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Abstract: The presence of random fissures has a 
great impact on rock slope stability. To investigate the 
failure modes and stability of rock slopes containing 
different types of pre-existing fissures, the fracture 
mark ξ was introduced to improve the kernel function 
in the traditional smoothed particle dynamics (SPH) 
method, and a novel numerical method, the improved 
kernel of smoothed particle hydrodynamics (IKSPH), 
was proposed to realise the microscopic damage 
characteristics of particles. The ‘random fissure 
generating method’ has been proposed for random 
fissure generation, and the gravity increase method 
has been embedded into the IKSPH program, thereby 
realising the stability analysis of rock slopes 
considering crack propagation processes. A typical 
steep rock slope is taken as a numerical simulation 
example considering the random distributions of pre-
existing fissures, and its failure modes as well as the 

stability under different conditions were simulated. 
The results show that the failure processes of the rock 
slope contain propagations of microcracks and then 
macrocrack penetrations. When the fissure length is 
short, shallow collapse failure modes can be observed; 
when the fissure length is long, the deep layer slide 
occurs, and the slope stability decreases with an 
increase in fissure length. The micro and macrocrack 
surfaces are basically consistent with pre-existing 
fissure angles, and the safety factor is the least at a 
fissure angle of 30°. The greater the fissure density, 
the greater the number of macrocracks, and the 
stability decreases with an increase in the number of 
pre-existing fissures. The research results can provide 
some references for disaster protection and 
understanding the failure laws of rock slopes. 
Meanwhile, combining the geological survey results 
with the numerical simulations and developing a 
high-performance IKSPH program will be a future 
research direction. 
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1    Introduction  

As the weak parts of rock masses, cracks and 
joints influence the strength and deformation 
characteristics of rock structures, which are regarded 
as key factors contributing to rock failure (Liu et al. 
2020; Taheri et al. 2020). There are many complex 
joints and fissures on rock slopes. Under complex 
boundary conditions, stress concentrates at the crack 
tips, resulting in the extension of pre-existing fissures, 
and subsequent overall slope instability (Tao et al. 
2020; Yu et al. 2019; Zhang et al. 2020; Zhang et al. 
2020; Zhang et al. 2020). Many mining and slope 
engineering failures are caused by pre-existing fissure 
propagation and rock bridge connection, such as the 
Gong Jia Fang landslide in the Three Gorges 
Reservoir (Tan et al. 2015), and the collapse of the 
Honglianchi Iron Mine in Hefeng, Hubei Province 
(Wang et al. 2016). Therefore, understanding the 
mechanisms and laws of fissured rock masses will be 
of great significance for rock slope disaster prevention. 

Previous progress on the failure modes of 
fissured rock slopes has mainly concentrated on 
experimental investigations, theoretical studies, and 
numerical simulations. Experimental investigations 
can directly observe the real interaction processes 
between joints and fissures in rock slopes to infer the 
physical and mechanical properties of fractured rock 
masses. For example, Fan et al. (2015) conducted a 
large-scale shaking table test of rock slopes with 
muddy joints, and the dynamic characteristics were 
obtained, and Guo et al. (2016) conducted an 
experimental study on the seismic dynamic response 
laws of rock slopes containing anchor bolts. 
Nevertheless, experimental investigations have the 
disadvantages of long time periods and high costs; 
moreover, the test results are discrete, repeatability is 
difficult, and the existing experimental results are 
limited to small scales (Wong et al. 2001). Meanwhile, 
the internal mechanisms of the joint and fissure 
interactions cannot be directly exhibited. Based on 
the experimental results, many scholars have tried to 
express the theory behind overlapping behaviours of 
multi-fractured rock masses, for example, Horri et al. 
(1985) deduced the stress intensity factors of parallel 

double cracks under axial tension using the Kachanov 
method, and the interaction laws of crack tips at 
different horizontal and vertical distances were 
studied. Zhu et al. (2002) studied the interactions 
between two random plane cracks by using the 
Schwaarz substitution method, and Chen et al. (2012) 
derived solutions of multiple cracks in an infinite 
plate using the Fredholm integral equations. However, 
theoretical models can only solve some problems with 
relatively simple boundary conditions, and complex 
fracture networks will lead to extremely complex 
mathematical expressions. 

