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This paper demonstrates the plane stress state and the stress free thermo-elastic deformation of FGM thick plate 

under thermal loading. First, the Sneddon-Lockett theorem on the plane stress state in an isotropic infinite thick 

plate is generalized for a case of FGM problem in which all thermo-mechanical properties are optional functions 

of depth co-ordinate. The proof is based on application of the Iljushin thermo-elastic potential to displacement 

type system of equations that reduces it to the plane stress state problem. Then an existence of the purely thermal 

deformation is proved in two ways: first, it is shown that the unique solution fulfils conditions of simultaneous 

constant temperature and linear gradation of thermal expansion coefficient, second, proof is based directly on 

stress type system of equations which straightforwardly reduces to compatibility equations for purely thermal de-

formation if only stress field is homogeneous in domain and at boundary.  Finally, couple examples of applica-

tion to an engineering problem are presented. 
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Introduction 

Functionally graded materials (FGMs) provide ther-
mal insulation and mechanical toughness at high temper-
ature by varying  the composition of thermal conductiv-
ity coefficient, thermal expansion coefficient and Young's 
modulus from high temperature side to low temperature 
side continuously and simultaneously by removing the 
discontinuity of layered plate. These advantages cause 
that FGMs are applicable in many fields such as high 
performance engines for aerospace vehicles, turbine 
blades and heat-resisting tools. A general overview of 
thermal stresses in FGMs comprises work by Noda [1].  

Numerous analytical solutions of thermo-elastic plane 
or three-dimensional problems of FGMs take advantage 
of specific power or exponential function approximation 
methods of multi-layered composite plate, limiting si-

multaneously their generality and suggesting question 
how to reduce the problem. One way to attain this may 
be generalization of theorem on the plane stress state in 
an isotropic thermo-elastic thick plate proved by Sned-
don and Lockett in [2]. The authors presented convinced 
proof for a problem of semi-infinite thermo-elastic me-
dium bounded by two parallel planes and loaded by an 
arbitrary temperature field on one surface. The method of 
solution employed was the double Fourier transforms. 
The results confirmed solution of analogous problems, 
being inspiration to their work, received earlier by 
Sternberg and McDowell [3], based on Green's function, 
and by Muki [4], who used method combining the theory 
of Fourier series and the Hankel transforms of integral 
order.  

Recent achievements concerning application of FGM 
layer, treated directly as thermal barrier coating or indi- 
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Nomenclature   

 coefficient of thermal expansion  Poisson's ratio 

 coefficient of thermal conductivity A, B, C arbitrary constants 

 displacement potential E, G Young's and Kirchhoff's moduli 

ij Kronecker's symbol s = tr(ij) trace of stress tensor 

r, , z cylindrical components of strain tensor {u, w} axially symmetic displacement vector

ij, ij stress tensor: axial and shear components ui displacement vector 

 dilatation r, z cylindrical co-ordinates 

T,  temperature and temperature change xi Cartesian co-ordinates 

 
rectly as interface between coating and substrate, are 
mainly focused on plates or shells of thin or moderate 
thickness in which assumptions of plane stress or simpli-
fied 3D stress states are natural consequences of Kir-
chhoff-Love's or Reissner-Mindlin's hypotheses used. 
Contrary to aforementio-ned broad stream of papers the 
number of works concerning fully 3D problems, like 
thick plate or semi-space, is rather limited. Hence, let us 
mention several of them in chronological order: Senthil 
and Batra [5], Dai et al. [6], Pan and Han [7], Wang et al. 
[8], Jabbari et al. [9], Yang et al. [10], Kulikov and Plot-
nikova [11]. 

