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Floating zone technique is a crucible-free process for growth of high quality single crystals. Unstable thermoca-

pillary convection is a typical phenomenon during the process under microgravity. Therefore, it is very important 

to investigate the instability of thermocapillary convection in liquid bridges with deformable free-surface under 

microgravity. In this works, the Volume of Fluid (VOF) method is employed to track the free-surface movement. 

The results are presented as the behavior of flow structure and temperature distribution of the molten zone. The 

impact of Marangoni number (Ma) is also investigated on free-surface deformation as well as the instability of 

thermocapillary convection. The free-surface exhibits a noticeable axisymmetric (but it is non-centrosymmetric) 

and elliptical shape along the circumferential direction. This specific surface shape presents a typical narrow 

‘neck-shaped’ structure with convex at two ends of the zone and concave at the mid-plane along the axial direction. 

At both θ = 0° and θ = 90°, the deformation ratio ξ increases rapidly with Ma at first, and then increases slowly. 

Moreover, the hydrothermal wave number m and the instability of thermocapillary convection increase with Ma. 
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Introduction 

The Floating zone method, which avoids undesirable 
contact with the crucible walls, becomes a promising 
technique to produce of larger and higher quality crystals 
of semiconductors [1, 2]. Under a microgravity condition, 
thermocapillary convection driven by an unbalanced sur-
face tension plays a dominant role in the crystal growth 
process. The unstable thermocapillary flow may induce 
undesirable macroscopic and microscopic imperfections 
in the obtained final crystals [3, 4]. Therefore, the inves-
tigation of characteristics of the thermocapillary flow 
under microgravity is necessary for crystals growth pro-
cessing in the future. 

For a better understanding and optimizing of the crys-
tal growth process, extensive researches have been con-
ducted on the thermocapillary convection in liquid bri-
dges. Numerical simulations were carried out to investi-
gate the effects of aspect ratio (Ar) [5], shape factor [6] 
and high-frequency vibrations [7] on the instability of 
thermocapillary flow in liquid bridges. In recent years, a 
number of experimental [8, 9] and numerical [10-12] 
investigations were also dedicated to analyze the impact 
of interfacial heat transfer on the stability of thermoca-
pillary flow in liquid bridges. However, the above-men-
tioned researches were performed without considering 
the free- surface movement. 

The free-surface deformation was a necessary condi- 
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Nomenclature   

A monitoring point Greek symbols 

Ar aspect ratio (=L/r1)  density, [kg·m-1] 

Ca Capillary number (   0T= T σ σ )  thermal conductivity, [W·m-1·K-1] 

g gravitational acceleration , [ m2·s-1] Cp specific heat, [J·kg-1·K-1] 

k unit tangential vector  dynamic viscosity, [kg·s-1·m-1] 

L length of the molten zone, [cm] υ kinematic viscosity, [m2·s-1] 

m hydrothermal wave number  thermal diffusivity, [K-1] 

Ma Marangoni number (  TTL σ μχ  ) δ thickness of the air layer, [cm] 

n unit normal vector  surface tension (= 0 T (TT0)), [N·m-1] 

P pressure of the inner fluid, [Pa] T interfacial tension temperature coefficient, [N·m-1·K-1]

P0 pressure of the outer fluid, [Pa] ξ deformation ratio (= (rmax rmin)/r1) 

Pr Prandtl number (= Cp/ ) u, v, w
the velocity components in the r, z and θ directions, 
[cm·s-1] 

Re Reynolds number (=VL/1) r, θ, z radial, azimuthal and axial coordinates 

Q convergence criteria x, y coordinates directions (x = rcosθ, y = rsinθ), [cm] 