As the ‘third method of scientific research’ (Tang 
et al. 2006), numerical simulation can not only verify 
the rationality of experiments and theories, but also 
clarify the theoretical framework of joint and fissure 
interactions under different loading conditions. 
Therefore, many numerical methods have been 
developed and applied to the analysis of crack 
propagation and rock slope stability. The finite 
element method (FEM) is one of the earliest methods 
for analysing rock slope stability. However, for those 
problems containing complex pre-existing fissures, 
FEM needs to re-mesh the crack tip area at every time 
step, which leads to unexpected calculation 
terminations (Branco et al. 2015), making the 
applications inconvenient. As a mesh-less numerical 
method, the discrete element method (DEM) can 
realise the interactions between different particles by 
establishing various contact models to reflect 
macroscopic fracture laws (Zhang et al. 2012). 
Therefore, DEM can model the processes of fracture 
overlap and block slips of rock slopes. However, DEM 
has many mesoscopic parameters, which have no 
physical meaning, and it is difficult to calibrate the 
complex parameters before numerical simulation, 
which cannot be applied directly to actual engineering 
(Haeri et al. 2017). Recently, many new numerical 
methods have been developed to analyse the stability 
of jointed rock slopes, such as the numerical manifold 
method (NMM) (Ohnishi et al. 2014; Miki et al. 2010), 
PeriDynamics (PD) (Shou et al. 2016; Zhou et al. 
2016), the phase-field method (Nguyen et al. 2020; Li 
et al. 2020), and the material point method (MPM) 
(Müller et al. 2019), all of which have unique 
advantages in dealing with problems of numerous 
discontinuities. However, these methods have their 
own limitations. 

In this study, a novel numerical method called 
the improved kernel of smoothed particle 
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hydrodynamics (IKSPH) is proposed. By improving 
the kernel function in the traditional smoothed 
particle dynamics (SPH) method, the crack 
propagation processes of rock slopes can be realised, 
and compared with previous numerical treatments, 
the stress components of the base particles do not 
need to be mapped to the stress bond, which reduces 
the programming load. In view of the lack of analysis 
on the mechanical characteristics of random fissures 
(Li et al. 2020), the random fissure generation 
method (RFGM), which is suitable for IKSPH, is 
proposed. Meanwhile, the gravity increase method is 
embedded into the IKSPH program, which can realise 
the crack propagation processes of rock slopes under 
gravity loading. One typical steep rock slope in 
western China is taken as a numerical example, and 
the crack propagation processes as well as the slope 
failure modes are simulated. The pre-existing fissure 
density, dip angles, and lengths are also considered. 
The research results can provide some references for 
understanding the failure mechanisms of steep slopes 
and the prevention of slope disasters. 

2    Theory of IKSPH 

2.1 Governing equations 

Every particle in the IKSPH program should 
follow four basic equations: (1) continuity, (2) 
momentum, (3) energy, and (4) motion. They can be 
written as follows: 
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where ρ, m, v, x, σαβ, e are the density, mass, velocity, 
position, total stress tensor, energy of the base 
particle; α, β are the permutation symbol. t is the 
calculation time step; T is the artificial viscous part, 
which can reduce non-physical oscillations during 
calculations; and W is the kernel function of the 
IKSPH method. 

2.2 Elastic solid equation 

Every particle in the IKSPH method utilises the 
elastic solid equation to calculate the stress 
components. The total stress tensor σαβ consists of 
two parts: the hydrostatic pressure p and shear stress 
τ, which can be written as 

αβτ+= αβαβ pδσ -                           (2) 

where δ is the Kronecker symbol, and the hydrostatic 
pressure p can be obtained from the equation of state 
(Müller et al. 2019): 

eΓpΓηp H ρ+= )
2
1-1(                     (3) 

where pH is the Hugoniot curve function and the Γ is 
the Gruneisen parameter. 

