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Abstract: Mud flows are common phenomena in 
mountainous areas, which can threaten human safety 
and cause property losses under certain extreme 
circumstances. Studying the dynamic characteristics 
of mud flows, especially in the vertical direction, is 
helpful for risk reduction and hazard mitigation. In 
this study, a 2D depth-resolved numerical model 
based on Herschel-Bulkley rheology was developed to 
study the vertical structures of unsteady mud flows 
with a free-surface. The numerical model was solved 
by the projection method, and the free surface of mud 
flows was captured through the VOF method. To fully 
validate this new model, a series of laboratory 
experiments involving dam break mud flows were 
conducted, and the mud flow heights, bottom 
pressures and envelopes of mud residuum were 
measured. The numerical model proposed in this 
study was first validated by the steady-state solution 
for uniform flows of Herschel-Bulkley fluid on an 
inclined plane. Additionally, the simulated and 
measured mud flow heights, bottom pressures at 
different x locations and envelopes with different bed 
slopes showed good agreement. Furthermore, the 

numerical results for a Herschel-Bulkley fluid dam 
break flow were used to validate the proposed model, 
which further revealed good agreements. After that, 
the scenarios in which mud flows impact on a 
structure were numerically studied, and the vertical 
profiles of the front velocity and impact pressure on 
the structure were analyzed and discussed. The 
results show that a plug layer was formed in the mud 
flow under unsteady and nonuniform flow conditions, 
and the impact pressure on the structure was 
dominated by the dynamic pressure. In addition, the 
vertical position with the maximum impact pressure 
acting on the structure was not at the bottom or the 
surface of the mud flows, and the normalized vertical 
position rose as the yield stress and consistency 
coefficient increase for Herschel-Bulkley fluids. 
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1    Introduction  

Mud flows, which consist of highly concentrated 
mixtures of water and granular materials with a wide 
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range of grain sizes, are rapid and unsteady 
geomorphological flows driven by gravity (Iverson 
1997; Cui et al. 2005; Ancey 2006). With the 
widespread development of urbanization, due to the 
high mobility of mudflows and the large volumes of 
sediment that they can mobilize, transport and 
deposit, mud flows pose serious threats to human 
lives and the safety of property (Zou et al. 2019). 
Therefore, the development of a reliable method to 
predict the potential danger of mud flows has become 
a critical and attractive research topic in recent years 
(Takahashi 2014). 

Rheological experiments involving mud samples 
have demonstrated the existence of the shear thinning 
phenomenon, which refers to the decreasing tendency 
of the apparent viscosity of mud with an increase in 
the shear rate (Major et al. 1992; Liu et al. 1994; 
Coussot 1997; Ancey 2006; Wang et al. 2014). These 
rheological models have been widely used to simulate 
the propagation of mud flows (Johnson et al. 1970; 
Chen 1986; Ancey 2006). For example, the depth-
averaged method, which removes the information 
along the depth-direction to reduce the computational 
cost, has been used to the numerically simulated mud 
flows in the hazard areas of real catchments (O’Brien 
1993; Liu et al. 2006; Fan et al. 2018). The pressure in 
the depth-averaged method was typically assumed to 
be approximately hydrostatic (Iverson et al. 2014; 
Chen et al. 2018). Many efforts have been made to 
consider the effects of non-hydrostatic in depth-
averaged models (Castro-Orgaz et al. 2015, Delgado-
Sánchez et al. 2020, and Zhang et al. 2021a, 2021b), 
however, the vertical velocity profiles of mud flows 
have not been reported. Additionally, the shear rate 
used in these depth-averaged models has been 
assumed to be a ratio of the averaged velocity to the 
flow depth and the corresponding rheological models 
have been determined on the basis of flow profiles 
within the steady and uniform flow regime. 

The vertical profiles of velocity and pressure 
during the motion of mud flows are crucial for 
understanding the interactions between mud flows 
and structures, such as the check dams and 
infrastructures (Bartelt et al. 2006; Kaitna et al. 2014; 
Leonardi et al. 2016; Liu et al. 2019). However, 
previous studies have typically obtained vertical 
profiles of the velocity and pressure for steady and 
uniform flows (Huang et al. 1998; Mei et al. 2001; 
Takahashi 2014; Kaitna et al. 2014), which cannot 
realistically approximate natural mud flows.  

In contrast, dam break flows are typically 
regarded as unsteady and nonuniform free-surface 
flows, accordingly, many laboratory experiments have 
been conducted to understand the flow characteristics 
under unsteady and nonuniform conditions and to 
validate numerical models (Wang et al. 2000; Ancey 
et al. 2008; Lin et al. 2011; Cozzolino et al. 2017). 
Dam break mudflows are more sophisticated than 
pure water dam break flows because the former flows 
exhibit non-Newtonian rheology (Coussot 1997). 
Some researchers have studied dam break mud flows 
based on depth-averaged models, and have reported 
the longitudinal profiles of the simulated results 
(Huang et al. 1997; Huang et al.1998; Nagl et al.2020). 
Nevertheless, numerical models have not been 
utilized to present the vertical profiles of velocity and 
pressure under unsteady and nonuniform free-surface 
flows, mainly because reliable measured vertical 
profiles of velocity and pressure have not been 
available to validate the models owing to the 
opaqueness of mud flows. Moreover, although some 
velocity probes have been used to measure the vertical 
velocity profiles of mud flows under steady and 
uniform conditions (Louge et al. 1996; Tiefenbacher 
et al. 2004; Kaitna et al. 2014), such flows could be 
disturbed by intrusive probes, and thus the measured 
data might deviate from the truth. 

Additionally, some researchers have conducted 
numerical simulations to study the evolution of mud 
flows by solving the Navier–Stokes equations. Jing et 
al. (2018) numerically investigated dam break mud 
flows on an inclined flume and discussed the effects of 
rheology on deposit morphology. They found that a 
higher viscosity could induce wider lateral spreading 
of the deposit and that a lower yield stress could 
result in longer deposits. Li et al. (2018) studied the 
front velocity and surface evolution of dam break mud 
flows on a horizontal plane based on the OpenFOAM 
software. They reported that the slope of the mudflow 
surface decreased in the longitudinal direction and 
ultimately reached an equilibrium state. However, 
these models were not adequately validated due to a 
lack of reliable experimental data, and little attention 
has been paid to the vertical profiles of the dynamic 
characteristics under an unsteady state. 

