraction distribution of grains and those with varying 
probability model distribution. Kimand and Paulino [21] 
developed 8-node quadrilateral graded finite elements 
using a generalized isoparametric formulation to 
interpolate the unknown displacement, and the material 
parameters. The results showed that the FEM with Q8 
graded element provided smoother stress profile than that 
with conventional homogeneous 4-node and 8-node 
quadrilateral elements. Aboudi et al [22] proposed the 
higher-order micromechanical theory (HOTFGM) to the 
FGM to capture the heterogeneous properties of FGM 
based on two-step volume discretization, because the 
original formulation of the HOTFGM was 
computationally intensive, Bansal, Pindera and zhong [23, 
24] developed a reformulation of the HOTFGM with 
rectangular subcells based on the local/global 

conductivity and stiffness matrices formulations, and the 
reformulation significantly decreased the computational 
costs. 

In contrast to the numerical methods discussed above, 
the control volume finite element method (CV-FEM) is 
also an efficient method for the heat conduction and 
thermoelastic analysis in FGMs. For 2-D problems, Gong 
et al. [25] developed a staggered cell vertex finite volume 
to unsteady thermoelastic problems for orthotropic 
materials. The material properties were stored at the grid 
center, which was proved to be suitable for dealing with 
multi-phase materials and multilayer composites. Gong 
et al. [26] presented an unstructured finite-volume 
time-domain method (UFVTDM) based on 4-node 
quadrilateral (Q4) grid and 3-node triangular (T3) grid to 
transient heat conduction problem in multilayer FGMs. 
Charoensuk and Vessakosol [27] applied the CV-FEM 
based on a 6-node triangular grid to transient heat 
conduction problems for exponentially graded materials. 
The results showed that the quadratic CV-FEM provided 
better numerical precision than the linear CV-FEM under 
the same grid size. The paper also compared the 
numerical results based on the CV-FEM and 
conventional FEM for 6-node triangular grids, and it 
pointed out that the CV-FEM provided more accurate 
than the conventional FEM. However, the developed 
high order CV-FEM was only capable of 6-node 
triangular grids and exponentially FGMs. 

6-node triangular grids offer greater flexibility in 
describing bodies having curved boundary geometrics 
and also have the potential for enhanced accuracy due to 
the nature of quadratic interpolation [27]. The purpose of 
this paper is to present a reliable numerical method for 
2-D heat conduction problems based on 9-node 
quadrilateral grid (Q9) and 6-node triangular grid (T6) 
with different kinds of functional material variation. The 
unknown temperature and material properties were stored 
at the grid node. Some numerical problems were studied 
to demonstrate the efficient of the proposed method. The 
remainder of this paper is organized as follow. 

In Section 2, the governing equation for the 2D 
transient heat conduction is given. In Section 3, the 
quadratic CV-FEM for spatial discretization and a fully 
implicit scheme for time discretization of governing 
equation are presented. In Section 4, some test cases are 
provided to verify the present method. Finally, a brief 
conclusion is given in section 5. 

2. Mathematic Model 

2.1 Governing equations 

The governing equation for the transient heat 
conduction with no consideration of internal heat sources 
is given by 
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where T=T(x, y, t) is the temperature field. kx and ky are 
the thermal conductivities in the x direction and y 
direction respectively. ρ is the density and c is the 
specific heat. The thermal conductivities k, specific heat 
c and density ρ are defined by a function of space 
coordinates in this paper. The initial condition for the 
solution domain at time t=0 is assumed as  

 int0
( , )

t
T x y T              (2) 

where Tint is the initial temperature. Three types of 
boundary conditions are considered. For the Dirichlet 
boundary lD, the temperature TB on the boundary is given 

onB DT T l               (3) 

For the Neumann boundary lN 

onx x y y B N
T T

k n k n q l
x y

 
  

 
       (4) 

where qB is the fixed normal heat flux on the boundary lN. 
nx and ny are the components of the outward unit vector n 
in x and y directions. 