The change in the stress rate can be obtained 
from the strain and strain rates, which can be 
expressed as follows: 
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where τ  is the stress rate tensor; ɛ represents the 
strain tensor; δ is the kronecker delta; τ is the shear 
stress tensor; α, β and γ are the permutation symbol; 
B is the shear modulus, and R is the torsion tensor, 
which can be written as 
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2.3 Treatments of particle damage 

As shown in Eq. (1), for each particle in IKSPH, 
the transfer of parameter information is done by the 
derivative of the kernel function 

β
iij,β xW ∂∂ , for 

example, the density, velocity, energy, or position. If 
the derivative of the kernel function can be improved 
to eliminate the interactions between particles once 
the particle is damaged, then the fracture 
characteristics can be reflected. Based on this concept, 
the fracture mark ξ is introduced here in IKSPH, and 
the particle damage treatments are shown in Fig. 1. 
First, the IKSPH program judges whether the particle 
is damaged; if so, the fracture mark ξ is set to 0; 
otherwise, ξ=1. The improved kernel function 
considering the particle damage is defined as D, 
which can be written as 
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Therefore, the improved form of IKSPH 
governing equations can then be expressed as 
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D represents the improved kernel function 
considering the particle damage, and m represents the 
particle mass. 

2.4 Fracture criteria 

The improved form of the Mohr-Coulomb 
criterion is selected as the fracture criterion, which 
has been widely used in previous numerical 
simulations and has achieved good results (Yang et al. 
2016), and can be written as 

tf σσ =                                        (8) 

ϕτ tanff σc +=                       (9) 

where σf and τf are the maximum tensile stress and 

shear stress, respectively; σt is particle tensile strength; 
c is particle cohesion; and φ is the internal friction  
angle of the particle. 

2.5 Random fissure generating method 
(RFGM) 

2.5.1 Geometric generation of random fissures 

Numerous fissures and joints exist in rock slopes, 
whose geometries and locations are difficult to 
determine; however, their spatial distributions follow 
a macroscopic statistical law. In other words, their 
geometric parameters (including fissure dip angles, 
density, and lengths) can be described by a statistical 
probability density function. In this section, the 
Monte Carlo method is introduced in IKSPH, and the 
linear congruence method is used to generate 
uniformly distributed random numbers, whose 
recursive formula is expressed as follows: 
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where M is the modulus, mod M represents the 
remainder of M, a is a multiplier, c is the increment, 
x0 is the initial value, and rn is a random number 
generated between 0 and 1. Therefore, the formula of 
a random number which complies with the normal 
distributions can then be expressed as 

)2cos()(ln2- nnxxn rrx ××××+=′ πσμ    (11) 

where μx is the mean value and σx is the standard 
deviation. The 2D random fissure can be 
characterised by its central point coordinate (fx0, fy0), 
fissure length fl, and fissure dip angle θ. Therefore, its 

 
Fig. 1 Damage treatments of particles in improved kernel of smoothed particle hydrodynamics (IKSPH). 
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endpoints can then be written as 
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where fx and fy are the x-direction and y-direction 
coordinates of random fissure end points, respectively. 
The fissure density Q can be defined as the ratio of the 
fissure numbers N to the generation area S. Therefore, 
the geometric generation processes of random 
fissures are summarised as follows: 

(1) Determine the size of the generation area. It 
should be noted that when the analysis area shape is 
irregular, the generation area size is larger than that 
of the analysis area. Once the generation area is 
determined, the fissure numbers can then be 
calculated as N = Q × S. 

(2) Determine the random properties of each 
fissure. N groups of random numbers between 0 and 1 
obeying the normal distributions are generated 
according to Eq. (10), and N groups of fissure central 
coordinates (fx0, fy0), fissure length fl, and fissure dip 
angle θ can be generated. 

(3) Determine endpoints of each random fissure. 
According to the fissure parameters generated in step 
(2), the N groups of random fissure endpoint 
coordinates (fx, fy) can be calculated using Eq. (11). 

2.5.2 Generation strategy of random fissures 
in IKSPH 

Based on the characteristics of IKSPH, a method 
for generating random fissures is proposed in this 
section. The schematic diagram is shown in Fig. 2, 
and the detailed steps are as follows: 

(1) First, the endpoints of each fissure are 

geometrically located. The endpoint coordinates of 
the fissures are randomly generated according to the 
method introduced in Section 2.5.1, which are marked 
as li (i=1,2,......n). 