FGM’s – concept, fabrication and  numerical 
modeling 

In many applications, especially in the space industry 
as well as electronic industry, structures or part of struc-
tures are exposed to high temperature,  usually up to 
2000K or even 3500K in some parts of rocket engines, 
high temperature gradients, and/or cyclic temperature 
changes. Conventional metallic materials, such as carbon 
steels or stainless steels: ASTM 321, ASTM 310, nickel- 
or aluminium-based alloys cannot resist such high tem-
peratures. The first method to improve the resistance of 
metallic structures against extreme temperature condi-
tions consists in covering the structure with a ceramic 
layer since ceramics are known for their high thermal 
resistance. For instance, in a metal-ceramic composite: 
Al-SiC the thermal conductivities ratio is approximately 
equal: m/c = 3.6, the thermal expansion coefficients 
ratio: m/c = 5, whereas the elastic moduli ratio: Em/Ec= 
0.16. Indices m and c refer to metalic and ceramic mate-
rials respectively. Hence, at the metal-ceramic interface, 
severe discontinuity of thermo-mechanical properties 
occurs, which results in high strain and stress mismatch 
at the interface. As a consequence, delamination or fail-
ure of the coating is rapidly observed. As a remedy to 
these disadvantages the concept of Functionally Graded 
Materials - FGM, was developed in Japan in the 1980s, 
giving structural components a spatial gradient in thermo- 
mechanical properties. The spatial gradient is achieved 

by use of two-component composites. The volume frac-
tion of the composite constituents varies spatially such 
that the effective thermo-mechanical properties change 
smoothly from one material (ceramic) to the other 
(metal). In this way, in the case of a Thermal Barrier 
Coating deposited on a metallic substrate, the heat-resis-
tant ceramic layer and the solid metal are separated by 
functionally graded FG layer, the composition of which 
varies from pure ceramic to pure metal. The processing 
technologies for TBCs and FGMs may lead to residual 
stresses, which are built-in during cool-down from the 
elevated fabrication temperature. These residual stresses 
may be significant relative to thermo-mechanical stresses 
applied subsequently. As regards FG layer processing, 
Plasma Spray Thermal Barrier Coating leads to lamellar 
microstructures, whereas columnar-lamellar micro-struc-
tures are produced when using Electron Beam Physical 
Vapour Deposition, see Fig. 1. 

 

 
 

Fig. 1  Microstructure of chemically graded Electron Beam 
Physical Vapour Deposition thermal barrier coating, 
after Schulz et al. [12].  

 
When the classical FEM based on homogeneous ele-

ments is used for FGMs, the material properties stay the 
same for all integration points belonging to one finite 
element. This means that material properties may vary in 
a piecewise continuous manner, from one element to the 
other and a unique possibility to model FGM structure is 
approximation by use of appropriately fine mesh. On the 
other hand, a too coarse mesh may lead to unrealistic 
stresses at the interface between the subsequent layers. 
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To overcome this difficulty a special graded element has 
been introduced by Kim and Paulino [13] to discretize 
FGM properties. The material properties at Gauss quad-
rature points are interpolated there from the nodal mate-
rial properties by the use of isoparametric interpolation 
functions. Contrary to the classical FEM formulation, the 
stiffness matrix of an element is expressed by the integral 
in which constitutive matrix is a function of the coordi-
nates. In the original formulation the same shape func-
tions are used for approximation of the displacement 
field and material inhomogeneity. However, from the 
numerical point of view nothing stands in the way of 
implementation of shape functions referring directly to 
the individual character of inhomogeneity, for instance 
power functions or exponential functions. 

General Formulation of Fgm Thermoelastic 
Problem 

A thermo-elastic three-layer body under consideration 
(Fig. 2) is bounded by two parallel planes normal to axis x3, 
and its FGM interface thermo-mechanical properties such 
as , , E and G are arbitrary functions of x3. 

 

 
 

Fig. 2  Thick thermoelastic plate with FGM inteface under 
arbitrary thermal load.  

 
The plate is established a temperature field T + (xi), 

where T is the temperature of the solid corresponding to 
zero stress and strain. Also it is assumed that there are no 
body forces within the solid and that its surfaces are free 
from tractions.  