r radius of the molten zone, [cm] Subscripts 

Ri normal radii of curvature av average 

Sik tensor of viscous stress c cold wall 

t time, [s] h hot wall 

T temperature, [K] max maximum 

ΔT temperature difference (=Th–Tc), [K] min minimum 

  1 inner melt layer 

  2 outer air layer 

 
tion for the onset of oscillatory thermocapillary convec-
tion [13]. It’s of great importance to investigate the free- 
surface deformation behavior of the liquid bridge in fa-
bricating single crystals with high purity. To date, only a 
few investigations concerned the effect of free-surface 
deformation. Kuhlmann and Nienhüser [14] investigated 
the flow-induced dynamic free-surface deformations in 
liquid bridges. They found that the total dynamic defor-
mation could be decomposed to elucidate the relative 
importance of the hydrodynamic pressure, viscous stress, 
change of volume, surface tension and hydrostatic pres-
sure. Sim et al. [15] investigated the dynamic free-sur-
face deformations in two-dimensional (2D) liquid bridges, 
and their numerical results indicated that the free-sur-
faces were convex at the cold wall and concave at the hot 
wall. Shevtsova et al. [16] investigated the dynamic free-  
surface in non-cylindrical liquid bridges of 5 cSt silicone 
oil, and found the magnitude of deformation increased 
with the temperature difference of the cold and hot walls. 
Liang and Kawaji [17] developed a three-dimensional 
(3D) numerical simulation to investigate the vibra-
tion-induced oscillation of liquid bridge by level set me-
thod. The results showed that the external vibration in x 
direction at resonance frequency controlled the surface 

oscillation in x direction while the influence of external 
vibrations in y and z directions on the surface vibration 
was small. Ahmed et al. [18] found the flexible free-   
surface capable of influencing the thermocapillary con-
vection of small scale liquid bridges. Zhou and Huang 
[19] numerically studied the steady thermocapillary con-
vection in 3D rectangular cavities using level set method. 
The interface was discovered to bulge out near the hot 
wall and bulge in near the cold wall and the deformabili-
ty increased with an increasing Ma. Zhou and Huai [20] 
investigated the thermo-solutocapillary convection in 
axisymmetric liquid bridge with a dynamic free surface. 
The free surface bulged out at the two ends of zone and 
bulged in at the central zone when the thermal Marango-
ni number was identical to the solutal Marangoni num-
ber. 

A few numerical studies have been performed for 2D 
liquid bridges, axisymmertic liquid bridges and 3D rec-
tangular cavities with deformable free-surfaces. However, 
there is no work available for 3D large scale cylindrical 
liquid bridges and no report on the effect of Ma on the 
instability of thermocapillary convection with consider-
ing free-surface deformation. Consequently this paper aims 
to numerically investigate the thermocapillary convection 
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in a 3D liquid bridge with considering the free-surface 
deformation. With a fixed aspect ratio, the effect of Ma 
on deformable free-surface shape is explored as well as 
the instability of thermocapillary convection. The cha-
racteristics of melt flow and heat transfer are also inves-
tigated and analyzed in a liquid bridge with deformable 
free-surface. 

Physical and mathematical models 

In the present study, the main features of thermocapil-
lary flow in floating zone can be captured in half-zone 
model which can simplify the numerical calculations [1]. 
The geometry and coordinate system of this model is 
shown in Fig. 1 with a height (H) at 3 cm and radius (r2) 
at 2 cm, respectively. The silicon-melt inner fluid is sus-
pended between two co-axial disks, has a length of L (L = 
1.5 cm) and radius of r1 (r1 = 1 cm) which makes the as-
pect ratio at Ar = L/r1 = 1.5. The temperatures Th, Tc 
(Th>Tc) are prescribed at the lower and upper disks re-
spectively, which keeps a constant temperature difference 
of ΔT (ΔT = ThTc) between the two disks. The outer 
fluid of liquid bridge is air with a height (H) at 3 cm and 
thickness (δ = r2r1) at 1 cm, respectively. The detailed 
properties of silicon-melt in the inner layer and air in the 
outer layer are available in Table 1 [21]. A cylindrical 
coordinate system (r, θ, z) is applied with z-axis corres-
ponding to the centerline of the liquid bridge and origin 
from the center of the lower disk. 

Some assumptions are made in this numerical model 
as follows: (1) the two kinds of fluids are incompressible 
Newtonian fluid; (2) the flow is laminar; (3) the thermo-
capillary force is taken into account at the interface of the 
melt and air, and the no-slip condition is applied at the 

 

 
 

Fig. 1  Geometry and coordinate system 

upper and lower disks; (4) the liquid bridge is under mi-
crogravity (set 0g in present investigation); (5) the inter-
face of the melt-air is deformable. The surface tension at 
the interface is assumed to be a linear function of tem-
perature: 

0 0( )Tσ σ σ T T              (1) 

where 0σ is the surface tension at T = T0, T is the neg-

ative surface tension change rate of with temperature 
( ( / ) 0Tσ σ T     ). 