In this study, a new depth-resolved numerical 
model that can describe the vertical profiles of the 
dynamic characteristics is developed based on the 
Herschel-Bulkley rheology to study the unsteady mud 
flows with a free surface. The proposed numerical 
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model is validated with experiments carried out in 
this study, the steady-state solution for uniform flows, 
and cases simulated by other numerical models. On 
the basis, the interactions between the mud flows and 
structures are studied and analyzed. 

2    Mathematical Formulation 

2.1 Governing equations 

Mud flows are usually considered to be 
incompressible fluids (Li et al. 2018; Jing et al. 2018). 
Thus, the governing equations of mud flows are 
formulated as 

0u∇ ⋅ =                                  (1) 

1u
u u p g

t ρ
∂ + ⋅∇ = −∇ + ∇⋅ +
∂

τ
   

           (2) 

where u


, p  and τ  are the bulk velocity field, 
pressure field and shear stress tensor, respectively. 
ρ denotes the density of the mud fluid, g


 represents 

the acceleration due to gravity; ∇⋅  and ∇  are the 
divergence and gradient operators, respectively. 

2.2 Closure to stress tensor 

For Herschel-Bulkley fluids, the rheological 
characteristics of shear-thinning are considered and 
the rheology in the laminar regime is determined as 
follows: 

1= 2 || ||
|| ||

n n
y nτ η −+Dτ D D
D

                     (3) 

where τ  is the Cauchy stress tensor; 

( ( ) ) / 2Tu u= ∇ + ∇D  
is the strain rate tensor; 

2 2|| ||= [ ( )-( ) ] / 2tr trD D D  represents the square root 

of the second invariant of the strain rate tensor, where 

= 0tr u∇⋅ =D 
, and tr is the trace of the tensor; yτ is 

the yield stress; nη is the consistency of fluid with 

dimension [
1 2nML T− −

]; n is the flowing index, a 

measure of the shear-thinning magnitude that varies 
from zero to unity, where the upper limit of 1n =  

corresponds to a Bingham fluid; and 1η  represents 

the regular dynamic viscosity. The stress tensor of a 
Bingham fluid can thus be formulated as  

1= 2
|| ||yτ η+Dτ D
D

                             (4) 

Furthermore, the apparent viscosity eμ of a 
Herschel-Bulkley fluid can be defined as  

1= 2 || ||
|| ||

y n n
e

τ
μ μ −+ D

D
                         (5) 

Although no general critical criterion exists for 
the transition from the laminar regime to the 
turbulent regime, some attempts have been made to 
propose various criteria, such as turbulent models for 
Herschel-Bulkley fluids and Bingham fluids. A 
popular empirical criterion was proposed by Qian and 
Wan (1986) as follows: 

1 1 1 2100
BRe Re Reτ μ

= + <                   (6) 

where Reτ=8ρU2/τy represents the ratio of the inertial 
stress to the yield stress, Reμ=4ρUH/μ represents the 
ratio of the inertial stress to the viscous stress, and U 
and H are the characteristic velocity and 
characteristic depth, respectively. 

However, several field studies have shown that 
the Reynolds number of mud flows is reasonably 
small and that mud flows can be identified as laminar 
flows with the rheological behaviour of either 
Herschel-Bulkley or Bingham fluids (Wang et al. 2014; 
Li et al. 2018). 

3    Numerical Methods 

  The two-step projection method, which has been 
widely used in the literature (Chorin 1967; Lin et al. 
1998; Lagrée et al. 2011), was implemented to solve 
the numerical model (Eqs. (1)-(3)) with the finite 
difference method. The mesh system was staggered, 
and the vectors were defined at the edge of the grid, 
while the scalars were defined at the centre of the grid. 
An intermediate velocity 

*u


 was introduced during 
the two-step projection method to carry the correct 
vorticity: 

*

*[ (1 ) ]

N
N N

N N N
e e

u u
u u

t

gαμ α μ

− = − ⋅∇
Δ

+∇ ⋅ + − +D D

   


              (7) 

where tΔ  is the time step size, N is the current time 
step and α is a weight coefficient for the Crank-Nicson 
(C-N) scheme that is used to discretize the stress term. 
The C-N scheme becomes explicit when α=1 and 
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implicit when α=0. 
Then, to avoid the singularity of the apparent 

viscosity eμ  of Herschel-Bulkley fluids in Eq. (5), the 
simple regularization procedure proposed by Frigaard 
and Nouar (2005) is employed: 

1= 2
|| ||+ (|| ||+ )

yN n
e n

N N

τ μμ
ε ε −+

D D
              (8) 

where ε  is taken as 10-6 s-1 in the present study. 
Generally, two stability criteria for the time step 

size are necessary to solve Eq. (7) with numerical 
stability. One criterion is associated with the 
convective term, which can be characterized as the 
Courant number Cr: 

max max

min{ , }Cr x Cr y
t

u v

× Δ × ΔΔ ≤                   (9) 

For the C-N scheme with α ≥ 1/2, the time step 
size must satisfy the following criterion, 

2 2

min{ , }
6 6e e

x y
t

ρ ρ
μ μ
Δ ΔΔ ≤                    (10) 

Thus, a very small time step is needed due to the 
significantly large effective viscosity of mud flows. 
However, a smaller time step is accompanied by an 
increased computational cost. Therefore, the value of 
α was chosen to be α = 0 to reduce the computation 
time in the proposed model. Accordingly, Eq. (7) can 
be changed to be 

*
*( )

N
N N N

e

u u
u u g

t
μ− = − ⋅∇ + ∇ ⋅ +

Δ
D

    
    (11) 

To decouple the scalar equations for each velocity 
component, the second term on the right side of Eq. 
(11) can be approximately expanded as  

* *1( ) [ ( ( ) )]
2

N N N T
e e u uμ μ∇⋅ ≈ ∇⋅ ∇ + ∇D  

    (12) 

Based on the general tensorial identity, the 
following equality is valid: 

1 ( ( ) )
2

1 1= ( ) + ( )
2 2
1 1= ( ) + ( )
2 2
1= ( )
2

N N T
e

N N T N N T
e e

N N T N N
e e

N N T
e

u

u u

u u

u

μ

μ μ

μ μ

μ

∇ ⋅ ∇

∇ ⋅ ∇ ∇ ⋅ ∇

∇ ⋅ ∇ ∇ ∇ ⋅

∇ ⋅ ∇



 

 



      (13) 

where the incompressibility condition =0Nu∇ ⋅   is 
used in Eq. (13). When the yield stress vanishes, the 
effective viscosity is a constant and its gradient is zero. 