(2) Second, a series of search points are 
generated on li, which is marked as ni (i=1,2......n). 
The search radius d is assigned to each search point. 
It should be stressed that the search radius d should 
be 1.1 × the average spacing of real particles to ensure 
searching the target particles. 

(3) Finally, for each real particle, if covered by the 
search radius d, the real particle is marked as a fissure 
particle, and its derivative of the kernel function is 
improved according to Eq. (6). 

2.6 Gravity increase method embedded in 
IKSPH 

Previous studies on slope stability have mostly 
utilised the strength reduction method. However, the 
strength and stability of a rock slope are relatively 
high, and the gravity increase method has been 
proven to have the same effect as the strength 
reduction method (Jiang et al. 2015). Therefore, this 
section introduces the implementation of the gravity 
increase method into the IKSPH. 

For every IKSPH particle, its external forces 
include two parts: gravity and the forces of other 
particles. The gravity action of each particle is realised 
by gravity acceleration g. Therefore, similar to FEM, 
the rock slope final instability is caused by increasing 
the gravity acceleration g of each particle, and the 
final slope safety factor can be expressed as 

SF ig / g=                              (13) 

 
Fig. 2 Generation of random fissures in improved kernel of smoothed particle hydrodynamics (IKSPH). 



J. Mt. Sci. (2021) 18(7): 1937-1950   

 1942

where SF is the final safety factor of the slope and gi is 
the final gravity acceleration. 

The criteria for slope instability are as follows: 
monitor the displacement of the monitoring point at 
the top of the slope, if the displacement increases 
rapidly, the slope is considered to be unstable (Fig.3). 

3    Numerical Details 

3.1 Validation of IKSPH and gravity increase 
methods 

3.1.1 Validation of IKSPH method 

To verify the accuracy of the IKSPH method, a 
numerical model of a cubic specimen with a single 
crack was established. The model size was 1 m × 1 m, 
and one crack with a length of 1 m was prefabricated 
in the centre with an inclination angle of 45°. A 
confining pressure of 1 MPa was applied to the model  
side. The calculation results by IKSPH and Abaqus 
were consistent, which indicates that the proposed 
method is accurate and reasonable (Fig.4). 

3.1.2 Validation of the gravity increase method 

To verify the accuracy of the gravity increase 
method, a simple slope was calculated by IKSPH and 
the commercial software Geostudio. The height of the 
slope was 16 m, the length of the slope was 24 m, and 
the slope angle was 45°. Fig. 5 shows that the failure 
shape of the slope calculated by IKSPH is consistent 
with that of Abaqus. Meanwhile, the safety factor 
calculated by Geostudio was 2.855, and the IKSPH 
result was 2.73, which verifies the accuracy of the 
gravity increase method embedded in IKSPH. 

3.2 Numerical models 

The numerical model is of a rock slope, with a 
height and length of 486 m and 509 m, respectively. 
According to the geological survey, the rock strata 
tend to be along the slope, and the block formed by 
the cutting of complex joints exhibits a sliding trend. 
The IKSPH model was established according to a 
typical slope section. The whole model was divided 
into 140824 particles, as shown in Fig.6. 

3.3 Calculation conditions 

Different pre-existing fissure conditions were set 

according to the method proposed in Section 2.5: 
condition A, different fissure lengths fl; condition B, 
different fissure dip angles θ, and condition C, 
different fissure density Q, as presented in Table 1. 
The crack propagation processes and safety factors of 
the rock slope were calculated.  

3.4 Parameter determination 

To reflect the inhomogeneity of rock materials, a 

 
Fig. 3 Discrimination of slope instability by Gravity 
Increase Method embedded in IKSPH method. 