For the Robin boundary lR 

 = onx y B R
T T

k k h T T l
x y 

 
  

 
      (5) 

where hB is the heat convective coefficient and T∞ is 
environment temperature on the boundary lR. 

2.2 Discretization of solution domain 

In this section, the detailed numerical discretization 
process of Eq. (1) based on 6-node triangular grid and 
9-node quadrilateral grid is given. An arbitrary 2D 
computational domain can be meshed with T3 and Q4 
grids or with T6 and Q9 grids. For example, connect the 
grid centers and the mid-point of grid edges, a typical 
control volume around vertex N1 is constructed (see Fig. 
1(a)). Fig. 1(b) illustrates three different effective control 
volumes within T6 and Q9 grids. The way to construct a 
control volume within T6 and Q9 grids is similar as the 
way within T3 and Q4 grids. Connecting the centers of 
each smaller triangles T1, T2, T3, and T4 or quadrangles 

 

 
 

Fig. 1  The scheme of control volume with (a) linear mixed 
grids, (b) quadratic mixed grids 

Q1, Q2, Q3 and Q4, and the mid-point of its edges, three 
typical control volumes are constructed around node N1, 
N2, and N3 as shown in Fig. 1(b). For any control volume 
around node N1 in Fig. 1(b), the integral of Eq. (1) can be 
written as 
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Appling the Gaussian quadrature formula, the LHS of 
Eq. (6) can be written as 
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where  ,x y  ; nk3 and nk4 are the numbers of the T6 

grids and Q9 grids around node N1, respectively. li is the 
path of integration in the ith grid. According to the 
knowledge of shape function [28], the temperature and 
material properties at any point in a grid can be 
interpolated using the following equations 

1 1 1 1

, = , = , =
ns ns ns ns

i i i i i i i i
i i i i

T N T N c N c k N k 
   

      (8) 

where ns is the sum of the number of nodes in a grid, for 
T6, ns=6 grid, and for Q9 grid, ns=9. Ni is the shape 
function of the ith node; Ti, ρi, ci and ki are the 
temperature, density, specific heat and thermal 
conductivities at the ith node, respectively. The present 
method is developed for multilayer FGMs. In order to 
describe the variation of the material properties at the 
interface between different layers more accuracy, the 
material properties of the nodes at the interface are 
calculated twice using the given grading function and 
then stored. The derivatives of temperature in each grid 
can be given by 

1

ns
i

i
i

NT
T

 




                (9) 

Substituting Eq. (9) into Eq. (7), then the problem 
comes down to  

1 1
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The solution procedure of the derivatives of shape 
functions and its integral are given in detail in Appendix 
1. The RHS of Eq. (6) is discretized using the backward 
difference scheme as 

-

=
t t t
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T T T
c dS cS

t t
 

  
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where S is the area of the control volume. Δt is the size of 
time step. tT is the unknown temperature at the current 
time t, and -t tT  is the known temperature at the last time 
step t−Δt. 

Imposing the Neumann and Robin boundary 
conditions on the integral form of Eq. (1), it becomes 
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where lin is an internal surface of the control volume. 

3. Numerical Examples 

In this section, six numerical tests have been studied 
to demonstrate the accuracy and capability of the 
developed CV-FEM.  

3.1 Homogeneous material problems 

3.1.1 Assessment on predictive quality of the present 
method 

The first test case is a homogeneous rectangular plate 
with non-uniform heating on three planes (see Fig. 2). 
The dimension of the homogeneous rectangular plate is 5 
m × 10 m. The thermal conductivity k of material is 1 
W/(m·K). The boundary conditions are  

   
   
 

,10 100sin 10

0, ,0

5, y 0

T x x

T y T x

q

 

 



0            (13) 

The exact temperature in the computational domain is 

     
 

sinh 10 sin 10
, 100

sinh

y x
T x y

 



      (14) 

To assess the accuracy of the linear and quadratic 
CV-FEM with mixed grids, three meshes are introduced 
(see Fig. 3). Table 1 lists the temperature distributions at 
different locations with Mesh 1 and Mesh 2. The 
compared results show that the high-order CV-FEM 
could provide better numerical precision than the 
first-order CV-FEM under the same number of degrees of 
freedom. By increasing the order of interpolation 
function, the computational precision can be improved 
greatly just as the same way as refining the grid. Table 2 

lists the temperature at the different locations with Mesh 
2 and Mesh 3 based on the quadratic CV-FEM. The 
results also agree well with the exact solution, and Mesh 
2 is supposed to be fine enough for this problem. 