Substituting Eqs. (12) and (13) into Eq. (11), the 
final intermediate velocity can be solved as follows: 

*
*1 ( )

2
1 ( )
2

μ

μ

− − ∇ ⋅ ∇
Δ

= − ⋅∇ + ∇ ⋅ ∇ +

  

   

N
N
e

N N N N T
e

u u
u

t

u u u g

      (14) 

where the second term on the left-hand side of Eq. (14) 
can be discretized by the second-order central 
difference scheme. In addition, the first term on the 
right-hand side, namely, the velocity advection term, 
can be discretized by combining the upwind scheme 
with the central difference scheme (Lin et al. 1998). 
For each velocity component, the scalar components 
in Eq. (14) were solved separately with the 
biconjugate gradient stabilized (Bi-CGSTAB) method, 
which is a robust method for solving linear algebraic 
equations (Van der Vorst 1992). 

Then, the intermediate velocity field 
*u


 is 
projected onto the divergence-free space to obtain the 
final velocity 

+1Nu


, which satisfies the continuity 
equation, i.e., 

+1 0Nu∇⋅ =
. Thus, the second step of 

the projection method is 
+1 *

1
1

1N
N

N

u u
p

t ρ
+

+

− = − ∇
Δ

 
               (15) 

+1 =0Nu∇ ⋅                                (16) 

Combining Eq. (14) with Eq. (15) indicates that 
the velocity field 

+1Nu


 simultaneously satisfies the 
momentum equation and the continuity equation. 

According to Eq. (16), the divergence operator 
can be applied to Eq. (15), and the pressure Poisson 
equation can be obtained as follows: 

1 *
1

1 1( ) =0N
N

p u
tρ

+
+∇ ⋅ ∇ = ∇ ⋅

Δ


           (17) 

When the intermediate velocity 
*u


 is solved, Eq. 
(17) can be discretized as a set of linear algebraic 
equations based on the central difference method. 
Then, the pressure at the N+1-th time step can be 
obtained iteratively with the Bi-CGSTAB method (Van 
der Vorst 1992). Then, the final correct velocity at the 
N+1-th time step can be solved by Eq. (15) with the 
obtained pressure. 

The free surface of the mud flows considered in 
the present study was tracked by the volume of fluid 
(VOF) method (Hirt and Nichols 1981), which is 
expressed as 



J. Mt. Sci. (2022) 19(4):1001-1017    

 1005

=0F
u F

t

∂ + ⋅∇
∂


                          (18) 

where F represents the ratio of the volume occupied 
by the mud flow to the entire volume of the grid cell. 
The value of F ranges from 0 to 1; when F is equal to 1, 
the entire cell is filled by the mud flow and when F is 
equal to 0, the cell is empty. 

4    Laboratory Experiments  

4.1 Experimental setup 

To validate the numerical model for simulating 
mud flows with the Herschel-Bulkley rheology, a 
series of laboratory experiments involving dam break 
mud flows were conducted on the Wangjiang Campus, 
Sichuan University. The flume was 3.0 m long, 0.23 m 
wide and 0.25 m high (Fig. 1), and the mud material 
container was 0.48 m long, 0.23 m wide and 0.40 m 
high. The lateral sides and bottom of the flume were 
made of smooth and transparent acrylic plates to 
avoid the formation of broken fluids and to easily 
observe the motion of mud flows. As shown in Fig. 1, 
two XY-14SY pressure sensors were installed at the 
bottom of the flume bed at positions of x = 1.5 m 
(upstream section) and x = 2.5 m (downstream 
section) to record the bottom pressure. The sampling 
frequency and the accuracy of the pressure sensors 
were 50 Hz and 1 Pa/kPa, respectively. In addition, 
two ST-VL53L0X laser sensors were arranged at the 
same positions as the pressure sensors to capture the 
height of each mud flow because the mud is not 
transparent. The sampling frequency and the 
accuracy of the laser sensors were 20 Hz and 1 mm/1 
m, respectively. 

The particle matrices for the mud slurry used in 
the laboratory experiments were collected from 
Duiwoliang gully, which is a mud flow gully located in 
Pingwu County, Mianyang city, Sichuan Province, on 
the right bank upstream of the Fujiang River. The 
maximum particle size of the mud slurry was 2 mm 
after sieving, and the full particle size distribution of 
the mud slurry with a median particle size of 0.1 mm 
is shown in Fig. 2. The rheology of the slurry samples 
with a density of ρ=1600 kg/m3 was measured by an 
Anton Paar rotational rheometer. The rheological 
measurements are plotted in Fig. 3 as red circles. 
Then, the measured points were fitted with the 
Herschel-Bulkley model. The fitting line 

approximately passed through all the measured 
points, suggesting that the yield stress τy, flow index n 
and consistency coefficient ηn of the fluid for the 
collected mud slurry were 5.01 Pa, 0.37 and 2.04 
Pa·s0.37, respectively. 

The slope of a laboratory flume typically ranges 
from 0° to 15° (Cui et al. 2005; Chen et al. 2018). 
Thus, the flume slope ( ) was set to be 0°, 5° and 10° 
to simulate different cases during the experiments, as 
illustrated in Fig. 1. The mud materials with a density 
of ρ=1600 kg/m3 were initially prepared and placed in 

Fig. 1 Schematic drawing of the experimental flume. 
 