Governing Equations 

With the above assumptions, the non-dimensional go-
verning equations for thermocapillary flow with deform-
able free-surface in 3D model can be written as (i = 1, 2; 
and 1 denotes the inner fluid, 2 denotes the outer fluid), 
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Free-surface deformation 

The position of the melt-air interface is described by a 
function F(z), with F(0) = r1 = F(L) = R0, and the initial 
shape of interface is assumed to be a cylindrical surface. 
The stress balance between the viscous fluid and ideal- 
gas on the interface, R=F(z), is controlled by, 

0
1 2

1 1
( ) i ik k

i

σ
P P σ

R R

  
       

n S n


      (5) 

where Sik, Ri are the tensor of viscous stress and the 
normal radii of curvature, P and P0 are the pressure of the 
inner and outer fluid, k and n are the unit tangential vec-
tor and the outward unit normal vector, respectively. The 
mean curvature is defined as, 

 
Table 1  Thermophysical properties of Silicon-melt and Air 

Fluids  (Pa·s)  (kg·m-3) Cp (J·kg-1·K-1)  (W·m-1·K-1) 0 (N·m-1) T (N·m-1·K-1) 

Silicon-melt 8.8910-4 2530 1000 67 
0.4868 2.810-4 

Air 1.78×10-5 1.225 1006.43 0.0242 
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where the subscript z denotes the derivative, Fz=dF/dz. 
The normal and tangential projections of Eq. (6) are  

given by, 
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The location of the interface is determined by the 
normal projection of Eq. (7). The tangential projection of 
Eq. (8) defines the driving thermocapillary force. Since 
the liquid is assumed to be incompressible, its total vo-
lume must remain constant, 
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Boundary and Initial Conditions 

The boundary conditions are written as follows: 
At the lower disk (z* = 0, 0≤r*≤1/L, 0≤θ<2π), u* = v* = w* = 0, Θ = 0.5.                                 (10-a) 
At the upper disk (z* = 1, 0≤r*≤1/L, 0≤θ<2π), u* = v* = w*= 0, Θ = -0.5.                                 (10-b) 
At the interface (r* = F(z*), 0≤z*≤1, 0≤θ<2π), Θ1 = Θ2, 
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At the outer wall (r* = r2/L, -0.75/L≤z*≤2.25/L, 0≤θ<2π), 0
r





.                                   (10-d) 

The initial condition is expressed as follows (t = 0), u* = v* = w* = 0, Θ = 0.                               (11) 

 
Validation of the numerical system 

The fundamental equations are discretized by the fi-
nite volume method on a non-uniform staggered grid 
system which can prevent unphysical oscillations of the 
computed pressure. A finer mesh gradation is utilized in 
the regions near the upper and lower disks, as well as the 
interface. The central difference approximation is applied 
to the diffusion terms while the second order upwind 
scheme is used for the convective terms. The pressure-  
implicit with splitting of operators (SIMPLE) algorithm 
is used to handle the pressure-velocity coupling. The 
present numerical code is validated by comparing the 
dimensionless temperature distributions on free-surface 
with the result of Zeng et al. [3], as shown in Fig. 2. Our 
numerical result is in a good agreement with Zeng’s. 

In order to check the grid independence, simulations 
with four sets of different meshes are performed at Ma = 
1.1 × 104, as shown in Table 2. As it can be seen, these 
four sets of grids show almost same maximum axial ve-
locity and average temperature at the monitoring point 
A(r/r1 = 0.5, θ = 0°, z/L = 0.5). The choice of grid 80r × 
120θ × 80z (M3) is made corresponding to a reasonable 
compromise between the minimum dependence of the 
threshold of the instability upon the mesh size and the com-
putational time. For each time step (using the adapted 

calculation time step), the quotient Q= 1
max/n n n     

is calculated for all dependent variables at all grid points. 
If Q≤10-6 is valid for all variables at all grid points, the 
solution is interpreted as converged. 