The system of equations of uncoupled thermo-elasticity 
expressed in displacements takes the form 
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in which Poisson's ratio is independent of x3. All terms in 
Eqs (1) containing partial differentials of , , E and G 

with respect to x3 yield of FGM application and they are 
additional one in comparison with classical formulation of 
homogeneous material. The variation of temperature  
throughout the solid is determined by steady Fourier equa-
tion Eq. (13) in case of absence of inner heat sources. The 
relation between the stress tensor ij and the displacement 
vector ui is given by the Duhamel-Neumann equation 
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System of equations expressed in stresses (extension 
of Beltrami-Michell formulation) equivalent to Eq. (1) is 
as follows 
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It worth to notice that equations (31-3) can be obtained 
either in classical way or directly from equations (11-2) 
according to concept by Ignaczak [14]. 

Conditions of Plane Stress State 

To solve Eqs(1) the following potential, originally pro-
posed by Iljushin et al. [15], is introduced 
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where function of displacement potential  is of har-
monic type 
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Simple introducing of definitions (3) to Eqs(1) shows 
that only equations of mechanical state are satisfied as 
identity 
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(6) 

The stress components referring to the plane stress 
state with respect to axis x3 
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also identically equal to zero when B = 0 are also 
identically equal to zero when B = 0 for any point xi, 
what proves that Eqs (4) transform original mechanical 
problem Eq. (1) into plane stress one  

0
1

0)1()1(2

33

2

3
2












xx

Ax






      (8) 

where 2
2

22
1

22
// xx  . 

It is obvious that the Iljushin potential (4) rewritten to  
the form suitable for axial symmetry x1 = r, x3 = z, u1 = u 

and u3 = w  

2

2

2

1

1

1

1
2

)( 

z
Azf

z
w

CBzAzzf
r

u





























    (9) 

satisfies as identity the two first equations of following 
system 
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as well as the stress components referring to the z axis 
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when B = 0. Hence, Eqs (10) are reduced to the form 
analogous to (8) as follows 
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Differentiation of Eq. (121) with respect to r and next 
substitution ruu  / , according to Eqs (91), lead to  
the classical Euler-type differential equation describing 
thermo-mechanical membrane state 
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Unique solution of equation (13) that satisfies boundary 
conditions 
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Additionally, in case when temperature is bounded 
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solution (15) reduces to 
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and it is clear that its dependence with respect to depth 
co-ordinate z comes from the functional gradation of 
Young’s modulus E(z) and thermal expansion coefficient 
(z) as well as the temperature field non-homogeneity (r, 
z) exclusively. 

Conditions of Stress Free Deformation 

Constant temperature  = const and linear gradation of 
coefficient thermal expansion (z) = 0 + 1z substituted to 
Eqs (17) leads formally to linear (stress free) deformation 

0)(),(   rrzzru         (18) 

although constant temperature does not satisfy condition 
(161). 

The proof of above theorem in case of the stress for-
mulation Eqs. (31-3) is strainghtforward analogy to those 
done by Fung [16] and Nowacki [17] for homogenous 
material. This turns out to be almost elementary when 
one assumes that 0ij and 0ij  in both Eqs. (31-3) 

and appropriate boundary conditions, hence system of 
equations is satisfied as identity if 
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Once again assuming constant temperature = const 
which satisfies Fourier’s law (193) the unique solution of 
(191-2) is the linear gradation of coefficient of thermal 
expansion  03)(  x  31x . It is essential to notice 

here that uniqueness of solution of the stress formulation 
(3) requires continuity and smoothness of the stress as 
well as the thermal strain term . 

Examples of Application 

Plane stress state of thick plate made of FGM Al/ZrO2+ 

Y2O3 The boundary value problem, following example by 
Cegielski [18], is formulated as follows: find temperature 
distribution , that fulfills Eq. (103) and boundary condi-
tions 
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and accompanying plane stress components satisfying 
Eq. (17) for a semi-infinite axially symmetric three-layer 
thick plate made of FGM composite Al/ZrO2 stabilized by 
Y2O3 (see Fig. 3). 