Fig. 2 Grading of particles in the mud materials 
 

 
Fig. 3 Rheological measurements of the mud samples 
used in the flume experiment fitted by the Herschel-
Bulkley model. 
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the container. The volumes of mud materials with 
flume slopes of 0°, 5° and 10° were 0.0386 m3, 
0.0363 m3 and 0.0340 m3, respectively, when the 
length of the mud material container was set to be 
0.48 m. 

4.2 Results 

During the experiments, the sluice gate was 
opened, and the mud materials behind the sluice gate 
flowed along the flume (Fig. 4(a)). The envelope of the 
mud residuum on both lateral sides of the channel is 
usually determined as the maximum height of mud 
flows in the field (Cui et al. 2005). Likewise, the mud 

residuum was chosen as the maximum height on the 
lateral sides of the flume in the laboratory 
experiments. The envelopes of mud residuum for all 
the experiments were measured by a steel ruler after 
the mud flows ceased (Fig. 4(b)).  

For slopes inclined at 0°, 5° and 10°, the pressure 
time histories at the bottom of the flume and the 
heights of the mud flows recorded by the two pressure 
sensors and two laser sensors at the positions x =1.5 
m and 2.5 m are separately shown as red circles in Fig. 
5, Fig. 6 and Fig. 7. The experimental data of the 
envelopes of the mud residuum are shown in Fig. 8 
for cases with three different slopes. 

Based on the experimental data, the maximum 
heights Hmax and maximum bottom pressures Pbmax 
measured at the positions x = 1.5 m and x = 2.5 m are 
summarized in Table 1. The results reveal that as the 
driving stress increased (i.e., the stress acting on the 
mud flows) due to a larger angle of inclination, the 
smaller the values for both Hmax and Pbmax (Fig. 9(a)). 
In addition, the time at which the mud flows front 
arrived at x = 1.5 m, denoted T1.5, decreased, and Um, 
which represents the mean velocity of the front 
propagating from x = 1.5 m to x = 2.5 m increased 
when the flume slope increased from 0° to 10° due to 
the corresponding increase in the driving stress (Fig. 
9(b)). Unlike pure water flows, mud flows can stop on 
an inclined slope when the driving stress is less than 
the resistance. When the slope was inclined more 
than 0°, the stop heights Hstop of the mud flows on the 
flume bed were constant along the flow direction and 
decreased as the inclination increased. However, for 
the 0° slope cases, Hstop was not constant and 
decreased along the flow direction (Fig. 9(c)).  

Fig. 4 Test procedure: (a) mud material flows along the 
flume; (b) envelope of the mud residuum. 
 

   

    
Fig. 5 Comparisons of the time histories of the mud flow height and bottom pressure between the numerical results 
(black solid line) and the flume experiment results (red circles) when the slope of the flume was inclined at 0°: (a) 
height at x = 1.5 m, (b) height at x = 2.5 m, (c) pressure at x = 1.5 m, and (d) pressure at x = 2.5 m. 
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5    Numerical Validations 

5.1 Comparisons with the steady-state solution 
for uniform flows 

The steady-state solution for uniform flows is 
usually used to validate the numerical model. 

However, the flume slope for a steady and uniform 
mud flow with a free-surface should not be zero, as 
the gravity component is needed to balance the 
resistance of mud flows and to maintain the uniform 
conditions. As proposed by Huang et al. (1998), the 
theoretical velocity profiles of Herschel-Bulkley fluids 
under steady and uniform conditions assuming 

 
Fig. 6 Comparisons of the time histories of the mud flow height and bottom pressure between the numerical results 
(black solid line) and the flume experiment results (red circles) when the slope of the flume was inclined at 5°: (a) 
height at x = 1.5 m, (b) height at x = 2.5 m, (c) pressure at x = 1.5 m, and (d) pressure at x = 2.5 m. 

 

 
Fig. 7 Comparisons of the time histories of the mud flow height and bottom pressure between the numerical results 
(black solid line) and the flume experiment results (red circles) when the slope of the flume was inclined at 10°: (a) 
height at x = 1.5 m, (b) height at x = 2.5 m, (c) pressure at x = 1.5 m, and (d) pressure at x = 2.5 m. 

 
Table 1 Dynamic parameters of the mud flows measured during the experiments on slopes inclined at 0°, 5° and 10° 

Slope(o) Hmax (1.5) (m) Hmax (2.5)(m) Pbmax (1.5) (m) Pbmax (2.5)(m) T1.5(s) Um (m/s) Hstop(m) 

0 0.058 0.040 928.0 631.8 0.25 2.85 Hstop(1.5) = 0.026;  
Hstop(2.5) = 0.019 

5 0.054 0.037 844.6 581.5 0.22 3.04 0.007 
10 0.052 0.033 731.7 538.1 0.20 3.63 0.005 

Note: Hmax(x), Pbmax(x) and Hstop(x) are the maximum height, maximum bottom pressure and stop height, 
respectively, at position x, where x = 1.5 m and 2.5 m; T1.5 is the time at which the mud flow arrives at x = 1.5 m; and 
Um is the mean front velocity from x = 1.5 m to x = 2.5 m. 
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hydrostatic pressure can be formulated as 
1

1/ ( 1)/

1
1/

sin( ) [1 (1 ) ], , 0
1

sin( ) , ,
1

n
n n n

n

n
n

n

n gH z
if z H

n H
u

n gH
if H z h

n

ρ θ
η

ρ θ
η

+
+

+


− − ≤ ≤ += 

 ≤ ≤ +

(19) 

where u is the velocity in the x-direction, h is the flow 
height, ρ is the density of the flow, H is the thickness 
of the shear layer (Fig. 10), θ is the slope of the bed, 
and the physical meanings of ηn and n are the same as 
in Eq. (3). 

The value of n should not be zero; otherwise the 
shear layer for Herschel-Bulkley fluids would 
disappear, as sketched in Fig. 10. The thickness of 
plug layer Hp can be determined as 

sin
y

pH h H
g

τ
ρ θ

= − =                     (20) 

According to Eq. (20), Hp depends only on the 
fluid density and yield stress when the inclination 
angle θ is fixed.  