 

 
Fig. 4 The maximum principal stress distributions of 
(a) IKSPH results (b) Abaqus results. 
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heterogeneous coefficient m is introduced here, and 
the double parameter Wei-bull function is generally 
used to express the random distribution 
characteristics of basic parameters (Weibull et al. 
1939): 




















−








=

−− 1

0

1

00

exp)(
mm

x

x

x

x

x

m
xf       (14) 

where x is the basic mechanical parameters of the 
particles (e.g., modulus of elasticity, compressive 
strength, cohesion, etc.), x0 is the mean value of basic 
mech anical parameters, and m is the heterogeneity 
extent of particles. 

 The 2D standard rectangular numerical model 
was established, the size of which was 50 mm × 100 
mm, and the heterogeneous coefficient m was set to 
10. The elastic modulus, Poisson's ratio, tensile 
strength, cohesive strength, and internal friction angle 
were 0.1 GPa, 0.2, 8 MPa; 2.5 MPa, and 35°, 
respectively. Through continuous trial calculations, 
the stress-strain curves and failure modes were 
developed and are shown in Fig. 7, which are 
consistent with previous experimental results (Han et 
al. 2020). Meanwhile, Fig. 8 shows the entire failure 
processes of the numerical specimen, and the crack 
initiation and propagation processes can be clearly 
observed, which indicates that IKSPH has unique 
advantages in dealing with discontinuous problems. 

4    Simulation Results 

4.1 Rock slope failure modes 

The crack propagation processes are shown in 

Appendixes 1–3. It should be stressed that the crack 
failure modes were distinguished in our simulation. 
Tensile failure is marked white, while shear failure is 
marked in red. 

4.1.1 Influence of different fissure lengths on 
slope failure 

The rock slope failure was caused by crack 
propagation of pre-existing fissures (Appendix 1). For 
short fissure lengths, the cracks propagated along the 
gravity direction, and typical ‘wing cracks’ were 

Fig. 5 Verifications of Gravity Increase Method. (a) 
IKSPH results; (b) Geostudio results; (c) Safety factor of 
IKSPH. 

Table 1 Calculation conditions 

Schematic diagram Number Details 

 

A1 fl=10 m 
A2 fl=20 m 
A3 fl=30 m 

A4 fl=40 m 

 

B1 θ=15° 
B2 θ=30° 
B3 θ=45° 

B4 θ=60° 

 

C1 Q=10/(509×486 m2)
C2 Q=20/(509×486 m2)
C3 Q=30/(509×486 m2)

C4 Q=40/(509×486 m2)
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formed, which could often be observed in previous 
small-scale specimens (Li et al. 2020). For long 
fissure lengths, cracks initiated and propagated 
horizontally and eventually, cracks overlapped, and 
slope instability occurred. It should be noted that the 

first three images of each group are the microcrack 
propagation processes, and the last image is the 
macroscopic damage caused by the microcrack 
propagation. The macroscopic failure surface did not 
always follow the propagation paths of the 
microcracks; however, the overall failure trend was 
consistent with the microcrack directions. Meanwhile, 
the slope failure mode was mainly shallow (local) 
collapse when the fissure lengths were short 
(Appendix 1a). When the fissure lengths were long, 
the final failure mode was mainly deep failure 
(Appendix 1b, c, and d). Finally, shear failure mainly 
occurred on the crack surface, and tensile failure 
mainly occurred during crack propagation.  

4.1.2 Influence of different fissure dip angles 
on slope failure 

From Appendix 2, we inferred that the fissure dip 
angles determined the directions of micro and 
macrocracks. For small fissure dip angles (Appendix 2 
a, b), the crack initiation followed the directions of 
pre-existing fissures, and the angle between the 
macro fracture surface and horizontal direction was 
not large. With larger fissure dip angles, the 
microcrack initiation and propagation directions 
differed from the original fissure dip angles, and the 
angles between the macrocracks and the horizontal 
direction were also large. 

4.1.3 Influence of different fissure densities on 
slope failure 

The simulation results showed that the fissure 
densities had a significant impact on the rock slope 
failure modes (Appendix 3). For the conditions with 
small fissure densities (Appendix 3a), the microcrack 
propagation degree was less than that of other 
conditions. Microcracks initiated not only on the pre-
existing fissure tips but also at the slope corners. The 
final slope failure mode was mainly shallow collapse. 
For high fissure densities, the interactions between 
different fissures were stronger, leading to denser 
fracture networks. The final failure mode was mainly 
deep failure (Appendix 3b, c, and d). 