The magnitudes of both materials being constituents of 
FGM, after Wang et al. [19] and Lee et al. [20], are pre-
sented in Table 1. 

 

 
 

Fig. 3  Three-layer thick plate made of FGM composite. 

 
Table 1  Selected properties of constituents of FGM after Wang 
et al. [19] and Lee et al. [20] 

Material 
E 

(GPa) 
ν 

λ 

(W/mK) 

α·10-6 

(1/K) 

Al metal 

Al2O3 

73 

380 

0.3 

- 

154 

46 

23 

8.5 

Al/ZrO2 205 - 2.0 9.8 

 
Let us assume that all thermo-mechanical properties of 

three-layer FGM depend on local magnitude of volume 
fraction of both constituents which is subjected to the 
tangent hyperbolic approximation 

)tanh(
22

)( mcmc baz
pppp

zp 





     (21) 

where p(z) stands for respective property (z), (z) or 
E(z), indices "c" and "m" refer to ceramic or metallic 
materials, parameters a and b define location and thick-
ness of interface layer.  

Differentiation of Eq. (21), next divise it by p(z) and 
finally substitution of pc = c and pm = m, allow to easily 
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find that coefficient of thermal non-homogeneity in 
Eq.(103) equals to 
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Exemplary distributions of  and z //1  are 
shown in Fig. 4. Applying finite difference method one 
may perform Eq.(103) according to the scheme shown in 
Fig. 5, whereas appropriate schemes of boundary condi-
tions allowing for elimination of nodes situated outside 
the domain, are as follows 
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     ( 23) 

 

 
 

Fig. 4  Distributions of and z //1  . 
 

 
 

Fig. 5  Finite difference scheme for Fourier equation. 
 
The finite difference representation allows to substi-

tute boundary value problem of partial differential equa-
tions by problem of searching for solution of a system of  
N linear equations involving N unknowns. This system of 
equations exhibits typical feature for sparse matrix sys-
tem having relatively small number nonzero elements, 
hence natural way to solve it is the application of the 
row-  indexed storage mode [21] combined with the 
conjugate gradient method [22]. 

Obviously, only small fragment, neighbouring the axis 
of symmetry, of the whole infinite structure is considered. 
The finite difference operator, shown in Fig. 5, is 

spanned over the mesh of 161 × 81 square elements r = 
z. The thermal load applied to the upper surface of the 
plate is subjected to the following relation 

)]2(tanh1[300)( 2
0 rr           (24) 

Temperature distribution is shown in Fig. 6. In com-
parison to the temperature distribution obtained for ho-
mogeneous material (see Cegielski [18]) the temperature 
field exhibits a drastic decrease of temperature at top 
layer. This is a consequence of application of ceramic 
material having coefficient of thermal conductivity 77 
times lower than analogous coefficient of metallic sub-
strate. Hence, one may clearly observe the effect of 
thermal barrier coating with characteristic strong temper-
ature gradients in it and simultaneous homogenization of 
temperature field in middle and bottom layers. 

Aforementioned effect is more clearly visible in case 
of temperature gradient field grad presented in Fig.7. 
The biggest magnitudes of temperature gradient, refer-
ring to top fibres of the plate are almost 10 times bigger 
than analogous at bottom fibres. 

Solution of mechanical problem is illustrated by dis-
tribution of hoop stress, which turns out to be the domi-
nant component of stress, in Fig.8. 

 

 
 

Fig. 6  Distribution of temperature field. 
 

 
 

Fig. 7  Distribution of heat flux field. 
 