In this validation, a steady and uniform flow of 
Herschel-Bulkley fluids was considered with a flow 
height of h =0.2 m, an inclination angle of 1°, a 
flowing index of n = 0.5, a fluid density of 1000 kg/m3, 
and a yield stress of 100 Pa, a consistency of 1 Pa·s0.5. 
Thus, the plug layer thickness Hp was calculated to be 
0.117 m based on Eq. (20), and the shear layer 
thickness H was 0.083 m. The computational domain 
was x=0.5 m by z=0.25 m with grid sizes of Δx = 
0.002 m and Δz = 0.001 m. The time-step was fixed at 

0.0001 s to ensure numerical stability. 
The results of the comparison between the 

simulated velocity profiles and the theoretical velocity 
profiles are shown in Fig. 11, illustrating that the 
present model can accurately simulate the velocity 
profiles for both the plug layer and the shear layer. 

5.2 Comparisons with experiments of mud 
dam break flows 

The initial dimensions and rheological 
parameters for the numerical model were set to be the 
same as those in the laboratory experiments (Fig. 1 

 
Fig. 8 Comparison of the envelope of the mud 
residuum from the hopper to the outlet along the flume 
between the numerical results and experimental data at 
flume inclination angles of (a) 0°, (b) 5°, and (c) 10°. 

 
Fig. 9 Tendencies of the dynamic parameters of the 
mud flows as the inclination angle increases. 
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and Fig. 3) for the numerical validation. Thus, the 
yield stress τy, flow index n and consistency 
coefficient ηn of the dam break mud flows were 5.01 
Pa, 0.37 and 2.04 Pa·s0.37, respectively. The 
computational domain for the numerical cases was x 
= 3 m by z=0.6 m and the grid sizes were taken as Δx 
= 0.01 m and Δz = 0.003 m. The time-step was fixed 
at Δt = 0.001 s to ensure the numerical stability. The 
boundary conditions of the downstream outlet were 
set as the outflow boundary conditions, i.e., 

/ 0u n∂ ∂ = 
, where n


 denotes the unit outer normal 

vector at the downstream boundary. No-slip 
boundary conditions were implemented at the bottom. 

The results of comparisons among the simulated 
time histories of the dam break mud flow height and 
bottom pressure at the upstream (x =1.5 m) and 
downstream (x = 2.5 m) positions with the 
corresponding measurements in the cases with slopes 
of 0°, 5° and 10° are shown in Fig. 5, Fig. 6 and Fig. 7, 
respectively. 

Fig. 5 shows that the movement of the dam break 
mud flows lasted approximately 3.2 s in the 
laboratory experiments and the numerical results 
agree well with the experimental data during the first 

3 s for the case with a 0° flume slope. After 3 s, 
however, the calculated time histories of the mud 
flows height and bottom pressure significantly deviate 
from the measured data, while the simulated results 
remain constant, and the experimental data show a 
decreasing tendency. The reason is that the dam 
break mud flows stopped after 3 s in the numerical 
model, whereas they did not fully stop in the 
laboratory experiments. The mud materials used in 
the laboratory experiments consisted of particles with 
different grain sizes and water. Thus, the water in 
mud flows permeated out of the slurry after the dam 
break mud flow stopped due to the settlement of 
particles, which would result in gradual reductions in 
both the height and the bottom pressure. 
Nevertheless, for the cases with 5° and 10°, the 
simulated heights and bottom pressures agree well 
with the measured results, even after 3 s, as shown in 
Fig. 6 and Fig. 7.  

Likewise, the simulated envelopes of the mud 
residuum were compared with the experimental 
measurements for the three cases with different flume 
slopes ( = 0°, 5° and 10°), as shown in Fig. 8. The 
simulated results show good agreement with the 
experimental data starting from x = 0.5 m, where the 
numerical model suggests that a maximum mud 
residuum height is observed at nearly x = 0.48 m. 

Overall, the simulated results of the numerical 
model developed herein were consistent with the 
laboratory measurements for dam break flows 
consisting of a Herschel-Bulkley slurry, verifying that 
this numerical model is applicable for simulating 
Herschel-Bulkley fluids. 

5.3 Comparisons with other numerical results  

Li et al. (2018) simulated dam break flows on a 
horizontal plane with Herschel-Bulkley rheology 
through OpenFOAM. The initial height of the dam 
break flows was H=0.6 m, and the initial length was 
L=0.9 m, as sketched in Fig. 12. In their numerical 
simulation, the density of the fluid was 1000 kg/m3, 
and for the Hershel-Bulkley rheology, the yield stress, 
consistency and flow index were 30.0 Pa, 4.279 
Pa·s0.479 and 0.479, respectively. The model developed 
in the present study was further validated with the 
case simulated by Li et al. (2018). The computational 
domain for the proposed model was x = 4 m by z = 
0.8 m with the grid sizes of Δx = 0.01 m and Δz = 
0.004 m. The time-step was fixed at 0.001 s to ensure 

Fig. 10 Schematic diagram of the velocity profile of a 
Herschel-Bulkley fluid under a steady and uniform flow 
regime. 
 

 
Fig. 11 Comparison of the flow velocity profiles 
between the simulated results and the analytical 
solution under a steady and uniform flow regime. 
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numerical stability.  
Fig. 13 shows a comparison of the snapshots of 

the free surface profiles obtained by the proposed 
numerical model and by Li et al.’s (2018) model at 5 
different times (t=0.500 s, 0.625 s, 0.750 s, 0.825 s 
and 1.000 s). In the proposed model, the no-slip 
boundary condition is employed, and then the fluid 
can adhere to the wall due to its high apparent 
viscosity of fluid. Overall, good agreement is observed 
for all 5 different times at every position, which 
suggests that the present model could well capture the 
strong variation in the free surface for Herschel-
Bulkley fluids. However, Li et al. (2018) did not 

analyze the vertical profiles of velocity and pressure 
due to a lack of measured profiles to validate them. 
Fortunately, the pressure, envelope of the mud 
residuum, velocity and variations in the free surface of 
the proposed model have been fully validated. 
Therefore, the proposed model is considered to be 
powerful tool for analysing the vertical profiles of 
velocity and pressure.  