 

 
 

Fig. 2  The computational domain and boundary conditions 
 

 
 

Fig. 3  The computational meshes of the rectangular plate 
 

Table 1  Comparison of the temperatures inside the 
computational domain at different locations 

y x 
Exact 
T/°C 

CV-FEM (Order=1) 
Mesh 2 (T3+Q4) 

CV-FEM (Order=2)
Mesh 1 (T6+Q9) 

T/°C Error/% T/°C Error/% 

2.5 1.25 2.878 46 2.851 66 0.931 1 2.896 03 0.610 3 

2.5 5.318 7 5.269 18 0.931 1 5.350 11 0.590 6 

3.75 6.949 22 6.884 52 0.931 1 6.987 25 0.547 3 

5 1.25 7.625 67 7.524 11 1.331 9 7.690 92 0.855 6 

2.5 14.090 4 13.902 7 1.331 9 14.205 8 0.818 6 

3.75 18.41 18.164 8 1.331 9 18.555 6 0.791 

 
Table 2  Comparison of the temperatures inside the 
computational domain at different locations based on quadratic 
CV-FEM with Mesh 2 and Mesh 3 

y x 
Exact 
T/°C 

CV-FEM (Order=2) 
Mesh 2 (T6+Q9) 

CV-FEM (Order=2)
Mesh 3 (T6+Q9) 

T/°C Error/% T/°C Error/%

2.5 1.25 2.878 46 2.882 89 0.153 9 2.879 58 0.038 91

2.5 5.318 7 5.326 57 0.147 9 5.320 68 0.037 22

3.75 6.949 22 6.958 78 0.137 5 6.951 63 0.034 68

5 1.25 7.625 67 7.641 42 0.206 5 7.629 56 0.051 01

2.5 14.090 4 14.118 1 0.196 5 14.097 2 0.048 26

3.75 18.41 18.444 8 0.189 18.418 6 0.046 71
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3.1.2 Assessment on application for different types of 
grids for transient heat conduction problem 

To further evaluate the application of the developed 
CV-FEM for different types of grids for transient heat 
conduction problem, a homogeneous unit square strip 
subjected to uniformed heat flux condition is analyzed 
(see Fig. 4). The material properties are as follow: k=1 
W/m·K and α=1 m2/s. The time step Δt=0.004 s. The 
boundary conditions are 

(0, y) 0

( ,0) 1000

(100, ) ( ,100) 0

T

q x

q y q x



 

          (15) 

Three types of meshes are chosen for this study. 
Contour plots of the temperature at time t=2 s for 
different grids are plotted in Fig. 5. From the 
comparisons of isothermal with those obtained from the 
linear cell vertex finite volume method [26], good 
numerical solutions can be obtained by the present  

 

 
 

Fig. 4  The geometry and boundary conditions 

method with coarse quadrilateral grids or triangular grids 
and mixed grids. The temperature at the position (100, 0) 
and (100, 50) are plotted against time and compared with 
the solutions from the MWLS [29] and MLPG [30] (see 
Fig. 6 and Fig. 7). The results also show excellent 
agreement. 

3.1.3 Aircraft engine compressor 

To illustrate the accuracy and capability of the present 
CV-FEM to irregular areas, the steady heat conduction in 
an aircraft engine compressor in Ref. [32] is studied, and 
the geometry and boundary conditions are given in Fig. 8. 
The inner surface (boundary segment B-C) of the 
compressor is fixed at the temperature T=1000°C; the 
boundary segment A-B and C-D are insulated, and the 
other surfaces are subjected to uniformed convective 
boundary condition, with the environment h=10 
W/(m2·K), u∞=300°C. The thermal conductivity k=20 
W/(m·K). The CV-FEM mesh employed 1093 high-order 
mixed grids is shown in Fig. 9(a). Here the solution of 
the problem is compared with the commercial FEM 
software ANSYS with 1023 8-noded plane grids 
(quadratic) as shown in Fig. 9(b).  