4.2 Statistics of crack number 

The crack number increased slowly during the 
early simulation stages (Figs. 9–11). However, when 
the gravity increased to a certain extent, the crack 
number increased sharply, leading to the final failure 
of the rock slope. The tensile crack number was 

 

 
Fig. 6 (a) Numerical model of the rock slope; (b) The 
actual section of the rock slope. 
 

 
Fig. 7 Comparison between numerical simulation and 
experimental results.  
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always   larger than the shear crack number, which 
means that the main failure mode of the rock slope is 
tensile failure. 

The total crack numbers of A1–A4 were 4607, 
4977, 6193, and 6274, respectively showing an 
increasing trend, which means that with the increase 
in the crack length, the rock slope is more unstable. 
The total number of cracks in B1–B4 was 4952, 2695, 

4977, and 5229, which first decreased and then 
increased, and shows that the most unstable 
condition is when the fissure angle is equal to 30°. 
The total number of cracks in C1–C4 was 4607, 4977, 
6274, and 6503, also showing an increasing trend, 
indicating that a large fissure density will be a 
negative factor for the rock slope stability. 

 
Fig. 8 The failure processes of IKSPH numerical specimen. 

 

 

 

 
Fig. 9 Crack numbers under condition A. (a) Condition A1; (b) Condition A2; (c) Condition A3; (d) Condition A4. 
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4.3 Rock slope stability analysis 

The slope safety factor varied notably with 
different fissure properties (Fig. 12). For condition A, 
the safety factor decreased with an increase in the 
fissure length, which indicates that an increase in the 
fissure length will have a negative effect on the 
stability of the rock slope. For condition B, the safety 
factor decreased first and then increased with the 
increase in the dip angles, and reached a minimum in 
condition B2 (fissure dip angle is 30°), indicating that 
a dip angle of 30° is the least safe. In condition C, the 
safety factor decreased with an increase in fissure 
densities, and there was a dramatic decrease from 
condition C3 to C4, which indicates that the fissure 
density Q=30/(509× 486 m2) is a critical value of 
slope stability and instability. 

5    Discussions 

5.1 Comparisons between the IKSPH results 
and previous studies 

Due to the difficulties in performing large-scale 
rock slope experiments and the lack of field surveys of 
pre-existing rock slope fissures, most studies have 
focused on small-scale specimens. It should be 
stressed that randomness also exists in our numerical 
results.  However, our simulations can also reflect 
some basic laws of fissure overlaps, interactions, and 
propagation, which are also similar to the small-scale 
experimental results and can validate the IKSPH 
method. 

 Fig. 13a, b shows typical ‘wing cracks’ in our 
simulation results. ‘Wing cracks’ initiate at pre-
existing fissure tips under uniaxial compression, and 
propagate along the direction of maximum principal 
stress, which has been observed in previous 
experimental results (Liu et al. 2020). The VIC-3D 
results showed that fissure surface slip leads to the 
tensile stress concentration at the fissure tips, 
forming ‘wing cracks’, as shown in Fig.13c (Liu et al. 

 

 

 

Fig. 10 Crack numbers under condition B. (a) Condition B1; (b) Condition B2; (c) Condition B3; (d) Condition B4. 
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2020). 
The interaction modes of the double fissures 

differ depending on their positions. Fig. 14a shows the 
conditions of large overlap degrees. Not only do the 
‘wing crack’ initiate from the fissure tips, but also the 
rock bridges between two fissures are connected, 
which is similar to the experimental results 1 (Zhu et 
al. 2017). Fig. 14b shows the interaction 
characteristics for small overlap degrees. ‘Wing cracks’ 
initiate from the outer sides of the fissures, and the 
‘wing cracks’ of the inner sides connect, which is also 
consistent with experimental results 2 (Zhu et al. 
2017). 