Results and discussion 

The thermocapillary convection appears as a steady 
flow when Ma is small, which is called the ‘stable flow’. 
When Ma exceeds a certain threshold value, this stable 
flow will however change to oscillatory convection. In 
this investigation, the Ma varies from 1.1 × 104 to 1.82 × 
104 and other parameters of the liquid bridge are kept 
constant. 

 

 
 

Fig. 2  Dimensionless temperature distributions on free-surface 
with Ar=1, Pr=1, Ma=1000 

Free-surface Deformation 

The deformation of an interface in microgravity may 
result from two different contributions [14], fluid dy-
namic pressure induced by fluid motion and the capillary 
pressure due to the change of interfacial tension as shown 
in Eq. (5). The normal viscous stress now promotes a 
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bulging near both the hot and the cold corners. And this 
bulge is accelerated by the positive radial flow near the 
hot corner and suppressed by the negative radial flow 
near the cold corner (see Fig. 5(a)). Thus, the extent of 
bulging out near the hot wall is much larger than near the 
cold wall. At the same time, due to the constant volume 
of the liquid bridge, the interface is constricted at the 
mid-plane of the liquid bridge. As a result, the free-sur-
face presents a typical narrow ‘neck-shaped’ structure 
with convex near the cold and hot walls and concave at 
the middle section of the liquid bridge, as shown in Fig. 
3(a). For a better understanding of the characteristics, the 
free-surface deformation at different circumferential po-
sitions is also conducted, as shown in Fig. 3(b). It is evi-
dent that the free-surfaces show a noticeable oscillation 
and axisymmetric, but non-centrosymmetry distribution. 
The bulge point has axial positions at z = 0.225 cm and 
1.443 cm, and the biggest contraction point has axial 
position at z = 0.911 cm. The free-surfaces are almost 
coincide at θ = 0° and θ = 180°, and they are also the 
same at θ = 90° as that θ = 270°. Moreover, the outward 
bulging is larger than inward shrinking at θ = 90° and θ = 
270°, while the outward bulging is smaller than inward 
shrinking at θ = 0° and θ = 180°. This specific bulging 
mode makes the total volume of deformed liquid bridge 
equal to that of the initial cylindrical one. 

Figure 4 illustrates the free-surface deformation at Ma 
= 1.1 × 104 on different horizontal planes, where x and y 
are defined as rcosθ and rsinθ, respectively. The free-  
surfaces exhibit an elliptical-shape distribution with long 
axis at y direction and short axis along x direction. More-
over, the free-surfaces bulge outward on z = 0.225 cm 

and z = 1.443 cm planes while shrinking inward on z = 
0.911 cm plane, which is consistent with the free-surface 
deformation shown in Fig. 3(b). 

Basic Flow and Heat Transfer Characteristics 

As the temperature difference happens between the 
two co-axial circular disks, surface tension gradient (called 
thermocapillary force) generates on the interface between 
the melt and air. Thus, flow occurs in the liquid bridge 
from hot disk to cold disk along the interface, and then 
returns to the hot disk in the center. This is known as the 
thermocapillary convection. The flow along the free-  
surface towards the cold disk is called a surface flow, and 
the interior flow towards the hot disk is called a back-flow 
herein. 

The thermocapillary convection is also found in the 
liquid bridge with deformable free-surface. However, the 
flow structure is significantly different from that with a 
fixed surface. The streamlines present a narrow ‘neck-  
shaped’ structure, which presents the similar behavior as 
the free-surface shape shown in Fig. 3. The streamlines 
bulge outward at two ends of zone and shrink inward at 
the mid-plane in deformable free-surface case (Fig. 5(a)), 
which is not found in fixed surface case (Fig. 5(b)). It is 
also noticed that, both in deformable free-surface and 
fixed surface cases, two larger and axisymmetric convec-
tion eddies (A and B) are formed in the whole molten 
zone. The vortexes A and B are closely located at the 
lower region of the molten zone in deformable free-sur-
face case, while they are closely located at the midline of 
EF in the fixed free-surface case. This is caused by the 
free-surface shrinking inward at z = 0.911 cm in the de- 

 

Table 2  Mesh dependence 

Meshes M1 M2 M3 M4 

Number of nodes 70r×100θ×70z 75r×110θ×75z 80r×120θ×80z 85r×130θ×85z 

vmax (cm·s-1) 8.598 8.542 8.531 8.528 

TA (K) 1685.019 1685.031 1685.037 1685.04 

 