The temperature of the compressor along y=0 are 
plotted and compared with the results from FEM in Fig. 
10. It can be observed that the results predicted by the 
developed CV-FEM are in good agreement with the 
ANSYS solutions. Fig. 11 plots the overall temperature 
distribution in the aircraft engine compressor. 

 

 
 

Fig. 5  Contours of temperature at t=2 s: (a) results with 100 quadrilateral grids (quadratic); (b) results with 224 triangular grids 
(quadratic); (c) results with 154 mixed grids (quadratic); (d) results with 400 quadrilateral grids (linear) in [26]; (e) results 
with 896 triangular grids (linear) in [26]; (f) results with 628 mixed grids (linear) in [26] 
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Fig. 6  The temperature distributions at different time at 
(100,0) 

 

 
 

Fig. 7  The temperature distributions at different time at 
(100,50) 

 

 
 

Fig. 8  The geometry and boundary conditions 
 

 
 

Fig. 9  (a) The CV-FEM mesh with 1093 mixed grids, (b) The 
FEM mesh with 1023 8-node plane grids 

 
 

Fig. 10  The temperature distributions along y=0 for aircraft 
engine compressor 

 

 
 

Fig. 11  Contours of temperature of the aircraft engine 
compressor 

3.2 FGMs problems  

3.2.1 Unit square strip with three kinds of material 
variation 

In this section, in order to validate the effectiveness of 
the proposed method for functionally graded materials, a 
unit square in Fig. 12(a) with three different types of 
materials variation is studied. Two meshes are introduced 
for this case (see Fig. 12(b) and (c)). The boundary 
conditions are  

( ,1) 100

( ,0) 0

(1, ) (0, ) 0

T x

T x

q y q y



 

          (16) 

Exponential material gradation 

In analyzing the thermoelastic problems in FGMs, the 
properties of FGMs described by grading functions can 
be either defined at the grid centroid [26] or at the grid 
node [27]. In the present study, it is found that the 
material properties defined location have a significant 
effect on the numerical accuracy, especially in the 
analysis of highly graded material. To demonstrate this, a 
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square strip heat conduction problem is introduced. The 
thermal conductivity of the material is defined as 

2( , ) ( ) 5e yk x y k y               (17) 

The analytical solution for the temperature field is 
2

2

1 e
( , )

1 e

y

L
T x y T













              (18) 

where T=100，L=1, various values of β=0, 0.5, 0.75, 1, 
1.25, 1.5 are considered in this study. 

Fig. 13(a) and 13(b) show the temperature variation 
along x=0.5 for different material defined locations for 
various values of β based on Mesh 1. As can be seen 
from Fig. 13(a), there are some significant errors at the 

 

 
 

Fig. 12   (a) Geometry and boundary conditions of the FGM 
strip problem, (b) triangular grids and (c) mixed 
grids 

 

 
 

Fig. 13  The temperature distributions along x=0.5 with 
different values of β: (a) material properties defined 
at the cell center and (b) material properties defined 
at the node 

mid-points (node1, node2 node3 and node4) of the grid 
edges, and the errors increase significantly when the 
value of β increasing. While compared to the solutions 
with material properties defined at the grid centroid, the 
solutions with material properties defined at the grid 
node are in excellent agreement with those from 
analytical solutions (see Fig. 13(b)). Table 3 and Table 4 
list the comparison results based on different material 
properties defined locations for β=1 and β=1.5. The 
results indicate that the CV-FEM with material properties 
storied at the grid centroid is not suitable to solve the 
heat conduction problem with highly graded material 
especially in combination with coarse mesh. The results 
from CV-FEM at β=0.5 and β=1.5 are also compared 
with those obtained by conventional FEM based on Mesh 
2, see Table 5. The results show that the CV-FEM provides 
more accurate solution than the conventional EFM. 