 
 

Fig. 8  Distribution of hoop stress field. 
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Analogously to the temperature field, application of 
functionally graded composite leads to the concentration 
of compressive stress in top layer being ceramic material 
of high toughness. This convenient effect is accompanied  
by simultaneous unloading of middle and bottom layers 
built of metallic substrate. Nevertheless, another effect of 
tensile stress zone in ceramic layer occurs. This pheno-
menon is strictly associated with the structure of equa-
tions defining stress components (17). Namely, as far as 
the radial stress is always negative the hoop stress fre-
quently changes sign, see Fig. 9. 

 

 
 

Fig. 9  Typical distributions of radial and hoop stress compo-
nents. 

 
As consequence, a ceramic material of very low or 

zeroth tensile strength is obviously unable to carry tensile 
stress unless there exists residual stress built-in material, 
coming from fabrication process, big enough to neutral-
ize tensile hoop stress. Otherwise metal-ceramic FGM 
has to be replaced by metal-metal FGM which exhibits 
sufficient tensile strength. 

Stress free deformation state of linear FGM interface 
under constant temperature It has been shown in previous 
section that material of linear gradation of thermal ex-
pansion coefficient, subjected to constant temperature 
exclusively, is not stressed. This means that it exhibits 
unconstrained and purely thermal deformation. In case of 
axial symmetry such deformation can be expressed by 
the following equations 
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Assuming structure composed of homogeneous metal-
lic substrate (Al) and ceramic layer (Al2O3), joined by 
FGM interface, shown in Fig. 10, and thermo-elastic 
properties presented in Tab. 1, such that linearly graded 
coefficient of thermal expansion exhibits polygonal function 

 

 
 

Fig. 10  Metallic substrate and ceramic layer joined by FGM 
interface of linear thermal expansion coefficient 
structure 
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and we easily arrive at the following of solution Eqs. 
(26) for u 
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and for w respectively 
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The displacement field corresponding to stress free 
deformation defined by Eqs (27-28) is spanned over the 
mesh of 80 × 40 square elements and shown in Fig. 11. It 
is well visible that both substrate and ceramic layers ex-
hibit homogeneous deformation, whereas deformation of 
interface is curvilinear. Altough all three deformations 
satisfy individually stress less state they are not compati-
ble since previously mentioned conditions are violated. 

In order to obtain the compatible deformation (see Fig. 
12) it is necessary to activate non-zero stress state that 
magnitude of which can be controlled by thickness of the 
interface.  

The general tendency is as follows: the narrower 
thickness of interface is the lower magnitude of stress 
occurs. 

 

 
 

Fig. 11  Stress free but incompatible purely thermal deforma-
tion of three layer structure: initial mesh – solid lines, 
deformed mesh – dotted lines (displacement magni-
fied ×100). 
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Fig. 12  Compatible but stressed purely thermal deformation 
of three layer structure: initial mesh – solid lines, de-
formed mesh – dotted lines (displacement magnified 
×100). 

Conclusions 

Following concluding remarks may be formulated for 
thick FGM plates. 
 Thermal loading applied to the structure results in 

the plane stress state if only force type boundary 
conditions are homogeneous and there are no body 
forces.  

 There is no need to limit considerations to problems 
of specific power or exponential approximation 
functions since after application of Iljushin's poten-
tial only Fourier's equation turns out to have varying 
coefficient.  

 Application of functionally graded composite 
Al/ZrO2 + Y2O3 is very efficient since FGM layer 
works like thermo-mechanical barrier, successively 
protecting metallic substrate from both high tem-
perature gradients and high concentration of com-
pressive stress. 

 Occurrence of tensile hoop stress in the ceramic 
layer is admissible only when it is accompanied by 
appropriate compressive residual stress.  

 Stress free deformation of three layer structure is 
not possible because of lack of compatibility, hence 
probably an unique way to decrease magnitude of 
stress leads to application of the FGM interface as 
thin as possible. 

 Both theorem and examples of its application have 
only theoretical sense since neither manufacturing 
nor classical FEM allow for modeling of conti-
nuously varying FGM. 
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