 
 

Fig. 3  Free-surface deformation at Ma = 1.1 × 104: (a) Free-surface deformation at t=t0; (b) Free-surface deformation at different 
circumferential positions. 
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Fig. 4  Free-surface deformation at Ma=1.1×104 on different 

horizontal planes 

formable free-surface case which pushes the vortex 
downward. Owing to thermocapillary convection in liq- 
uid bridge, convective heat transfer plays a crucial role 
here. The surface flow near the interface is strong as well 
as the back-flow in the center. Thus, an obvious distor-
tion is found nearby the free-surface and the center of the 
molten zone. However, it should be noted that the tem-

perature distributions are different between the deforma-
ble free-surface and fixed surface cases, as shown in Fig. 
5(c, d). The distortion of isotherms in deformable free-  
surface case is larger than that in the fixed surface case. 
And the area of narrow and sharp low temperature area in 
deformable free-surface case is also bigger than that in 
the fixed surface case. In conclusion, the free-surface 
deformation has a significant effect on the flow structure 
and temperature distribution of the liquid bridge. It is 
necessary to consider the effect of free-surface deforma-
tion when investigating the thermocapillary convection in 
the floating-zone crystal growth. 

Figure 6 illustrates the temperature and azimuthal ve-
locity distributions along circumferential direction at 
different radii on the z/L = 0.5 plane at Ma = 1.1 × 104. 
The temperature distributions show a sinusoidal fluctua-
tion shapes and all the three lines are symmetric on 
θ=180° (Fig. 6(a)). The amplitude of the three curves is 
almost consistent and the temperature fluctuations keep 
the same pace at different radii. So we can suspect a 
strong oscillation in the whole molten region. At r/r1 = 
0.5 (near the center of liquid bridge), the average temper-
ature is lower as the fluid is cooled down by the low- 
temperature fluid from the cold wall. At r/r1 = 0.8 with 
weak back-flow and surface flow relatively strong, the 
average temperature is significantly higher than that at 
r/r1 = 0.5, but lower than that at r/r1 = 1. At r/r1 = 1 (near 

 

 
 

Fig. 5  Streamlines (a, b) and isotherms (c, d) on θ = 90° plane at Ma = 1.1 × 104 
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the interface), the surface flow becomes stronger and 
makes a strong heat transfer. Together with the heating 
up of the melt by the high-temperature fluid from the hot 
wall, the average temperature is the highest. As shown in 
Fig. 6(b), the azimuthal velocity keeps the same trend at 
r/r1 = 0.5 and r/r1 = 1, while the azimuthal velocity at r/r1 

= 0.8 exhibits the opposite trend. Moreover, the azimu-
thal velocity presents a strong fluctuation and keeps the 
approximate identical amplitude at different radii on the 
z/L = 0.5 plane. 

Marangoni Number Dependence 

Figure 7 presents the isotherms and radial velocity at 
different Ma on the z/L = 0.5 plane. At Ma = 1.1 × 104 
(Fig. 7(a)), two large high-temperature areas appear near 
the free-surface. The low temperature area presents an 
elliptical-shape in the center. When the Ma is 1.46 × 104 
(Fig. 7(b)), the isotherms exhibit a hexagonal distribution 
and the wave number m is 6. It implies an increase of the 
instability of thermocapillary convection. When the Ma  
further increases to 1.64 × 104 (Fig. 7(c)), the wave number 

 

 
 

Fig. 6  Temperature and velocity distributions along circumference of different radii on the z/L = 0.5 plane at Ma = 1.1 × 104 

 

 
 