Parabolic and trigonometric material gradation 

Next, the FGM strip transient heat conduction 
problem with other two different material properties are 
considered. The same geometry and boundary conditions 
in Fig. 12(a) are adopted in this analysis. Initial 

 

Table 3  Comparison of the temperatures with different 
material defined locations for β=1 

x 

β=1 

Exact 
T/°C 

material  
properties  

defined at the
grid centroid

Error  
/% 

material 
properties 

defined at the 
grid node 

Error 
/% 

0.125 25.582 23.417 4 8.461 4 25.762 0.703 6

0.25 45.505 4 45.694 6 0.415 8 45.702 4 0.432 9

0.375 61.021 7 59.740 2 2.100 1 60.809 4 0.347 9

0.5 73.105 8 73.175 4 0.095 2 72.977 0.176 2

0.625 82.516 9 81.472 6 1.265 6 82.449 2 0.082 0

0.75 89.846 3 89.843 8 0.002 8 89.804 6 0.046 4

0.875 95.554 5 94.921 1 0.662 9 95.541 9 0.013 2

 
Table 4  Comparison of the temperatures with different 
material defined locations for β=1.5 

x 

β=1.5 

Exact 
T/°C 

material  
properties  

defined at the 
grid centroid 

Error  
/% 

material 
properties 

defined at the 
grid node 

Error
/% 

0.125 32.909 5 28.963 7 11.99 33.301 3 1.190 4

0.25 55.527 9 55.820 6 0.527 1 55.905 0 0.679 1

0.375 71.073 2 69.259 45 2.552 1 70.853 7 0.308 9

0.5 81.757 4 81.835 9 0.096 0 81.625 0 0.162 0

0.625 89.100 5 87.945 6 1.296 2 89.049 8 0.057 0

0.75 94.147 4 94.143 4 0.004 2 94.111 7 0.037 9

0.875 97.616 04 97.070 9 0.558 5 97.611 81 0.004 3
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Table 5  Comparison of the temperatures at different locations 
based on CV-FEM and FEM  

β x 
Exact 
T/°C 

FEM (T6+Q9) CV-FEM (T6+Q9)

TFEM/°C Error/% TFVM/°C Error/%

0.5 0.125 18.588 7 17.765 4.431 187 18.646 0.308 252

0.375 49.470 1 48.845 1.263 592 49.338 83 0.265 352

0.625 73.520 56 72.874 0.879 427 73.468 2 0.071 218

0.875 92.251 07 91.731 0.563 755 92.237 8 0.014 385

1.5 0.125 32.909 54 29 11.879 66 33.301 3 1.190 415

0.375 71.073 28 69.296 2.500 63 70.853 7 0.308 949

0.625 89.100 55 87.982 1.255 379 89.049 8 0.056 958

0.875 97.616 04 97.067 0.562 449 97.611 81 0.004 333

 
temperature of the strip is zero. Two meshes are 
introduced (See Fig. 12(b) and 12(c)), and the uniform 
time step Δt=0.001 s. 

For the quadratic variation of the material properties: 

     2, 5 1 2k x y k y y           (19) 

     2, 1 2c x y c y y           (20) 

For the trigonometric variation of the material 
properties: 

        2, 5 cos 0.2 2sin 0.2k x y k y y y     (21) 

        2, cos 0.2 2sin 0.2c x y c y y y      (22) 

Fig. 14 and Fig. 15 show the temperature distributions 
with time along x=0.5 for the quadratic and trigonometric 
variations of the material properties based on triangular 
and mixed grids. A good agreement of both materials can 
be observed. 

3.2.2 FGMs thick-wall cylinder with infinite length 

As the second example of FGMs, a thick-wall cylinder 
in FGMs from Ref. [27] is considered, the geometry,  
boundary conditions and the mesh are depicted in Fig. 
16(a) and Fig. 16(b). The mesh consists of 130 triangular 
and 154 quadrangular quadratic grids, which further 
assess the application of the present CV-FEM for mixed 
grids. The inner boundary of the cylinder is prescribed 
with T=0; the outer boundary is described with the 
Heaviside step function of time variation 

 T T H t  with =1T , and the other two surfaces are 

insulated. Only one-fourth of the cylinder is considered 
due to the symmetry of geometry and boundary 
conditions. The initially temperature of the cylinder is 
zero, and uniform time step Δt=0.05 s. 