6    Dynamic Characteristics of Mud Flows 
in the Vertical Direction  

6.1 Vertical velocity profiles of mud flows 

The vertical profiles of velocity are crucial for 
understanding the dynamic properties of mud flows. 
However, the vertical profiles cannot be obtained in 
the traditional depth-averaged models because they 
remove the vertical information. The proposed model 
is a depth-resolved model and can obtain unsteady-
state vertical profiles with nonuniform flows. In this 
study, the case of Li et al. (2018) is reproduced to 
illustrate the vertical profiles of mud flows. The 
computation domain, grid sizes, fixed time step and 
all fluid characteristics are the same as those in Li et 
al. (2018). The distributions of the pressure and 
velocity fields of dam break mud flows simulated by 
the proposed model are plotted at different instants in 
Fig. 14.  

However, the vertical velocity profiles of real mud 
flows are highly sophisticated and are associated with 
an unsteady and nonuniform flow regime, for which it 
is almost impossible to obtain analytical solutions due 
to the strong nonlinearity of such flows. Numerical 
methods are good alternatives for determining the 
velocity profiles of mud flows while idealizing the 
properties of dam break flows to generate the 
unsteady and nonuniform flow regime of mud flows. 
To this end, in this study, dam break mud flows are 
numerically simulated. The vertical longitudinal 
velocity profiles at six different x locations at t = 1.5 s 
are plotted as solid lines in Fig. 15. The longitudinal 
velocity increases with an increase in the distance that 
the dam break flows have travelled. In addition, the 
plug layer of the mud dam break flows is present at x 
= 3.0 m, where the shear layer is absent. 

It is worth noting that the formation mechanism 
of the plug layer on the horizontal plane is different 
from that on an inclined slope. The longitudinal 
component of gravity serves to balance the fluid 

Fig. 12 Initial configuration of the dam break of a 
Herschel-Bulkley fluid on a horizontal plane. 
 

Fig. 13 Comparisons of the instantaneous free surface 
profiles from the proposed numerical model (solid 
black line) and from Li et al. (2018) (red circles): at (a) t 
= 0.500 s, (b) t = 0.625 s, (c) t = 0.750 s, (d) t = 0.825 s, 
and (e) t =1.000 s. 
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resistance on an inclined slope when steady and 
uniform flow conditions were maintained (Huang et 
al. 1998; Mei et al. 2001). In contrast, when the 
inclination angle is 0°, the steady and uniform flow 
condition cannot be satisfied in an open channel. As 
shown in Eq. (19), the velocity tends towards zero 
when the inclination angle θ equals 0°. On a 
horizontal surface, the longitudinal component of 
gravity vanishes, and the longitudinal component of 
the viscous stress can be balanced only by the 
longitudinal pressure gradient. However, a 
longitudinal pressure gradient is absent under steady 
and uniform flow conditions. Thus, the dam breaking 
mud flows gradually slow down and ultimately cease 
due to the presence of the longitudinal component of 
viscous stress.  

 Furthermore, based on the numerical results of 
the proposed model, the bottom shear stresses, flow 
depth and depth-averaged velocity at the position x = 
0.5 m, x = 1.0 m, x = 1.5 m, x = 2.0 m, x = 2.5 m, x = 
3.0 m with t = 1.5 s are listed in Table 2.  

  For the uniform flow, the velocity profile can be 
obtained from the Eq. (19) and can be reformulated as  

( 1)/[1 (1 ) ], 0

, ,

n n
p

p

z
U if z H

Hu
U if H z h

+ − − ≤ ≤= 
 ≤ ≤

   (21) 

where H is the height of the shear layer; Up is the 
surface velocity, which can be formulated as 

1
1/sin( )

1

n
n

p
n

n gH
U

n

ρ θ
η

+

=
+

               (22) 

 In this case, the bottom shear stress of Herschel-
Bulkley fluids can be described as  

0( ) |n
b y n z

u

z
τ τ η =

∂= +
∂

                   (23) 

 Substituting Eq. (21) into Eq. (23), the bottom 
shear stress can be reformulated as  

1[ ]p n
b y n

Un

n H
τ τ η += +                 (24) 

  When the bottom shear stress with the uniform 
flow is the same as the one obtained by the present 
simulation, and the same rheological parameters are 
employed, the Up/H can be calculated as  

1/( )
1

p b y n

n

U n

H n

τ τ
η
−

=
+

                       (25) 

  Furthermore, the depth-averaged velocity  of 
uniform flow can be calculated as 

0 0

1 1 1

(1 )
2 1

= = +

= −
+

  
h H h

H

p

U udz udz udz
h h h

n H
U

n h

      (26) 

 By combing Eqs. (25) and (26), Up and H under 
the conditions of steady uniform flow with the same 
simulated bottom shear stress, flow depth and depth-
averaged velocity can be calculated and listed in Table 
2, where the flowing index n is 0.479.  

  Substituting Up and H into the Eq. (21), the 
velocity profiles under the steady uniform flow can be 

Table 2 Values of the bottom shear stresses, flow 
depth, depth-averaged velocity, Up and H under the 
steady uniform flow at different positions with t = 1.5 s 

Position 
x (m) 

τb 

(Pa) 
H
 (m) 

 

(m/s) 
Up 

(m/s) 
H 

(mm)
0.5 97.9 0.164 0.240 0.241 2.318
1.0 119.0 0.154 0.534 0.537 2.935
1.5 134.0 0.140 0.798 0.802 3.171
2.0 145.2 0.130 1.026 1.032 3.295
2.5 153.3 0.124 1.173 1.181 3.270
3.0 158.7 0.120 1.207 1.215 3.076

Fig. 14 Snapshots of the distributions of the pressure 
and velocity fields of a dam breaking Herschel-Bulkley 
fluid on a horizontal plane at different moments, where 
the red line is the free surface, the white arrows indicate 
the velocity field, and the legend represents the 
pressure magnitude. 
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plotted as dashed lines, as shown in Fig. 15. 
Comparing the simulated vertical profiles with the 
corresponding profiles obtained by employing steady 
uniform flow distribution under the conditions of the 
same actual bottom shear stress, flow depth and 
depth-averaged velocity show that the shear layers of 
steady uniform flows are less than those of simulated 
vertical profile. Furthermore, when the flows are fully 
developed, the velocity profiles of dam break mud 
flows are close to those of steady uniform flows.  