5.2 Application prospects of IKSPH method in 
stability evaluation of rock slopes 

In our work, by improving the kernel function in 
the traditional SPH method, mesoscopic particle 

damage is achieved. Meanwhile, the RFGM has been 
put forward to realise the generations of random 
distributed fissures in rock slopes. The traditional 
gravity increase method was embedded into the 
IKSPH program, and the evaluation of rock slope 
considering crack propagation processes has been 
realised. Compared with traditional FEM, the 
proposed method does not depend on the grids and 
does not need to re-mesh grids during calculation, 
which can reflect the real conditions of the rock slope 
failure process. Furthermore, the simulation results 
are similar to the previous small-scale experimental 
results. Therefore, the application of the IKSPH 
method in the evaluation of rock slopes is promising. 

However, it should be stressed that previous 
studies mostly utilised small-scale specimens, and the 
numerical results are limited due to numerous 
assumptions (for example, regular distributions of 
cracks, regular shapes of slopes, etc.), which cannot 

 

  

 
Fig. 11 Crack numbers under condition C.  (a) Condition C1; (b) Condition C2; (c) Condition C3; (d) Condition C4. 
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reflect the real states of rock slopes. Our work is a 
numerical trial of random fissures in a real rock slope. 
The numerical results cannot completely represent 
the real conditions, for the following reasons: 1) The 
physical and mechanical properties of rock slopes 

vary widely, which cannot be fully considered in the 
numerical simulation; 2) The failure modes and 
stability of rock slopes are greatly affected by fissure 
locations and properties, and the distributions of pre-
existing fissures in our simulation cannot be 

  

 
Fig. 12 The stability of the rock slope under different conditions. (a) Condition A: different fissure lengths; (b) 
Condition B: different fissure dip angles; (c) Condition C: different fissure density. 

 

 
Fig. 13 Comparisons of ‘wing cracks’ between IKSPH results and previous experimental results. (a) IKSPH results of 
condition A1; (b) ‘Wing crack’ in condition A1; (c) Experimental results of ‘wing crack’ (Liu et al. 2020). 
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consistent with real conditions. 
Therefore, combining the 
geological survey results with 
numerical simulations will be 
the focus of future research. 
Meanwhile, practical 
engineering problems are 
mostly 3D problems, and the 
simplified 2D model cannot 
fully represent 3D problems. 
In addition, the computational 
efficiency of the 3D numerical 
model was relatively low. 
Therefore, developing a high-
performance 3D IKSPH 
program will be a future 
research direction. 

6    Conclusions 

In this study, we 
improved the kernel function 
in the traditional SPH method 
and proposed a new numerical method called IKSPH, 
which can simulate rock fracture processes. 
Meanwhile, we proposed an RFGM and embedded the 
gravity increase method into the simulation 
framework. Then, we performed numerical 
simulations of a rock slope containing random 
fissures, and the failure modes and discussed the 
stability under different conditions. The following 
conclusions were drawn from this work.  

(1) Crack propagation in the simulated rock slope 
contains two stages: the formation of microcracks, 
where microcracks initiate and propagate, and the 
formation of macro fractures, where macrocracks 
occur and the rock slope fails. The macroscopic failure 
surface does not always follow the propagation paths 
of the microcracks; however, the overall failure trend 
is consistent with the microcrack directions. 

(2) The rock slope failure modes were 
significantly influenced by the fissure properties. 
Short fissure lengths lead to shallow collapse failure 
modes, whereas long fissure lengths lead to deep layer 
slide failure modes. The fissure angle dominates the 
strike of the macrocrack, and the propagation angles 
of the macrocracks increase with the increase in pre-
existing random fissures. When the fissure density 
was small, the microcrack fragmentations were small; 

however, when the fissure density was large, the 
microcrack fragmentation increased sharply.  

(3) The fissure properties also significantly 
impacted the rock slope stability. The increase in 
fissure lengths and densities decreased the rock slope 
stability. Meanwhile, SF first decreased and then 
increased with an increase in fissure angles. 

Notably, the present study only performed highly 
simplified examples to illustrate that IKSPH can be 
applied to rock slope stability analysis. Actual 
engineering practices are complex 3D problems. 
Therefore, the geological survey results with 
numerical simulations and the development of a 3D 
high-performance IKSPH program will be a future 
research direction. 
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