The thermal conductivity and the specific heat are as 
follow: 

 in17 r rk e             (23) 

 in0.0017 r rk
e

c



           (24) 

 
 

Fig. 14  Variation of temperature along x=0.5 at different 
times with quadratic material variation: (a) results 
with triangular grids and (b) results with mixed grids 

 

 
 

Fig. 15  Variation of temperature along x=0.5 at different times 
with trigonometric material variation: (a) results with 
triangular grids and (b) results with mixed grids 
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Different values of λ=0, 20 and 50 m-1 are used in the 
analysis. The special case with λ=0 is studied first. The 
temperatures at r=0.083 3, 0.9, 0.096 7 are plotted against 
time in Fig. 17. A good agreement for the present method 
can be observed. It can be seen that the steady state is 
reached after t=15 s. Fig. 18 shows the variation of 
temperature in the radial direction with various values of 
λ at time t=20 s, the results obtained from the developed 
CV-FEM also match well with the solutions from Ref. [27].  

3.2.3 FGMs rectangular strip subject to nonuniform 
convective boundary 

To assess the accuracy of the present method in the 
problem considering Robin boundary, the third problem 
of FGMs is a rectangular strip [30] under non-uniform 
convective boundary. The geometry and boundary 
conditions are depicted in Fig. 19. The domain is meshed 
using 300 uniform quadratic, quadrilateral grids. The 
strip is assumed to be heated from the lower surface by 
ambient media with convective heat-transfer coefficient 
ha at T∞(x)=Tafa(x). The left and right surfaces of the 
strip are prescribed the temperature T=0. The initially 
temperature of the strip is zero and the time step 
Δt=0.005 s. The rest of the numerical parameters are 
presented as follow: 

 

 
 

Fig. 16  (a) Geometry of the third problem and boundary 
conditions for the FGMs thick-wall cylinder, (b) 
mixed grids 

 

 
 

Fig. 17  Variation of temperature at different time at three 
radical positions for the FGMs thick-wall cylinder 

 
 

Fig. 18  Temperature distributions along the radial direction at 
t=20 s for the FGMs thick-wall cylinder 

 

 
 

Fig. 19  Geometry of and boundary conditions for the FGMs 
rectangular strip 

 

1, 0, 1,a b a bT T h h e            (25) 

 21 3 2 4

0 2, 4
a

x x
f

x x

     
 

        (26) 

The material properties vary exponential according to  
yk e                 (27) 

yk
e

c



                 (28) 

Three different exponential parameters λ=0, 1 and -1 
m-1 are studied in numerical calculation. Fig. 20 plots the 
temperature distributions along the thickness direction at 
x=3 m when t=0.1 s and t=1 s. The numerical results 
from the present CV-FEM match well with the MLPG 
solutions [30]. 

3.3 Multilayer structure 

As the last example, a three-layer cylinder structure in 
traditional composites or FGMs subjected to convective 
boundary condition is designed in Fig. 21(a). Because of 
the symmetry, only one-fourth of the annulus 
cross-section is studied. The initially temperature field is 
zero. The cylinder is heated from the outer and inner 
surfaces by ambient media with the temperature at Tafa(r) 
and Tbfb(r), respectively.  

The CV-FEM mesh employed 200 quadratic triangular 
grids and 200 quadratic quadrilateral grids as shown in 
Fig. 21(b). Here the CV-FEM results are verified by the 
FEM solutions obtained from the commercial FEM 
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software ANSYS. The mesh used in FEM consists of 300 
8-noded plane grids (quadratic) as shown in Fig. 21(c). A 
uniformed time step Δt=0.005 s is used in the analysis. 