6.2 Impact pressure caused by mud flows 

The impact pressure, which is a crucial 
parameter for mitigating mud flows and developing 
appropriate countermeasures, is of great concern for 
studying the interaction between mud flows and 
obstacles (Tang et al. 2018). The dynamic responses 
of structures impacted by mud flows are usually 
associated with the impact pressure distribution (Cui 
et al. 2015; Liu et al. 2019). However, the impact 
pressures of mud flows are usually determined by the 
depth-averaged velocity because the detailed 
distribution of the impact pressure is quite difficult to 
be obtained (Liu et al. 2019). Armanini et al. (2011) 
argued that the impact pressures of mud flows are 
composed of hydrostatic pressure and dynamic 
pressure, where the former is related to the depth, 
while the latter depends on the velocity. Because the 
velocity distribution varies in both time and space, the 
dynamic pressure should also show spatiotemporal 
variations. 

For convenience, a vertical structure 
with a height of 0.3 m and a thickness of 
0.1 m located at x = 2.5 m was added into 
Li et al.’s (2018) case to numerically 
study the interaction of mud dam break 
flows with a vertical structure on a 
horizontal plane. The computational 
domain, grid sizes, fixed time step and all 
fluid characteristics are the same as 
those described by Li et al. (2018). 

 As shown in Fig. 16, the distribution 
of the impact pressure on the upstream 
face of the structure varies with both 
time and height. The results show that 
the mud flows firstly impact the structure 
at t = 0.56 s, and the maximum impact 
pressure emerges at t = 0.58 s, when the 
height of mud flow is 0.72 m.  

Furthermore, Fig. 16 demonstrates that the 
vertical position (z = 0.075 m) of maximum impact 
pressure (15 kPa when t = 0.58 s) is at neither the 
bottom nor the surface of the mud flows. Similar 
findings are observed in the experiments conducted 
by Cui et al. (2015).  

As shown in Fig. 17, the impact pressure firstly 
increases when the mud flows impact the structure 
(Fig. 17(a)). Then the mud flows raise along the 
surface of the structure and the free surface breaks 
(Fig. 17(b)), after which the raising mud flows collapse 
into the subsequent fluid and propagated downstream 
(as shown in Fig. 17(c)), and there is an instantaneous 
increase in the pressure of the mud flow at t=1.15 s (as 
shown in Fig. 16). Finally, as shown in Fig. 17(d), 
when the mud flows cease, the pressure on the 

Fig. 16 Impact pressure of dam break mud flows at x = 
2.45 m downstream from the container as a function of 
time and the height of the flow. 

Fig. 15 Profiles of the simulated longitudinal velocity of a dam break 
mud flow and the steady-state velocity with uniform flow at different 
positions with t = 1.5 s. 
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structure became hydrostatic, and the magnitude of 
the pressure on the bottom of the flume was 2.23 kPa, 
where the height of the mud flow surface is 0.23 m. 

Following Armanini et al. (2011), the total 
pressure p of the mud flow can be decomposed into 
hydrostatic contribution ph, which is calculated as 
ph=ρgh (where h is the height of mud flows) and 
dynamic contribution pd. The dynamic pressure is 
obtained by subtracting the hydrostatic contribution 

from the total pressure (pd = p-ph). The vertical 
profiles of the velocity, total pressure and dynamic 
pressure and hydrostatic pressure at t = 0.58 s are 
illustrated in Fig. 18. The velocity, total pressure and 
dynamic pressure firstly increase with increasing 
depth, and reach their peaks at z = 0.075 m, then 
sharply decrease to zero when approaching to the free 
surface. The maximum total pressure, maximum 
dynamic pressure and maximum velocity are 15.00 
kPa, 14.71 kPa and 3.66 m/s, respectively.  

As suggested by Hu et al. (2011), the relationship 
between dynamic pressure pd and velocity can be 
described as,  

2
dp K uρ=                              (27) 

in which K is a dimensionless coefficient. In this case, 
K was equal to 1.10 (not unity) according to the 
maximum dynamic pressure. The dimensionless 
coefficient may not be equal to unity if the mud flows 
that impact the structure are unsteady. 

In addition, determining the location of the 
maximum dynamic pressure on a structure being 
impacted by a mud flow is extremely important, as 
this knowledge is indispensable for designing 
countermeasures and infrastructures (Liu et al. 2019). 
However, not all of the factors affecting the location of 
the maximum dynamic pressure are known. Thus, the 
effects of the yield stress and consistency coefficient, 

 
Fig. 17 Distributions of the impact pressure of the Herschel-Bulkley fluid impacting the structure at different 
instants: (a) t = 0.58 s, (b) t = 0.80 s, (c) t = 1.15 s, and (d) t = 5.00 s (The red line is the free liquid level, and the 
legend represents the pressure magnitude). 