Fig. 7  Isotherms and radial velocity distributions of different Ma on the z/L=0.5 plane 
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m increases to 7, which also demonstrates an enhance-
ment of the instability of thermocapillary convection. 
The radial velocity distribution at different Ma on z/L = 
0.5 plane all exhibits a ‘petal’ shape, as shown in Fig. 7(d, 
e, f). At Ma = 1.1 × 104 (Fig. 7(d)), two pairs of vortexes 
occur at the center on the z/L = 0.5 plane. When Ma = 
1.46 × 104 (Fig. 7(e)), the petal number m is 6. When the 
Ma further increases to 1.64 × 104 (see Fig. 7(f)), the 
petal number m increases to 7 with a small petal not easy 
spotted at the right side. Moreover, the number and the 
outline of the ‘petal’ increase with Ma, which indicates 
that the hydrothermal wave number m and the strength of 
the thermocapillary convection increase with  Ma. With 
a careful comparison of Fig. 7(a, b, c) and Fig. 7(d, e, f), 
it is found that the petal number of the radial velocity is 
equal to the hydrothermal wave number at different Ma. 
This feature indicates a strong coupling between temper-
ature field and flow field in the whole molten zone. In 
other words, the distribution of flow field induces a sim-
ilar temperature field. 

For the effect of Ma number, the free-surface defor-
mation F(z) at different circumferential positions is 
shown in Fig. 8. Both at θ = 0° and θ = 90°, it is found 
that the axial position of bulge and contraction points, do 
not change with Ma. However, due to non-centrosymme-
try, the free-surface shape is different at circumferential 
positions. At θ = 0°, the magnitude of contraction re-
mains constant at z = 0.911 cm and the extent of outward 
bulging increases with Ma at z = 0.225 cm and z = 0.1443  
cm (Fig. 8(a)). Conversely, at θ = 90°, the extent of out-
ward bulging remains constant at z = 0.225 cm and z = 
0.1443 cm and the magnitude of contraction increases 
with the increment of Ma at z = 0.911 cm (Fig. 8(b)). 
Both the extent of bulge at θ = 0° and the contraction at θ 
= 90° increases with increasing Ma. The volume of con-
vex at two ends of the zone is equal to that of concave in 
the central region at different Ma. Consequently, the total 
volume of deformed liquid bridge conforms to the initial 
cylindrical one. 

Figure 9 exhibits the deformation ratio ξ varies with 

Ma at different circumferential positions. The deforma-
tion ratio ξ is defined as ξ = (rmaxrmin)/r1 with rmax and 
rmin denoting the maximum and minimum radius of the free- 
surface, respectively. The solid and dotted lines stand for 
the nonlinear fitting curve of the deformation ratio at θ = 
0° and θ = 90°, respectively. The deformation ratio ξ in-
creases with Ma at first, and then increases slowly both at 
θ = 0° and θ = 90°. For instance, at θ = 0°, the increment 
Δξ is 0.05012 when Ma increases from 1.1 × 104 to 1.46 
× 104, while the increment Δξ is only 0.02208 as Ma in-
creasing from 1.46 × 104 to 1.82 × 104. Likewise, the 
deformation ratio ξ at θ = 90° shows the similar behavior 
with that at θ = 0°. In addition, at the same Ma, the de-
formation ratio ξ at θ = 0° is larger than that at θ = 90°. 

Conclusions 

In this paper, the characteristics of flow and heat 
transfer in the Floating zone crystal growth process under 
microgravity are investigated using the VOF tracking 
method. The effect of Ma on free-surface deformation as 
well as the instability of thermocapillary convection is 
also calculated and analyzed. The following conclusions 
are drawn, 
 Under microgravity environment, the free-surface is 

convex near the cold and hot walls, while concave 
at the mid-plane of the liquid bridge. The free-sur- 
face shows a noticeable axisymmetric and elliptic-
al-shape distribution along circumferential direction. 
And its presents a typical narrow ‘neck-  shaped’ 
structure along axial direction. Moreover, both at θ 
= 0° and θ = 90°, the deformation ratio ξ increases 
rapidly with Ma at first, and then increases slowly. 

 The free-surface deformation makes a significant 
effect on the flow structure and temperature distri-
bution of the liquid bridge. The vortexes are closely 
located at the lower region of the molten zone in the 
deformable free-surface case while they are closely 
locate at the midline of EF in the fixed free-surface 
case. 

 

 
 

Fig. 8  Free-surface deformation F(z) at different circumferential positions 
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Fig. 9  Deformation ratio ξ varies with Ma at different cir-
cumferential positions 

 
 The instability of the thermocapillary convection is 

enhanced with Ma. The hydrothermal wave number 
m increases from 2 to 7 with the Ma increasing 
from 1.1 × 104 to 1.64 × 104. 
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