 

 
 

Fig. 20  Temperature distributions along the thickness 
direction (x=3 m) at t=0.1 s and t=1 s  

 

 
 

Fig. 21  (a) Geometry and boundary conditions (b) The 
CV-FEM mesh with 400 mixed grids and (c) The 
FEM mesh with 300 8-node plane grids 

 
To analyze the multilayer structure with traditional 

composite material, the following thermal conductivity 
and heat specific are used 

1, =0.1 when 0.8 0.8667

3, =0.4 when 0.8667 0.9333

4, =0.5 when 0.9333 1

k r

k r

k r





  
   
   

    (29) 

The numerical parameters used for analyzing 
composite material are given as: 

4, 1, 1, 0, 1b a b a a bh h T T f f           (30) 

For the analysis of multilayer structure with FGMs, 
the thermal conductivity and heat specific are defined as: 

    
    

 

 

0

0

2
0

2
0

2 2
0 0

cos 0.2 2sin 0.2 ,

= cos 0.2 2sin 0.2 when 0.8 0.8667

1 2 ,

= 1 2 when 0.8667 0.9333

, = when 0.9333 1r r

k k r r

r r r

k k r

r r

k k e e r 

 

 

 

  

   
  


  


  

(31) 

where k0=1.0 a0=0.01 and β=1.5. The thermal 

conductivity variation along the radial direction of the 
FGMs cylinder is plotted in Fig. 22. 

The numerical parameters used for analyzing FGMs 
are: 

2
8

1
8 8

0 ,
8 8

bf

x x

  


 

          
   

        (32) 

1  0, 1b a a bh e h T T   ， ，         (33) 

where the exponential parameter λ=2 is used in the 
analysis. 

The temperature of the composite and FGMs cylinders 
at different locations are plotted and compared with the 
FEM solutions at four time levels in Fig. 23 and Fig. 24. 
Fig. 25 plots the comparison of the CV-FEM and FEM 
solutions along the outer surface of the FGM cylinder at 
six different time instant. Contours of temperature of the 
FGM cylinder at five time levels are plotted in Fig. 26. 
All the numerical solutions obtained with the presented 
method and the FEM are in good agreement. This test 
case demonstrates that the present CV-FEM can be 
successfully used in the application of transient heat 
conduction problems in multilayer structure with 
tradition composite materials or FGMs subjected to 
convective boundary. 

 

 
 

Fig. 22  Profile of the thermal conductivity k(r) along the 
radial direction 

 

 
 

Fig. 23  Temperature histories at three radical positions for the 
composite cylinder 
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Fig. 24  Temperature histories at three radical positions for the 
FGM cylinder 

 

 
 

Fig. 25  Temperature variations at different time levels on the 
outer surface of the FGM cylinder 

 

 
 

Fig. 26  Contours of temperature of the FGM cylinder at five 
time instants 

4. Conclusions  

A high order CV-FEM based on quadratic elements 
(six-node element and nine-node element) is proposed to 
analyze heat conduction problems in multilayer FGMs. 
In the high order CV-FEM, quadratic elements are used 
to discretize the computational domain, which provides 
more potential for enhanced geometric flexibility and 
numerical precision than the linear CV-FEM with 
original linear element. Three kinds of FGMs with 
properties described by quadratic, exponential and 
trigonometric grading functions are analyzed in the 
solution of problem. 

As demonstrated in the numerical solutions with 
homogeneous material, FGMs or multilayer FGMs, the 
developed CV-FEM performs well with the steady and 
transient heat conduction analysis. Compared to the 
linear CV-FEM and quadratic CV-FEM, the high-order 
CV-FEM possesses higher precision than the linear 
CV-FEM for the problem under the same mesh size. In 
addition, when CV-FEM is used to solve the heat 
conduction problem in highly graded material, the 
material properties defined at the grid centroid will cause 
significant numerical errors at the mid-point of the grid 
edges, especially in combination with coarse mesh. The 
numerical solutions with CV-FEM and conventional 
FEM based on quadratic mixed grids also show that the 
present method provides more accuracy numerical 
solution than the counterpart. The present method is 
adaptable to unstructured high-order mixed grids 
problems, and it is also capable of analyzing the transient 
heat conduction in multilayer FGMs under convective 
boundary conditions. 
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Appendix 1. Details of the way to deal with 9-node quadrilateral grid 