 
Fig. 18 Profiles of the mud flow pressure and velocity 
with depth at t = 0.58 s. The solid black line with 
squares represents the total pressure, the dotted line 
with circles represents the dynamic pressure, the dotted 
line represents the hydrostatic pressure, and the solid 
red line with squares represents the mud flow velocity. 
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which are crucial parameters for the rheological 
characteristics of mud flows, on the location of 
maximum dynamic pressure are numerically studied. 
The rheological parameters used for the numerical 
tests and some simulated results (maximum dynamic 
pressure Pdmax, the normalized location Zmax, mud flow 
front velocity and dimensionless coefficient K) are 
listed in Table 3. The normalized location Zmax, which 
is illustrated in Fig. 19, can be calculated by the ratio 
of the location of the maximum dynamic pressure zmax 
to the instantaneous surface height h:  

= max
max

z
Z

h
                          (28) 

The influences of the yield stress and consistency 
coefficient on the maximum dynamic pressure and 
front velocity are shown in Fig. 20(a) and Fig. 21(a), 
respectively. It can be easily seen that the maximum 
dynamic pressure and front velocity monotonically 
decrease with the increase of yield stress and 
consistency coefficient. This occurred because the 
effective viscosity rises with increases in the yield 
stress and consistency coefficient, which would lead 
to an increase in the dynamic resistance of the 
mudflow and consequently reduce both the front 
velocity and the maximum dynamic pressure. 
Additionally, the effects of the yield stress and 
consistency coefficient on the location of the 
maximum dynamic pressure and the dimensionless 
coefficient K are shown in Fig. 20(b) and Fig. 21(b), 
respectively. The location of the maximum dynamic 
pressures increases but the dimensionless coefficient 
decreases with rises in the yield stress and consistency 
coefficient.  

Finally, the impact forces Fimpact exerted by the 
flow with the different rheological parameter listed in 
Table 3 on the entire wall can be calculated as  

0

wH

impactF pdz=                          (29) 

where Hw is the height of the structure and is set as 
0.3 m in this study. The time histories of the impact 
forces in the first 5 s for different consistencies and 
yield stresses of fluids are shown in Fig. 22. It can be 
seen from Fig. 22 that there are at least two peaks in 

Table 3 Values of the rheological parameters used in 
the present simulations, the magnitude of the 
maximum dynamic pressure Pdmax, the normalized 
location Zmax with the maximum dynamic pressure, the 
mud flow front velocity, and the dimensionless 
coefficient K as formulated in Eq. (27) 

Case 
Yield 
stress 
(Pa) 

Consistency 
coefficient  
(Pa·s0.5) 

Pdmax 

(kPa) Zmax 
Front 
velocity
(m/s) 

K 

No.1 0.0 

1.0 

32.30 0.20 3.90 2.124
No.2 1.0 17.90 0.30 3.80 1.239
No.3 10.0 14.80 0.43 3.70 1.081
No.4 50.0 10.90 0.47 3.21 1.064
No.5 100.0 8.33 0.77 2.80 1.063
No.6 

10 

0.1 19.50 0.40 3.80 1.350
No.7 1.0 14.80 0.43 3.70 1.081
No.8 10.0 13.19 0.47 3.49 1.077
No.9 20.0 8.87 0.56 2.89 1.055
No.10 30.0 7.07 0.83 2.59 1.046

Fig. 19 Sketch of mud flows impacting a structure, 
where zmax denotes the location with the maximum 
dynamic pressure and h is the instantaneous height of 
the mud flows.  

 

Fig. 20 Change trends of the magnitude, normalized 
location of maximum dynamic pressure, front velocity 
of the mud flows and dimensionless coefficient K with 
the yield stress. 
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all of the simulated results. The first peak 
monotonically decreases with the increase of yield 
stress and consistency coefficient. The second peak is 
caused by an instantaneous high pressure when the 
raising fluid collapses into the subsequent fluid, 
which phenomenon is consistent with the previous 
discussion. The third peak occurs only at the low 
apparent viscosity, where the fluids can flow back and 
forth from the structure to left boundary of the 
computational domain. Furthermore, Fig. 22 shows 
that the fluids for the high apparent viscosity can 
rapidly cease after impacting the structure and at the 
final time the force exerting on the structure increases 
with the increase of apparent viscosity. This is caused 
by two reasons. Firstly, part of fluids can overtop the 
structure, which leads to a reduction in the volume of 
fluids exerting on the structure. And the lower the 
apparent viscosity, the more the volume of the 
overtopping fluids. Secondly, as the apparent viscosity 
increases, the mobility of the fluid decreases. For the 
high apparent viscosity, the surface of fluids is 

inclined with respect to the horizontal plane when the 
fluids cease at the upstream of structure, as shown in 
Fig. 23. As the apparent viscosity increases, the 
inclination of the surface of fluids increases.  

7    Conclusion 

In this study, a 2D depth-resolved numerical 
model with Herschel-Bulkley rheology is developed to 
study unsteady and nonuniform mud flows by solving 
the Navier–Stokes equations. Additionally, a series of 
laboratory experiments involving dam break mud 
flows are conducted. The measured results show that 

Fig. 21 Change trends of the magnitude, normalized 
location of maximum dynamic pressure, front velocity 
of the mud flows and dimensionless coefficient K with 
the consistency coefficient. 

Fig. 22 Time histories of impact forces in the first 5 s 
for different consistencies and yield stresses of fluids. 
(a) A consistency of 1 Pa·s0.5 and different yield 
stresses; (b) A yield stress of 10 Pa and different 
consistencies. 
 

 
Fig. 23 Inclined surface of fluids with respect to the 
horizontal plane when the fluids ceased upstream of 
the structure for a yield stress 100 Pa and a consistency 
1 Pa·s0.5. 
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both the maximum heights and the maximum bottom 
pressures decrease with increasing inclination of the 
slope. The numerical model is fully validated in three 
ways: by the steady-state solution for uniform 
Herschel-Bulkley flows on an inclined plane, by the 
experimental results and by a comparison with other 
numerical results for dam break flows of Herschel-
Bulkley fluids.  

The vertical profiles of velocity and pressure are 
analysed and discussed with the validated numerical 
model. The simulated results show that the plug layer 
is formed for mud dam break flows, and the dynamic 
pressure dominates the whole pressure field. In 
addition, the location of the maximum impact 
pressure on the structure is at neither the bottom nor 
the surface of the mud flow. Moreover, further 
numerical tests show that the normalized location of 

the maximum dynamic pressure will raise with 
increases of the yield stress and the consistency 
coefficient. The maximum dynamic pressure, the 
front velocity and dimensionless coefficient K are also 
affected by those two rheological parameters and 
monotonically decrease as the values of those two 
parameters increase. 
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