The shape functions, their derivatives and numerical integration method in 6-node triangular grid have been reported 
in Ref. [22]. Here we only list details of the way to deal with 9-node quadrilateral grid. Fig. 27 shows the global 
coordinate and local coordinate of any 9-node quadrilateral grid. The shape functions and their derivatives with respect 
to ξ and η are summarized in table 6. 

 

 
 

Fig. 27  Any 9-node quadrilateral grid: Global coordinate (a) and local coordinate (b) 

 
Table 6  The shape functions and their derivatives with respect to ξ and η for 9-node quadrilateral grid 

Ni 
iN





 iN





 

  1 1 4       2 1 1 4       2 1 1 4     

  1 1 4        2 1 1 4       2 1 1 4     

  1 1 4       2 1 1 4       2 1 1 4     

  1 1 4        2 1 1 4       2 1 1 4     

   21 1 2       1      2 1 2 1 2     

  21 1 2       22 1 1 2      1    

  21 1 2      1      2 1 2 1 2     

   21 1 2        22 1 1 2      1    

  2 21 1     22 1     22 1    
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The derivatives of shape functions with respect to local coordinate can be expressed as 

 
i i i

i ii

N x y N N

x x
J

N NN x y
y y

  

 

          
                                

                

                                (34) 

where [J] is the Jacobian matrix. The components of the Jacobian matrix with respect to global coordinate can be 
expressed as 

1 1

1 1

,

,

n n
i i

i i
i i

n n
i i

i i
i i

N Nx y
x y

N Nx y
x y
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   

 

 

  
 

   

  
 

   

 

 
                                  (35) 

where n is the number of nodes making up a mesh element, for 9-node quadrilateral grid, n=9. 

By mapping the derivatives of shape functions back to global coordinate, the required derivatives iN

x




 and iN

y




 

can be obtained 

  1

ii

i i

NN

x
J

N N
y







  
             

      

                                       (36) 

There are nine sub-control volumes within each 9-node quadrilateral grid shown as Fig. 28. The integral for the 
partial derivatives of shape functions over faces is calculated by the midpoint rule since it gives high accuracy with little 

effort expended. Take node 1 for example,
l

T
k n dl 


 can be expressed as: 

9 9

1 11
1 11 1

9 9

1 1
1 11 1

j j
ac j x c h j xa c h

j jac c h

j j
ac j y c h j y

j jac c h

N NT
k n dl y T k y T k

x x

N N
x T k x T k

y y

  
 

 

    
          

    
        

 

 
                   (37) 

where Δymn=ym−yn and Δxmn=xm−xn. 
Fig. 28 shows the integration points on the faces surrounding node i within 9-node quadrilateral grid. The locations 

of integration points are summarized in Table 7.  

 
Table 7  Integration points for 9-node quadrilateral grid  

Face\node 1 2 3 4 5 

S1 (−1/2, −3/4) (3/4, −1/2) (1/2,3/4) (−3/4,1/2) (1/2, −3/4) 

S2 (−3/4, −1/2) (1/2, −3/4) (3/4,1/2) (−1/2,3/4) (0, −1/2) 

S3 - - - - (−1/2, −3/4) 

S4 - - - - - 

Face\node 6 7 8 9  

S1 (3/4,1/2) (−1/2,3/4) (−3/4, −1/2) (0, −1/2)  

S2 (1/2,0) (0,1/2) (−1/2,0) (1/2,0)  

S3 (3/4, −1/2) (1/2,3/4) (−3/4,1/2) (0,1/2)  

S4 - - - (−1/2,0)  
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Fig. 28  Integration points along the faces surrounding (a) node 1, (b) node 2, (c) node 3, (d) node 4, (e) node 5, (f) node 6, (g) node 
7, (h) node 8 and (i) node 9 

 
 


